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Spirochetes are a major threat to public health. However, the exact pathogenesis of spi-
rochetal diseases remains unclear. Spirochetes express lipoproteins that often determine 
the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, 
modulatory of immune responses, and enable the spirochetes to evade the immune 
system. In this article, we review the modulatory effects of spirochetal lipoproteins 
related to immune evasion. Understanding lipoprotein-induced immunomodulation will 
aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms 
potentially relevant to spirochetal disease vaccine development and treatment.
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inTRODUCTiOn

Spirochetes cause many human diseases such as syphilis, Lyme disease, and leptospirosis that pose 
major threats to public health (1). Epidemiological studies have shown that the incidence of Lyme 
disease (2–4), syphilis (5–7), and leptospirosis (8, 9) have increased, both within United States 
and globally (10, 11). However, the immunopathogenesis of spirochetal diseases remains unclear 
(12–14). Despite the apparent immune response generated following spirochete infection (i.e., tissue 
inflammation) (15), spirochetes are known to persist in their host (16) through a wide variety of 
mechanisms ranging from a dynamic outer membrane capable of antigenic variation in the presence 
of outer-surface proteins capable of inhibiting macrophage facilitated phagocytosis (17, 18).

A critical question is what cellular components can trigger the strong immune responses that 
are characteristic of spirochetal infections. Spirochetal membranes play a pivotal role in interacting 
with a host’s immune system (19, 20). Bacterial components such as lipopolysaccharides (LPSs) 
often play a major role in the induction of inflammation in bacterial infections (21, 22). Interestingly, 
aggressive immune responses are often observed despite the lack of LPS (endotoxin) in particular 
spirochetes, such as Borrelia burgdorferi (19, 23–25). Certain spirochetes such as Treponema pal-
lidum, the spirochete responsible for syphilis, rely greatly on their ability to express adhesins over 
the surface of their membrane as a tool with which they can invade various tissues (26). Lipids 
compose 25–30% of a cell’s dry weight (19, 20). Detergent treatments of spirochetal membranes 
have confirmed that lipoproteins are the most abundant in number out of all proteins expressed by 
spirochetes (27–32) and are major integral spirochetal membrane proteins (27, 33). For example, 
B. burgdorferi species express >100 lipoproteins (34) and Leptospira spp. have >140 lipoprotein 
genes (35). Although numerous examples of spirochetal lipoproteins can be listed, a few prominent 
ones include OspA from B. burgdorferi, Tp47 from T. pallidum, and Lip32 from the Leptospira species 
(36–38). The number of bacterial lipoproteins that have been studied parallels the myriad of roles 
that lipoproteins play in bacteria such as envelope biogenesis, stress responses, pathogenicity, and 
nutrient transport (39–41).
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However, there is limited evidence regarding the interplay 
between lipoproteins and human immune responses, partly due to 
the fact that in vitro studies do not accurately reflect human mod-
els. Understanding lipoprotein-induced immunomodulation will 
aid in elucidating innate pathogenesis processes and subsequent 
adaptive mechanisms potentially relevant to spirochetal disease 
vaccine development and treatment. In this article, we review the 
scientific evidence regarding the modulatory effects of spirochetal 
lipoproteins related to immune activation and evasion.

MODULATORY eFFeCTS OF 
SPiROCHeTAL LiPOPROTeinS ReLATeD 
TO ACTivATiOn OF THe iMMUne 
SYSTeM

Understanding the dualistic roles (activation vs inhibition) of 
lipoproteins in their interaction with the immune system is pivotal 
(42). Thus, before we explore mechanisms of spirochetal immune 
evasion, a better understanding of all the regulatory mechanisms 
(such as pro-inflammatory effects and immune activation) of 
spirochetal lipoproteins is needed. Better understanding of 
spirochetal lipoproteins and their regulatory mechanisms may 
provide insight into clinical outcomes arising from spirochetal 
infections. For example, spirochetal infections may increase the 
risk of Alzheimer’s disease (43).

Spirochetal Lipoproteins induce  
Pro-inflammatory effects
One of the primary manifestations of spirochetal infection is 
tissue inflammation that is the mainstay of spirochetal diseases 
such as Lyme neuroborreliosis (22, 29). Spirochetal lipoproteins 
are known to induce strong pro-inflammatory responses in 
their hosts (27, 33, 34, 44–52) that comprise the initial innate 
immune response to the invading pathogen (49). Components of 
the inflammatory infiltrate include keratinocytes, macrophages, 
leukocytes, and cells capable of responding to the presence of 
lipoproteins (53–55). A better understanding of the modulatory 
effects of spirochetal lipoproteins in myeloid and non-myeloid 
immune cells is needed.

Spirochetal Lipoproteins Have Modulatory 
effects on neutrophils
Neutrophils have a major role in the immunopathogenesis of 
acute bacterial infections. Spirochetal lipoproteins, such as OspB, 
have been documented to inhibit neutrophil function and prevent 
oxidative burst in a variety of tissues, to prolong host infection 
(56–58). However, other lipoproteins can promote neutrophil 
activation. For example, OspA, even when presented at pico-
molar concentrations, has been seen to play a role in the activa-
tion of neutrophils and their chemotaxic capabilities (51, 59). 
Subsequent to neurophil activation, neutrophil tissue infiltration 
contributes to localized tissue inflammation that is pre-dominant 
in inflamed arthritic joints and in myocarditis (associated with 
spirochetal infections) (50, 51, 60). In addition to mediating 
inflammatory responses, spirochetes, such as Leptospira, may 
induce neutrophils extracellular traps, which are a relatively 

novel pathogen-killing mechanism for extracellular microbes 
independent of phagocytic uptake and degranulation (61). Thus, 
spirochetal lipoproteins can modulate the function of neutrophils 
that are recruited early in acute inflammatory responses.

Spirochetal Lipoproteins Have Pleotropic 
Modulatory effects on Monocytes and 
Macrophages (M/M) That Are Mediated 
through Several Pathways
Except for neutrophils, M/M also play a major role in spirochetal 
immunopathogenesis. Lipoproteins bind CD14 in the membrane 
of M/M at the CD14 site that also interacts with LPS (62–64). 
This interaction activates the NF-κB pathway and induces pro-
inflammatory responses (62, 63, 65). In addition, unlike the 
membrane-bound CD14, soluble CD14 also allows the activation 
of non-myeloid cells (66). Furthermore, the pro-inflammatory 
effects of spirochetal lipoproteins are often mediated by toll-
like receptors (TLR) (67–69). TLR signaling leads to increased 
production of numerous cytokines that induce pro-inflammatory 
responses (25, 47). Interestingly, TLR-deficient mice had exac-
erbated inflammation and increased spirochetal burdens, both 
of which were attenuated by impairing T  cell responses (70). 
As a bodily response to the vast amounts of pro-inflammatory 
cytokines produced upon spirochetal lipoprotein presence, 
monocytes have also been seen to produce IL-10 upon being 
presented with B. burgdorferi lipoproteins (71–75). IL-10, unlike 
cytokines such as IL-1 and IL-12, is known to reduce inflamma-
tion via TLR-pathway downregulation and can therefore assist 
in combatting the spirochetal infection as well as any possible 
chronic effects such as arthritis (76, 77). The above was confirmed 
in recent mice studies that utilized a TLR2 agonist, Pam3CSK4, to 
induce IL-10 production which attenuated inflammatory response 
to Leptospira (78). Thus, spirochetal lipoproteins exert their pro-
inflammatory effects through several pathways including CD14, 
TLR, and NF-κB signaling and induce both pro-inflammatory 
(such as IL-1) and anti-inflammatory cytokines (IL-10) produc-
tion in myeloid cells such as M/M.

Spirochetal Lipoproteins induce Activation 
of Dendritic Cells
Similar to the activation of neutrophils, M/M, spirochetes also 
maintain the ability to activate other myeloid cells such as 
dendritic cells, key components in linking both the innate and 
adaptive immune system. Spirochetes activate cell adhesion 
molecules such as intercellular adhesion molecule 1 (ICAM-1), 
which then facilitate T-cell interactions and subsequent dendritic 
cell migration to lymph nodes for the mounting of an immune 
response (79, 80). In early stages of inflammation, lipoproteins 
in T. pallidum upregulate ICAM-1 and activate dendritic cells to 
mount immune responses (25, 46, 49, 81–84). Immune activation 
can also be induced upon spirochetal death or phagocytosis of 
spirochetes, both processes of which lead to further introduc-
tion of lipoproteins to the surrounding environment (80). The 
modulatory effects of spirochetal lipoproteins on dendritic cells 
are particularly important since dendritic cells play a major role 
in vaccine responses (discussed below).
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TABLe 1 | Mechanisms of immune evasion of major spirochetal 
lipoproteins.

Bacteria Role in immune evasion

Borrelia burgdorferi Antigenic variation [VlsE proteins (118, 120, 131–134), 
OspC (135)]
Evasion of complement-mediated lysis [OspE, Erp 
(136–138), CspA (139)]

Impairment of neutrophil function (BBA57) (140)

Oral treponemes (ex. 
Treponema denticola)

C3b inactivation (various lipoproteins) (141)

Borrelia recurrentis Antigenic variation (variable large and small protein 
genes and Vmp variants) (19, 110)

Bind to complement regulatory proteins, i.e., CFH and 
CFHR-1 [FhbA, BhCRASP-1, and HcpA (142–145)]

Borrelia turicatae Antigenic variation (variable large and small protein 
genes and Vmp variants) (19, 110)

Inhibit C4bp and C1-Inh, the major inhibitors of the 
classical and lectin pathway of complement activation 
(CihC) (146)

Binds to human complement regulators, Factor H, 
CFHR-1 (HcpA) (143)

Borrelia hermsii Antigenic variation (variable large and small protein 
genes and Vmp variants) (19, 110)

Bind to complement regulatory proteins, i.e., CFH and 
CFHR-1 [FhbA, BhCRASP-1, and HcpA (142–145)]

Leptospira interrogans Impairment of neutrophil function (LIC11207) (147)

Bind to complement regulators (LigA, LigB, Len A, 
Len B) (148)

Antigenic variation in borrelias may result from recombination of variable large and 
small protein genes. Lipoproteins may also impair mechanisms of innate immunity 
such as neutrophil function and complement activation. These mechanisms allow the 
spirochete to evade the host’s immune response and persist in the mammalian host.
BBA57, Borrelia burgdorferi A57 protein; BhCRASP-1, Borrelia hermsii complement 
regulator-acquiring surface protein 1; C1-Inh, human C1 esterase inhibitor; 
CihC, C1-inhibitor and C4bp-binding protein; C4bp, C4b-binding protein; CspA, 
complement regulator-acquiring surface protein-1; Erp, OspE-F-related lipoprotein; 
FhbA, complement factor H-binding protein; HcpA, human complement regulator 
and plasminogen-binding protein; LIC11207, L. interrogans serovar Copenhageni 
(LIC) protein 11207; LigA, leptospiral immunoglobulin-like protein A; LigB, leptospiral 
immunoglobulin-like protein B; OspC, outer-surface protein C; OspE, outer-surface 
protein E; VlsE, variable major protein-like sequence E; Vmp, variable major lipoprotein.
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Chronic Modulatory effects of Spirochetal 
Lipoproteins and effects on Adaptive 
immunity May Drive Pathogenesis of 
Spirochetal Diseases
Spirochetal lipoproteins may also play a role in the transition 
from the acute immune responses to the more chronic effects that 
characterize spirochetal diseases such as arthritis, peripheral neu-
ropathy, numerous neurologic manifestations, and the vascular 
endothelial damage thought to underlie a significant portion of 
the chronic symptoms in spirochetal diseases (85–89). Although 
the exact mechanism of transition may not be well understood, 
lipoproteins may activate B-cells and T-cells, both of which are 
known to play major roles in long-term adaptive immunity (46, 
47, 49–52). Further understanding of the exact transition process 
has major potential in terms of possibly delaying, or inhibiting, 
many of the debilitating chronic effects characteristic of numer-
ous spirochetal infections.

MODULATORY eFFeCTS OF 
SPiROCHeTAL LiPOPROTeinS ReLATeD 
TO FACiLiTATiOn OF iMMUne evASiOn

Spirochetes evade a host’s immune system through mechanisms 
such as antigenic variation, which is capable of producing myriads 
of variants (90). Spirochetal interference of the innate immune 
system presents one more mechanism, in a list of many, to allow 
for the persistence of spirochetes in their host (16, 91). Spirochetes 
use multiple mechanisms of immune evasion that are related to 
spirochetal lipoproteins. Indeed, except for pro-inflammatory 
effects, lipoproteins are also responsible for modulatory effects 
such as immune evasion. Spirochetes may limit the expression 
of membrane lipoproteins and their access to antibodies (92, 
93) or induce antigenic variation of surface lipoproteins (19, 90, 
94–100). Spirochetal lipoproteins may also interact with, and 
inhibit, components of innate immunity such as the complement 
(63, 68, 88, 101–108), neutrophils, and serum lipoproteins (109). 
Major pathways of spirochetal immune evasion are discussed 
below (see also Table 1 and Figure 1) (110–130).

Differential Dynamics of Spirochetal 
Lipoprotein expression As a Mechanism 
of immune evasion
The expression of lipoproteins on the outer leaflet of the mem-
brane allows the spirochete to interact with tissues and the host’s 
immune system (110). Naturally, the vast abundance of lipopro-
teins a given spirochete can express are not all necessary at a given 
time point, and their expression is time sensitive (111). Although 
more work is needed to elucidate the time-sensitive expression 
of surface lipoproteins, studies have hinted at the possibility of 
a temperature-sensitive mechanism to underlie expression pat-
terns (112). For example, OspA in B. burgdorferi is not needed 
upon host infection and is therefore downregulated upon infec-
tion of a host via a temperature-sensitive alteration in membrane 
composition (111). Coupled closely with the need of a lipoprotein 
to be expressed on the exterior of the cell for interactions to 

occur, the lipoprotein must maintain its N-terminus as it has 
been documented that it is this region specifically to which 
immune system–spirochete interactions occur (113, 114). In line 
with the above statement, removal of the N-terminus disrupts 
the aforesaid interactions while synthesis of N-terminus analogs 
restored immune cell activation (114, 115). The limitation of 
outer-membrane lipoprotein expression in spirochetes may also 
act as a mechanism to facilitate host humoral defense evasion. 
Antibody recognizable lipoproteins may be scarcely expressed on 
the exterior leaflets, as opposed to the relatively more lipoprotein 
dense cytoplasmic leaflet (92, 93, 116). Further studies are needed 
to elucidate the role of differential dynamics of spirochetal lipo-
protein expression in spirochetal immunopathogenesis.

Antigenic variation of Surface 
Lipoproteins
Coupled with the limited expression of outer-membrane lipo-
proteins in spirochetes, antigenic variation is a major mechanism 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Mechanisms of immune evasion mediated by spirochetal lipoproteins.
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by which invading bacteria can evade the host immune response 
(117). Spirochetes also undergo a process of antigenic variation 
in terms of expressed outer-leaflet lipoproteins (96, 118). Studies 
in immunocompromised hosts have suggested that the host 
immune responses have a major role in producing spirochetal 
antigenic variants (96). Antigenic variation in borrelias may result 
from recombination of variable large and small protein genes 
(98) and the diversity of variable major lipoprotein lipoproteins 
allows these pathogens to evade the host immune response (19, 
23, 119). Moreover, outer-leaflet lipoprotein variation also allows 
spirochetal adherence to a wide variety of host cells, as studies 
of T. pallidum TP0435 isoforms have recently shown (26). The 
antigenic variation of major surface lipoproteins is described in 
Table 1 (19, 90, 94–100).

The ability to vary surface lipoprotein expression has been 
studied in B. burgdorferi, where it has been shown that prolonged 
infections are due to the embodiment of a vls locus that is capable 
of random segmental variation in the surface-exposed lipopro-
tein it encodes (118, 120). The vls locus variation specifically 
allows for the variation in the encoded variable major protein-
like sequence lipoprotein which has been documented to allow 
for persistence of B. burgdorferi in its host (120). The antigenic 
variation of spirochetes leads to evasion of the immune system 
and ultimately to the phenomenon of host relapsing (121). Most 
interestingly, antigenic variation characteristic of B. burgdorferi 
is only seen during host infection. Spirochetal antigenic variation 
has not been described in vitro. Thus, the cross talk between host 
cellular responses and B. burgdorferi is needed for development of 
antigenic variation (perhaps through downregulation of OspA) 
(96). Elimination of the ability to undergo antigenic variation, as 
was done in Borrelia hermsii, may greatly reduce host infectivity/
persistence (119). Understanding the exact mechanisms behind 

a spirochete’s ability to elicit immune evasion via antigenic 
variation could set the basis for targeted interventions to inhibit 
infections (122).

inhibition of neutrophil Function by 
Spirochetes
Neutrophil-mediated phagocytosis of pathogens is a major host 
immune response to infection. Thus, spirochetes evade immune 
responses by inactivating neutrophil function (56). The most 
prominent examples of the above can be seen with the B. burg-
dorferi surface protein OspB, which may prevent phagocytosis 
of the spirochete and inhibit respiratory/oxidative burst in a 
variety of tissues, such as the skin (56–58). It should be noted 
that B. burgdorferi also contains outer-surface protein C which 
plays a role in inhibiting phagocytosis by macrophages (18). 
Similar to OspB that impairs neutrophil function, the novel 
lipoprotein Leptospira interrogans serovar Copenhageni (LIC) 
protein 11207 from Leptospira, promotes apoptotic pathways 
in neutrophils (123). Thus, spirochetal lipoproteins can both 
activate and impair neutrophils.

Lipoprotein inhibition of Complement 
Activation
One of the major components of a host’s innate immune system is 
the complement system that plays a role in the phagocytosis/elimi-
nation of a pathogen and is a target of spirochetes upon infection 
(124). Activation of the complement system is known to occur 
through the recognition of surface-exposed lipoproteins as well 
as other antigens such as oligosaccharides (124). The multi-stage 
process of complement activation presents spirochetes (such as 
B. burgdorferi) with the opportunity to attack at multiple phases. 
For example, B. burgdorferi binds and inhibits the C1 initiation 
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complex and accelerates C3b inactivation (91, 125). Furthermore, 
B. burgdorferi can bind either Factor H or FHL-1, two important 
complement regulators which upon being bound by CRASP-2 
and CRASP-1 (B. burgdorferi membrane-bound lipoproteins), 
respectively, are inactivated and inhibit formation of comple-
ment system activation products (126, 127). B. burgdorferi also 
maintains the ability to bind factor H, via particular Osp, such as 
outer-surface protein E, accomplishing the same outcome as with 
CRASP-2 binding (128). Hijacking of the complement system is 
a conserved mechanism of immune evasion among numerous 
pathogens (such as Plasmodium falciparum) (129). Therefore, 
understanding the mechanisms behind complement hijacking 
in spirochetes could potentially contribute to understanding 
conserved pathways in other pathogens.

Lipoprotein inhibition of natural Killer T 
(nKT) Cells
Natural killer (NK) cells act to bridge the innate and adaptive 
immune responses to pathogenic infections; however, it is their 
ability to respond to a variety of lipid antigens that allows them 
to maintain a functional presence during combat of spirochetal 
infections (130). Spirochetes are capable of interfering with the 
NKT  cells that respond to CD1d glycolipids on the surface of 
spirochetes such as B. burgdorferi (149). Although the exact bio-
chemical pathway of interference is not well understood, patients 
with syphilis have been known to exhibit low NKT numbers (150). 
Further studies are needed to understand the possible interaction 
between spirochetal lipoproteins and NK cells.

UnDeRSTAnDinG LiPOPROTein-
MeDiATeD PATHwAYS OF iMMUne 
evASiOn MAY PAve THe wAY FOR 
DeveLOPMenT OF STRATeGieS TO 
TReAT SPiROCHeTAL inFeCTiOnS

Understanding the pleotropic modulatory effects of lipoproteins 
may contribute to the development of new approaches to combat 
a plethora of diseases (151–154). Use of adjuvants in vaccines may 
enhance recognition of whole proteins by the adaptive immune 
system (151, 155). The immunopotent effects of spirochetal 

lipoproteins have hinted at the possibility for the development of 
vaccines that rely on the use of synthetic or derived lipopeptides 
(151, 155, 156). Spirochetal lipoproteins, such as OspA, can be 
expressed on the surface of outer-membrane vesicles to elicit an 
immune response similar to vaccines (157). Improvements in 
recombinant bacterial lipoprotein generation promise to make 
lipopeptide-based vaccines more feasible in the near future (158). 
The incorporation of numerous epitopes, such as lipoproteins, as 
adjuvants into vaccines can help target various diseases including 
cancer (155, 159). On the other hand, incorporation of a lipid 
moiety in peptide-based vaccines may induce TLR2 signaling in 
dendritic cells and subsequent protection against viral and bacte-
rial infections (156). Finally, the use of lipopeptide-based antibiot-
ics such as daptomycin, that can cause both immunomodulation 
(160) and also target spirochetes (161), remains to be studied as a 
therapeutic option for patients with spirochetal infections.

COnCLUSiOn

Lipoproteins play a significant role in the various stages of a 
spirochete’s ability to infect a host and survive, through pleotropic 
effects involving transfer from vector to host, immune activation, 
or even immune evasion. Further studies are needed to understand 
the molecular basis and mechanisms that underpin the numer-
ous modulatory effects (both acute and chronic) of spirochetal 
lipoproteins. The payout from such targeted research can be 
significant considering the sheer amount of spirochetal infections 
occurring on a yearly basis as well as the morbidity associated 
with chronic spirochetal infections in humans. Ultimately, the 
use of knowledge surrounding spirochetal lipoproteins can be 
put toward the development of vaccines or, perhaps shed light on 
the pathogenesis of other vector-based pathogens.
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