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Influenza A virus (IAV) infection is a significant cause of morbidity and mortality world-
wide. CD4+ T cell responses have been shown to be important for influenza protection 
in mouse models and in human volunteers. IAV antigen-specific CD4+ T cell responses 
were found to focus on matrix 1 (M1) and nucleoprotein (NP) at the protein antigen level. 
At the epitope level, only several epitopes within M1 and NP were recognized by CD4+ 
T cells. And the epitope-specific CD4+ T cell responses showed a typical immunodomi-
nance hierarchy in most of the healthy individuals studied. In this study, we reported one 
case of atypical immunodominance hierarchy of CD4+ T cell responses to IAV. M1 and 
NP were still the immunodominant targets of CD4+ T cell responses. However, CD4+ 
T cell responses specific to 11 epitopes derived from M1 and NP were detected and 
showed no significant immunodominance hierarchy. Such an atypical pattern is likely 
determined by the individual’s HLA alleles. These findings will help us better understand 
the anti-IAV immunity as a whole and improve future vaccines against IAV.
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inTrODUcTiOn

Influenza virus [influenza A virus (IAV)] infection is a global threat to human health. Each year, 
about half a billion human beings have symptomatic influenza illness (1), and three to five million 
subjects suffer from severe influenza, causing approximately half a million deaths annually world-
wide (2). Frequent mutation in hemagglutinin and neuraminidase of the circulating viruses and 
the mismatch between the circulating and vaccine viruses significantly affected the effectiveness of 
antibody-based vaccine strategy (3). Novel vaccines that are more effective and covering a broader 
spectrum of influenza viruses are urgently needed. T cell immunity has an important protective 
role against IAV, and T cell-based vaccines represent an important new development, worldwide, in 
efforts to combat influenza (4).

Study of IAV-specific T cell immunity has focused more on CD8+ T cells (5, 6) partly due to 
the lack of accurate prediction algorithms for CD4+ T cell epitopes that often show promiscuous 
length requirement (7). Otherwise, specific CD4+ T cell responses were proven to be indispensable 
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for the clearance of IAV in both animal models (8, 9) and in 
human volunteers (10). CD4+ T cells can exert their protective 
effect directly through cytotoxic activity (11) or indirectly 
through providing “help” to both CD8+ T cells and B-cells to 
eliminate virus and virus-infected cells via cytotoxicity and 
antibody neutralization, respectively (12, 13). Furthermore, the 
generation of strong memory CD4+ and CD8+ T cell responses 
are also CD4+ helper T cell dependent (14, 15). Thus, stimulat-
ing robust CD4+ T cell response is critical for both developing 
effective T  cell-based and antibody-based IAV vaccine (16). 
To realize that and to be able to properly appreciate the future 
IAV vaccine efficiency, antigen specificity of IAV-specific CD4+ 
T  cell responses need to be properly understood and finely 
characterized.

Immunodominance refers to the phenomenon that the 
cellular immunity tends to focus on a very limited number 
of antigenic epitopes even during immune responses to 
complex antigens or pathogens in infected individuals. 
Immunodominance in CD4+ T cell responses have been widely 
observed in many viral systems, including HIV, EBV, HTLV1, 
and others (17–19) and such immunodominance hierarchies are 
often long lasting (20). Using in vitro expanded multi-specificity 
IAV-specific T  cell lines and individual IAV protein antigens 
produced by recombinant vaccinia viruses (rVVs), we have 
demonstrated that matrix 1 (M1) and nucleoprotein (NP) are 
the immunodominant antigens targeted by IAV-specific CD4+ 
T cells in healthy individuals (21). We further finely character-
ized 10 immunodominant epitopes derived from these antigens 
using synthetic overlapping peptides (21). Although some of 
these have been previously reported, their immunodominance 
status was confirmed for the first time. The epitope-specific 
CD4+ T  cell responses showed a typical immunodominance 
hierarchy in most of the healthy individuals we studied. In some 
individuals, the CD4+ T cell responses even focused on a single 
epitope (21).

In the present study, using the same approach as mentioned 
above, we found atypical CD4+ T  cell responses to IAV in a 
healthy individual. Although M1 and NP were still the immu-
nodominant targets of these CD4+ T cell responses and up to 11 
epitopes derived from nine antigenic regions were recognized, 
the magnitude of these epitope-specific CD4+ T  cell responses 
were relatively equal, and no significant immunodominance was 
observed. From this, one highly conserved epitope, M1240–252 
restricted to DPB1*0501, was identified. The potential implica-
tion of these findings to T  cell-based vaccine development is 
further discussed.

MaTerials anD MeThODs

PBMc samples
Buffy coats were obtained with informed written consent from the 
Australian Red Cross donors under the agreement of 12-07VIC-17  
Material Supply Agreement V15.1. PBMC were isolated by 
Ficoll-Hypaque gradient and stored in liquid nitrogen until use. 
HLA typing was performed by the Victorian Transplantation and 
Immunogenetics Service (VTIS, Melbourne, VIC, Australia). 

The proposed work was approved by the Faculty of Science, 
Technology & Engineering Human Ethics Committee under the 
project number FHEC12/NR81.

synthetic Peptides
All peptides were synthesized by Mimotopes (Melbourne, VIC, 
Australia); IAV-M1 and NP overlapping 18mers with 6-aa shifts, 
and 13mers with either 1- or 2-aa shifts were synthesized as 
cleaved peptide libraries. All peptides were dissolved in DMSO.

Viruses
The Mount Sinai strain of PR8 (A/Puerto Rico/8/1934 H1N1) 
IAV was prepared as previously described (21). Virus aliquots 
were stored at −80°C until use. rVV for the generation of 
individual IAV proteins were gifts from Drs. Jonathan Yewdell 
and Jack Bennink (National Institutes of Health, Bethesda, MD, 
USA). The viruses were propagated using a TK− cell line and were 
stored at −80°C until use. These proteins are all derived from the 
PR8 sequences.

cell culture
Donor EBV BLCLs (Epstein–Barr virus-transformed B lympho-
blast cell lines) were established using standard EBV transforma-
tion. The other human BLCL lines were made available from the 
International HLA Workshop and the Victorian Transplantation 
and Immunogenetics Service (Melbourne, VIC, Australia). P815 
cells were kind gifts from Drs. Jonathan Yewdell and Jack Bennink 
(National Institutes of Health, Bethesda, MD, USA). All cells were 
cultured in RF-10 consisting of RPMI-1640 supplemented with 
10% FCS, 2-ME (5 × 10−5 M), and antibiotics (penicillin 100 U/
mL, streptomycin 100 µg/mL).

Preparation of iaV- and rVV-infected P815 
cell lysates
Influenza A virus and rVV infection of P815 cells were conducted 
as previously described (21). Infected cells were pelleted and 
lysed by 8 M urea. The lysates were aliquoted and preserved at 
−20°C until use.

generating iaV-specific, Polyspecificity 
cD4+ T cell lines
PBMCs (5 × 106) were pulsed with 5 µL IAV-infected P815 cell 
lysates (equivalent to 105 infected cells) in 200 µL RF-10 for 1 h in 
24-well tissue culture plates. Two microliters RF-10 with 20 U/mL 
recombinant human interleukin-2 (rIL-2) (Peprotech, Brisbane, 
QLD, Australia) were then added, and the cell lines were cultured 
in the rIL-2-containing RF-10 until use.

generating single Peptide-specific cD4+  
T cell lines
Peptide-specific CD4+ T  cell lines were generated as previous 
described (21, 22). In brief, PBMCs (1–2  ×  106) were pulsed 
with 5  µM peptide and cultured in 1  mL “RP-5” consisting of 
RPMI 1640 (Gibco) supplemented with 5% human AB sera, 
l-glutamine (2  mM), 2-ME (5  ×  10−5 M), and antibiotics in 
48-well tissue culture plates. The medium was 50% replaced by 
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FigUre 1 | generation of cD4+ T cell lines for the identification of antigen specificity of influenza a virus (iaV)-specific cD4+ T cell responses. (a) To 
identify the dominant IAV antigen, multi-specificity IAV-specific CD4+ T cell lines were generated by pulsing PBMCs with IAV-infected P815 cell lysates and then 
cultured in the presence of rIL-2 for 12–15 days. The immunodominant IAV antigens were identified using an IFN-γ intracellular cytokine staining (ICS) assay in 
response to autologous BLCLs pulsed with recombinant vaccinia viruses (rVV)-infected P815 cell lysates, which were engineered to express a single IAV protein. 
Following the identification of immunodominant antigens, antigenic regions were determined by 18mer overlapping peptides covering the corresponding antigens. 
(B) To identify the epitopes buried in the antigenic regions, single 18mer peptide-specific CD4+ T cell lines were generated and screened for 13mer overlapping 
peptides using ICS assay. The HLA restriction was identified by partially HLA-matched BLCLs pulsed with target peptide in an ICS assay.
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RP-5 containing 10 U/mL rIL-2 on day 5 and then 50% replaced 
by RP-5 containing 20 U/mL rIL-2 when required.

identification of antigenic regions and 
epitopes
IFN-γ intracellular cytokine staining (ICS) was performed to 
identify antigenic regions and epitopes as previously described 
(21). In brief, autologous BLCLs were pulsed with IAV- or rVV-
infected P815 cell lysates overnight and then cocultured with 
IAV-specific T  cell lines for 5  h in the presence of 10  µg/mL 
Brefeldin A (BFA) or single peptide-specific T cell cultures were 
incubated with peptide at 10 µg/mL at 37°C for 5 h in the presence 
of BFA. First, the cells were harvested and stained with anti-CD3 
(FITC) and anti-CD4 (APC) and then washed, fixed, and stained 
with anti-IFN-γ (PE-Cy7) as described previously (23). The flow 
cytometry mAbs were purchased from eBioscience. Samples were 
acquired on a FACS Canto II flow cytometer (Becton Dickinson), 
and FACS data were analyzed with FlowJo software (Tree Star, 
Ashland, OR, USA).

hla restriction assay
For antibody-blocking assay, T cells were incubated with 10 µL 
of anti-HLA class II antibody for 30  min before addition of 
peptide and BFA. Pan anti-DR (L243), anti-DP (B7/21), and 

anti-DQ (SPV-L3) antibodies were used as culture supernatants 
(22). For identifying restriction HLA, BLCLs were pulsed with 
the peptide of interest at 10 µg/mL for 1 h, washed extensively, 
and then cocultured with peptide-specific T cells for 5 h in the 
presence of BFA. Then, IFN-γ ICS was performed as described 
above.

Bioinformatics analysis
Protein sequences were aligned and amino acid differences 
were scored to determine the sequence conservation between 
IAV strains for the newly identified peptides. The National 
Center for Biotechnology Information (NCBI) Influenza virus 
database1 was used (accessed on November 7, 2016) with the 
search criteria set as Australia, M1/NP, H1N1/H3N2 [or Any 
(Country/region), M1/NP, H5N1] identical sequences were 
represented by the oldest sequence in the group and full length 
only, which identified H1N1 (n = 19 for M1, N = 43 for NP), 
H3N2 (n = 24 for M1 and n = 74 for NP), and H5N1 (n = 36 
for M1 and n = 96 for NP) sequences. Protein sequences were 
aligned using the NCBI database, peptide regions were mapped, 
and frequency of mutation was determined across the various 
sequence groups.

1 http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=1.
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FigUre 2 | M1 and nucleoprotein (nP) were dominant antigens 
recognized by influenza a virus (iaV)-specific cD4+ T cells. The 
IAV-specific T cell line was generated by IAV-infected P815 cell lysate. 
Approximately, 12–15 days later, the cells were tested for their reactivity to 
autologous BLCLs pulsed with individual lysate of P815 cells infected with 
IAV or the 11 recombinant vaccinia viruses (rVVs) encoding single IAV antigen 
in an IFN-γ intracellular cytokine staining assay. BLCLs not pulsed with any 
lysate (Nil), or pulsed with lysate from uninfected P815 cells (Uninfected), wild 
type (WT, empty vector) rVV-infected P815 cells were used as background 
and specificity controls. Representative dot plots were shown in panel (a). 
Histogram of all individual responses was shown in panel (B). Total 
IAV-specific CD4+ T cell response stimulated by autologous BLCL pulsed 
with IAV-infected P815 cell lysate was shown in black bars for easier 
comparison. Donor’s HLA-class II alleles were shown in the inset text boxes. 
The test was repeated for three times of independent T cell cultures by two 
researchers. The error bars indicate the standard error of the mean.
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resUlTs

approach for systematical identification 
of iaV-specific cD4+ T cell responses
A two-step approach (21) is established for systematic identifica-
tion of IAV-specific CD4+ T cell responses. Step one is the identi-
fication of the dominant IAV antigen that stimulated CD4+ T cell 
responses (Figure 1A), and then, step two is the determination of 
potential minimal sequence of epitopes together with their HLA 
restriction (Figure 1B). To identify the dominant virus protein, 
multi-specificity, IAV-specific CD4+ T cell lines were generated 
by stimulating PBMCs in the presence of IL-2 with a soluble 
IAV antigen source generated by lysing IAV-infected P815 cells 
in 8 M urea. The cell lines were then screened with a panel of 
lysates generated by P815 cells infected with rVV, which were 
engineered to express individual IAV proteins (21, 23, 24). To 
further identify the immunodominant epitope regions within the 
dominant proteins, 18mer overlapping peptides covering the full 
protein sequence were screened by using an ICS assay measuring 
interferon-γ production (Figure  1A). Next, the same PBMCs 
were stimulated with 18mer peptides covering the immunogenic 
regions to establish single epitope-specific T cell lines. The poten-
tial minimal epitope sequences were determined using ICS assays 
in response to overlapping 13mer peptides. The HLA restrictions 
were identified by HLA class II-blocking antibodies and further 
confirmed by partially HLA-matched antigen-presenting cell 
(APC) lines (Figure 1B).

M1 and nP are Dominant antigens 
recognized by iaV-specific cD4+ T cells
To identify dominant antigens recognized by IAV-specific CD4+ 
T cells, multi-specificity IAV-specific CD4+ T cell lines were gen-
erated by stimulating PBMCs with a urea dissolved soluble IAV 
antigen (Figure 2A). In response to 12 rVV (11 rVVs encoding 
11 individual IAV proteins including PB1-F2 and one wild type 
rVV)-infected P815 lysates, only M1 and NP stimulated specific 
IFN-γ producing CD4+ T  cells over background (Figure  2B). 
Therefore, M1 and NP were dominant targets recognized by 
IAV-specific CD4+ T cells in this donor.

atypical immunodominance hierarchy of 
iaV-specific cD4+ T cell responses
M1 and NP have been demonstrated to be the most dominant 
targets of IAV-specific CD4+ T cell responses in healthy individu-
als by others (25) and by us (21), and it seemed no exception in 
this donor. To further define IAV-specific CD4+ T cell responses 
in this donor, M1 and NP 18mer overlapping peptides were 
screened using the multi-specificity T  cell line. As shown in 
Figure 3, unlike most of the IAV-specific CD4+ T cell responses 
generally focusing on one or two antigenic regions and display-
ing a typical immunodominance hierarchy (21), no significant 
immunodominant region was observed in this donor although 
up to nine antigenic regions in M1 and NP were recognized. 
The magnitudes of the CD4+ T  cell responses revealed by the 
18mer peptides were relatively equal, including M1(37–60), 
M1(97–120), M1(229–252), NP19–42, NP97–120, NP223–246, 

NP403–426, NP457–480, and NP469–492. Thus, there was no 
typical immunodominance hierarchy of IAV-specific CD4+ T cell 
responses observed in this subject.

Fine characterization of epitopes Derived 
from M1 and nP
As MHC is one of the important determining factors of the 
immunodominance, to further explore such an atypical immu-
nodominance hierarchy of IAV-specific CD4+ T cell responses, 
potential minimal sequences of epitopes were determined by 
overlapping 13mer peptides within the antigenic 18mer regions. 
To further increase the accuracy of epitope identification, the 
antigenic neighboring 13mers with single amino acid difference 
in sequence were quantitatively assessed by the T cell lines in a 
peptide titration assay. HLA restriction was further identified.

Three antigenic regions were identified from M1 protein 
(Figure 3A). The CD4+ T cells responding to the M1(37–54) and 
M1(43–60) 18mer peptides (Figure 3A) recognized seven 13mer 
peptides [Figure 4A (i)]. Among them, M1(39–51), M1(40–52), 
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FigUre 3 | identification of antigenic regions within M1 and nucleoprotein (nP). The same influenza A virus-specific T cell lines used in Figure 2 were 
further screened for their specific response to the 121 overlapping 18mer peptides from M1(40) and NP(81) at a final concentration around 1 µg/mL in an 
intracellular cytokine staining assay. The identified 18mer sequences are shown, and the subsequently identified epitopes and their HLA restrictions are bolded. 
Antigenic regions derived from M1 were shown in panel (a), while antigenic regions derived from NP were shown in panel (B). The screening was repeated for three 
times of independent T cell cultures by two researchers. The error bars indicate the SEM.
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and M1(41–53) stimulated similar responses and the titration of 
these three 13mers showed almost identical potency. We, there-
fore, consider M141–51 is the core and minimal epitope sequence 
as it is shared by all three peptides and as M1(38–50) and 
M1(42–54) were much less potent [Figure 4A (ii)]. To determine 
the restricting HLA molecule for M141–51, a class II antibody-
blocking assay was first conducted. The anti-DP antibody 
efficiently blocked most T cell activation to peptide M1(39–51), 
whereas the anti-DR and anti-DQ antibodies did not [Figure 4A 
(iii)]. To further confirm the HLA-DP restriction of M141–51, a 
panel of BLCLs with different DP alleles [Figure 4A (iv, v)] was 
used as APCs after being pulsed with M1(39–51) to stimulate the 
peptide-specific T  cell line. Autologous BLCL and BLCL T258 
both expressing HLA-DPB1*05:01 efficiently activated peptide-
specific T cells. In contrast, BLCL 9004 and 9040 do not express 
HLA-DPB1*05:01 and failed to present this peptide [Figure 4A 
(iv, v)]. Therefore, the M141–51-specific CD4+ T  cell response is 
restricted to HLA-DPB1*05:01. Using the same approach, M1105–

117 restricted to HLA-DRB1*09:01 (Figure  4B) was identified 

from antigenic region M1(97–120). While within the antigenic 
region M1(229–252), there were two different epitopes identified: 
M1232–244 (Figure 4C) and M1240–252 (Figure 4D). Although they 
were both restricted to HLA-DPB1*05:01 (Figures  4C,D), no 
cross-reactivity was observed [Figure 4C (i); Figure 4D (i)].

Six antigenic regions were identified in NP protein 
(Figure  3B). Among them, four epitopes within three antigen 
regions were finely characterized. The epitope in antigenic 
region NP97–120 was shown to be NP102–114 [Figure 5A (i, ii)]. 
It was shown to be restricted to HLA-DP [Figure  5A (iii)]; 
however, we were not able to further resolve whether that was 
HLA-DPB04:01- or 05:01-restricted. Epitope NP409–421 restricted 
to HLA-DRB1*12:02 was identified within the antigenic region 
NP403–426 (Figure 5B). Two independent epitopes, NP460–472 and 
NP463–475, were identified in the antigenic region NP457–480, and 
interestingly, both restricted to HLA-DRB1*09:01 (Figure 5C). 
The epitopes in the remaining three antigenic regions, NP19–42, 
NP223–246, and NP469–492, were not finely characterized due 
to limited PBMC availability.
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FigUre 4 | identification of the core sequences and hla restrictions of the epitopes derived from M1. 18mer peptide-specific T cell lines were 
established to identify the core sequences and HLA restrictions of the epitopes. (a) The 13mer peptides within 18mer M1(37–54) and M1(43–60) were screened by 
intracellular cytokine staining (ICS) (i) and the control 18mer results are shown by open bars. Several potential key 13mers and corresponding 18mers were titrated 
in FCS-containing condition to compare their T cell stimulating capacity, which led to the identification of the core peptide M139–51 (ii). HLA restriction of M139–51 was 
then determined by HLA-class II antibody blocking assay (iii) and partial HLA matching BLCLs (iv, v). (B) The 13mer peptides within 18mer M1(97–114) and M1(103–
120) were screened by ICS (i). M1105–117 was titrated to be the core peptide (ii). HLA restriction of M1105–117 was determined (iii–v). (c) The 13mer peptides within 
18mer M1(229–246) were screened (i). The core 13mer peptide M1232–244 was identified by titration (ii), and HLA restriction of M1232–244 was analyzed (iii–v). (D) The 
13mer peptides within 18mer M1(235–252) were screened as in panel (a) (i). The core 13mer peptide M1240–252 was identified by titration (ii), and its HLA restriction 
was determined (iii–v). Some of the assays were performed after the T cell lines were restimulated in vitro for two to three times.
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DiscUssiOn

In this study, we report one case of broad IAV-specific CD4+ T cell 
response in one healthy individual using a systematic approach 
(Figure 1). We demonstrate that M1 and NP are still the immu-
nodominant targets of CD4+ T  cell responses (Figure  2). The 
18mer-screen identified nine antigenic regions containing at least 

11 epitopes, among which eight have been finely characterized 
for their core sequences and HLA restriction (Table  1). A few 
previously reported epitopes were among the ones we identified 
in this study, such as M1105–117, NP102–114, and NP463–475. However, 
some of these such as M133–52, M1228–244, NP102–114, and NP409–421 
were reported to be restricted to different HLA-II molecules; 
for example NP409–421 peptide restricted to DRB1*0801 rather 
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FigUre 5 | identification of the core sequences and hla restrictions of epitopes derived from nucleoprotein (nP). 18mer peptide-specific T cell lines 
were established to identify the core sequences and HLA restrictions of epitopes. (a) The 13mer peptides within 18mer NP97–114 and NP103–120 were screened 
by intracellular cytokine staining (ICS) (i) and the control 18mer results are shown by open bars. Several potential core 13mers and two 18mers were titrated to 
compare their T cell stimulating capacity, which led to the identification of the core peptide NP102–114 (ii). HLA restriction of NP102–114 was then determined by 
HLA-class II antibodies (iii). (B) The 13mer peptides within 18mer NP403–420 and NP409–426 were screened by ICS (i) and the corresponding 18mer results are 
shown by open bars. Several 13mers and two 18mers were titrated (ii). HLA restriction of the core 13mer NP409–421 was determined by HLA-class II antibodies (iii) 
and partial HLA matching BLCLs (iv, v). (c) The 13mer peptides within 18mer NP457–474 and NP463–480 were screened and 18mer results are shown by open 
bars (i). Four overlapping 13mer peptides and NP457–474 were titrated to compare their activity (ii), and HLA restriction of the core 13mer NP460–472 was analyzed 
with HLA-class II antibodies (iii) and partial HLA-matched BLCLs (iv, v). Another core 13mer peptide NP463–475 was identified by titration (vi), and its HLA restriction 
was determined (vii–ix). Some of the assays above were performed after the T cell lines were restimulated by the same 18mer or core 13mer for two to three times.
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than here DRB1*1202 (26). Moreover, M1240–252 restricted to 
DPB1*0501, was identified as a highly conserved epitope among 
strains of H1N1, H3N2, and even H5N1 (Table 2).

The term immunodominance, although originally defined 
as a restricted T  cell response to a peptide from a given 
protein (30), is generally applicable to CD8+ and CD4+ T cell 

response to many infections. The mechanisms associated with 
it, although intensely studied for decades, are still not fully 
understood both at cellular level and at organism level. In our 
previous study, a typical immunodominance hierarchy was 
observed in IAV-specific CD4+ T cell responses to the domi-
nant antigens M1 and NP; and within the dominant antigen, 

http://www.frontiersin.org/Immunology/
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TaBle 1 | epitopes identified in this study and previously reported epitopes containing the same sequences.

identified 
epitopes

identified epitope 
sequences

hla restriction reported 
epitopes

reported epitope 
sequences

reference hla 
restriction

Method

M141–51 VLMEWLKTRPI DPB1*05:01 M133–52 AGKNTDLEVLMEWLK TRPIL (27) DRB1*12:01 Multimer/tetramer qualitative binding
M1105–117 REITFHGAKEISL DRB1*09:01 M1105–117 REITFHGAKEISL (21) DRB1*09:01 Intracellular cytokine staining (ICS) 

IFNg release
M1105–117 REITFHGAKEISL IEDB DRB1*07:01 Multimer/tetramer qualitative binding
M1105–124 REITFHGAKEISLSYSAGAL (28) DRB1*01:03 ELISPOT IFNg release

M1232–244 DLLENLQAYQKRM DPB1**05:01 M1228–244 GLKNDLLENLQAYQKRM (29) DRB5 ELISPOT IFNg release
M1240–252 YQKRMGVQMQRFK DPB1*05:01 M1240–252 YQKRMGVQMQRFK (29) DQ1 ELISPOT IFNg release
NP102–114 GKWMRELILYDKE DP NP102–114 GKWMRELILYDKE (21) DPB1*01:01 ICS IFNg release
NP409–421 QPTFSVQRNLPFD DRB1*12:02 NP409–426 QPTFSVQRNLPFDKTTIM (10) HLA-class II ELISPOT IFNg release

NP409–428 QPTFSVQRNLPFDRT TIMAA IEDB DRB1*15:01 Multimer/tetramer qualitative binding
NP409–428 QPTFSVQRNLPFDRT TIMAA (26) DRB1*08:01 Multimer/tetramer qualitative binding

NP460–472 GRGVFELSDEKAA DRB1*09:01 Not reported previously
NP463–475 VFELSDEKAASPI DRB1*09:01 NP463–475 VFELSDEKAASPI (21) DRB1*09:01 ICS IFNg release
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TaBle 2 | conservancy of the peptide sequences within h1n1, h3n2, and 
h5n1 viruses.

Peptide Peptide sequence Frequency (%) of peptide 
variants

h1n1 h3n2 h5n1

M141–51 VLMEWLKTRPIa – 4 –
A·········· 100 92 100
A········S· – 4 –

M1105–117 REITFHGAKEISLa – 4 –
···········A· 32 96 –
··········V·· 63 – 6
····L······A· 5 – –
··········VA· – – 64
··M·······VA· – – 25
··K·······VA· – – 3
····Y·····VA· – – 3

M1232–244 DLLENLQAYQKRMa 84 83 –
···D········· 11 – –
···K········· 5 – –
N············ – 4 64
N··········T· – – 6
N··D········· – – 6
·······A····· – 13 –
··I·········· – – 25

M1240–252 YQKRMGVQMQRFKa 95 100 80
········I···· 5 – –
····H········ – – 14
···X········· – – 3
············R – – 3

NP102–114 GKWMRELILYDKEa 67 3 –
·······V····· 2 61 –
···V···V····· 30 – 2
·R·····V····· – 30 –
·······V····K – 1 –
·······V····D – 1 –
·······V····G – 1 –
·R·V···V····· – 1 –
·····G·V····· – 1 –
···V········· – – 98

NP409–421 QPTFSVQRNLPFDa 40 3 –
··A·········· – 8 –
············E 56 89 96
·········S··· 4 – 1
··N·······F·· – – 1
····L····S··· – – 2

Peptide Peptide sequence Frequency (%) of peptide 
variants

h1n1 h3n2 h5n1

NP460–472 GRGVFELSDEKAAa 5 8 –
············T 60 92 91
··········R·T 33 – –
··········R·· 2 – –
······F·····T – – 8
········V···T – – 1

NP463–475 VFELSDEKAASPIa 5 1 –
·········TN·· 60 88 91
·········TN·V – 4 –
·······R··N·· 2 – –
·······R·TN·· 33 – –
···F·····TN·· – – 8
·····V···TN·· – – 1
··········N·· – 7 –

Australian circulated H1N1 [n = 19 for M1, N = 43 for nucleoprotein (NP)] and H3N2 
(n = 24 for M1 and n = 74 for NP) sequences included the full-length sequences 
of viruses available from the National Center for Biotechnology Information (NCBI) 
influenza virus resource database accessed on November 7, 2016. Search criteria 
were Australia, M1/NP, H1N1/H3N2, identical sequences were represented by the 
oldest sequence in the group, full length only.
H5N1 without country/region restriction (n = 36 for M1 and n = 96 for NP) sequences 
included the full-length sequences of viruses available from the NCBI influenza virus 
resource database accessed on November 7, 2016. Search criteria were any (country/
region), M1/NP, H5N1, identical sequences were represented by the oldest sequence 
in the group, full length only.
aThese peptide sequences were identified and used in this study.

TaBle 2 | continued

(Continued )

only one or two epitopes were selected to stimulate dominant 
CD4+ T  cell responses (21). However, the IAV-specific CD4+ 
T cell responses in this study, although also focused on M1 and 
NP (Figure 2B), showed clearly an atypical pattern as all the 
detected 11 epitopes derived from nine antigenic regions of 
M1- and NP-stimulated CD4+ T cell responses to a comparable 
level (Figure 3).

Multiple determinants, especially peptide generation, 
DM-mediated peptide exchange (editing), and responding T cell 
repertoire are involved in the establishment of immunodomi-
nance hierarchy (31). However, the most important determining 
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element, often under discussed, is restricting MHC as in the 
syngeneic murine systems, the MHC is pre-fixed and often seem-
ing outside the consideration. In humans, it is widely reported 
that the T cell responses differ between individuals with differ-
ent HLA alleles. That is also well demonstrated in IAV-specific 
CD8+ (23, 24) and CD4+ T  cell responses (21). NP463–475 and 
M1105–117, previously identified in one healthy individual [donor 
1 in Ref. (21)], was confirmed here as restricted to DRB1*09:01 
(Table 3). However, M194–106 restricted to DRB1*13:02 and was 
not selected to stimulate a CD4+ T cell response in this donor 
as DRB1*13:02 was not expressed (Table  3). Instead, NP409–421 
restricted to DRB1*12:02 was detected (Figure 5B). Further, three 
DPB1*05:01-restricted epitopes, M139–51, M1232–244, and M1240–252 
were identified in this donor. Interestingly, although T  cells 
specific to NP463–475/DRB1*09:01 was dominant in our previous 
donor 1 (21), it is on par with other responses detected in the cur-
rent donor (Figure 3). These results indicate that all DRB1*09:01, 
DPB1*05:01, and DRB1*12:02 are HLA alleles that play almost 
equal role in shaping the anti-IAV CD4+ T cell response in this 
individual resulting in broad CD4+ T cell response pattern with-
out pronounced immunodominance.

It is possible that the infection history or even previous vac-
cination may influence the T  cell response, and therefore the 
immunodominance hierarchy in the studied samples. However, 
without knowing the exact IAV exposure history of the individual, 
it would be difficult to approach this concern using just a few 
IAV strains as stimulating antigens. To our knowledge, there is no 
report showing a systematical evaluation of one individual’s IAV 
T cell response using various IAV strains.

We believe that the HLA combination in an individual is very 
important in determining the outcome of CD4+ T  cell immu-
nodominance hierarchy. For example, when DPB1*05:01 was 

TaBle 3 | comparison of antigenic regions and epitopes of influenza a virus-specific cD4+ T cells between the donor in this study and the donor 1 in 
our previous publication (21).

Donor hla-ii alleles antigenic regions epitopes hla restriction immunodominance status

Donor in this study DRB1*09:01,12:02 M1(37–60) M139–51 DPB1*05:01 N/A
DPB1*04:01,05:01 M1(97–120) M1105–117 DRB1*09:01 N/A
DQB1*03:01,03:03 M1(229–252) M1232–244 DPB1*05:01 N/A

M1240–252 DPB1*05:01 N/A
NP(19–42) NT NT N/A
NP(97–120) NP102–114 DP N/A
NP(223–246) NT NT N/A
NP(403–426) NP409–421 DRB1*12:02 N/A
NP(457–480) NP460–472 DRB1*09:01 N/A

NP463–475 DRB1*09:01 N/A
NP(469–492) NT NT N/A

Donor 1 previously reported in Ref. (21) DRB1*09:01,13:02 M1(91–108) M194–106 DRB1*13:02 SDD
DPB1*01:01,04:01 M1(97–120) M1105–117 DRB1*09:01 SDD
DQB1*03:03,06:04 NP(1–24) NT NT SDD

NP(97–120) NP102–114 DPB1*01:01 SDD
NP(223–246) NT NT SDD
NP(403–426) NT NT SDD
NP(457–480) NP463–475 DRB1*09:01 IDD

Donor 4 previously reported in Ref. (21) DRB1*01:01,07:01 M1(127–144) M1129–141 DRB1*01:01 IDD
DPB1*04:01,05:01
DQB1*02:01,05:01

SDD, subdominant determinant; IDD, immunodominant determinant.

co-expressed with DRB1*01:01, the dominant response to IAV 
changed to M1129–141/DRB1*01:01 [donor 4 in Ref. (21)]. It seems 
that DRB1*01:01 has the priority to present dominant epitopes 
when DRB1*01:01 was co-expressed with other HLA-class II 
alleles. This was partially supported by the data in the Immune 
Epitope Database (IEDB).2 So far, 88 IAV epitopes restricted to 
DRB1*01:01 were indexed, while only six epitopes were reported 
to be restricted to DRB1*09:01, and no epitope was found to be 
DPB1*05:01 restricted, indicating that DRB1*01:01 might play 
a bigger role in presenting IAV epitopes than many other HLA 
alleles.

Many IAV-derived CD4+ T cell epitopes have been identified 
and indexed in the IEDB.3 As shown in Table 1, some epitopes 
identified in the present study were reported previously. However, 
we found a portion of the epitopes restricted to more than one 
HLA allele. For example, M1232–244 and M1240–252, although reported 
to be restricted to DRB5 and DQ1, respectively (29), were found 
in our study to be presented by DPB1*0501 (Figures  4C,D); 
NP409–421 restricted to DRB1*12:02 (Figure 5B) was once reported 
to be restricted to DRB1*15:01 (IEDB) and DRB1*08:01 (26), etc. 
These results further confirmed that many CD4+ T cell epitopes 
may be presented by multiple HLA molecules (Table 1). However, 
since most of the previously identified epitopes were not defined 
to their minimal core sequences, the reported sequences might 
contain two or more different epitopes restricted to various 
HLA molecules. All of the epitopes, including the novel epitope 
NP460–472, identified in the present study were defined to their 
most potent core sequences by 13mer overlapping peptides and 

2 http://www.iedb.org/home_v3.php.
3 www.iedb.com.
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