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T cells recognize antigen using a large and diverse set of antigen-specific receptors cre-
ated by a complex process of imprecise somatic cell gene rearrangements. In response 
to antigen-/receptor-binding-specific T cells then divide to form memory and effector 
populations. We apply high-throughput sequencing to investigate the global changes in 
T cell receptor sequences following immunization with ovalbumin (OVA) and adjuvant, 
to understand how adaptive immunity achieves specificity. Each immunized mouse 
contained a predominantly private but related set of expanded CDR3β sequences. We 
used machine learning to identify common patterns which distinguished repertoires 
from mice immunized with adjuvant with and without OVA. The CDR3β sequences were 
deconstructed into sets of overlapping contiguous amino acid triplets. The frequencies 
of these motifs were used to train the linear programming boosting (LPBoost) algorithm 
LPBoost to classify between TCR repertoires. LPBoost could distinguish between the 
two classes of repertoire with accuracies above 80%, using a small subset of triplet 
sequences present at defined positions along the CDR3. The results suggest a model in 
which such motifs confer degenerate antigen specificity in the context of a highly diverse 
and largely private set of T cell receptors.

Keywords: T cell receptor, repertoire analysis, ovalbumin, machine learning, cDr3

inTrODUcTiOn

The T  cell compartment recognizes antigen using a large and diverse set of antigen-specific 
receptors created in the thymus by a complex process of imprecise somatic cell gene rearrange-
ments. The clonal theory of immunity (1) proposes that lymphocytes carrying receptors that 
specifically bind an antigen to which the immune system is exposed, for example, during infec-
tion or vaccination, respond by proliferating and differentiating. This population of expanded 
and differentiated cells then confers on the system the acquired ability to respond specifically 
to the antigen to which it had previously been exposed. The clonal theory therefore explains 
the immune system properties of specificity and memory. A prediction of this theory is that 
the frequency of lymphocytes that have been exposed to antigen (i.e., memory or effector cells) 
will be greater than the frequency of those that have not (i.e., naive). This prediction has been 
verified for T cells in a wide variety of models, using antigen-specific readouts such as cytokine 
responses, and major histocompatibility complex (MHC) multimer binding to identify expanded 
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lymphocyte clones (2–4). The selective expansion of specific 
clones has also been inferred from global measurements such 
as V region usage (5) or spectratyping (a technique sometimes 
referred to as the immunoscope) (6). The sequences of TCRs 
with a known antigen specificity have been examined previ-
ously, especially in the context of CD8+ T cells and influenza. 
The sequences of epitope-specific sets of TCRs were often very 
diverse, and many TCRs were private (i.e., found predomi-
nantly only in repertoires from one individual) (7). However, 
public TCRs (shared between repertoires of many individuals) 
were sometimes observed in responses to certain epitopes (8).

The introduction of high-throughput sequencing (HTS) has 
opened up new approaches to examining the diversity of TCR 
sequences at a global level. Each individual animal or human has 
been shown to contain T cells carrying billions of different recep-
tors (9, 10) and several computational bioinformatic approaches 
have been developed which aim to capture the diversity and 
structure of the overall TCR repertoire (11–13).

We have previously used short read parallel HTS to estimate 
T  cell receptor β transcript frequencies and sharing (14, 15), 
and to explore the global changes in the CD4+ T cell receptor 
repertoire following immunization (16). The latter study focused 
on local features of protein sequence within the TCRβ CDR3 
loop, which interacts directly with peptide antigen lying within 
the MHC groove. The TCRβ CDR3 encodes the largest amount of 
sequence diversity, coded for by the combination of the D regions, 
and the DJ and VD junctions. We therefore mapped the sets of 
TCR CDR3β sequences from each animal to a lower dimensional 
feature space indexed by short stretches of contiguous amino 
acids (typically triplets). A Support Vector Machine (17), a clas-
sical regularized machine learning algorithm, was then able to 
distinguish between TCR repertoires of unimmunized mice and 
mice immunized with an extract of Mycobacterium tuberculosis 
[complete Freund’s adjuvant (CFA)] within the lower dimensional 
transformed feature space.

Complete Freund’s adjuvant contains a complicated mixture 
of protein and non-protein antigens and causes more widespread 
perturbations of the repertoire than single protein antigens. 
However, purified protein antigens are poorly immunogenic 
except when given in the context of adjuvants, which are believed 
to provide a danger signal which stimulates innate immunity and 
hence drives effective antigen presentation (18, 19). We therefore 
wished to extend our investigation to analyze the response to a 
well-studied model antigen, ovalbumin (OVA), when delivered in 
the context of CFA. Specifically, we wished to test the hypothesis 
that the frequencies of short amino acid motifs within the TCR 
CDR3 reflected the antigen specificity of the response and could 
be used to distinguish between repertoires of mice immunized 
with OVA plus adjuvant and those immunized with adjuvant 
alone.

Instead of SVM, we used linear programming boosting 
(LPBoost), an algorithm which minimizes a 1-norm soft margin 
error function (20). Unlike SVM, which uses a non-zero weighted 
combination of all features for classification, LPBoost typically 
selects a small number of features with non-zero weights. This 
significantly reduces the computational cost, particularly when 
dealing with very large numbers of features (21, 22). More 

importantly, feature selection gave biological insight by indicating 
which amino acid motifs within the CDR3 were most important 
in contributing to any specificity observed. The results of the 
LPBoost algorithm, either alone or in combination with SVM, 
achieved significant classification accuracy using a small sub-
sample of amino acid triplet motifs. The frequency of small sets 
of conserved amino acid strings, often found toward the ends of 
the CDR3 loops, therefore, contained the information necessary 
to distinguish repertories of different antigen specificity.

MaTerials anD MeThODs

sample collection and sequencing
Thirty-three C57BL/6 mice were immunized with CFA, with 
or without an additional protein/peptide antigen. The primary 
antigen used in this study was OVA, a protein commonly used 
as a model antigen in the immunological literature (Sigma, 
Poole, UK). The mice were immunized in two independent 
experiments. The first set contained nine mice immunized 
with OVA + CFA and nine mice with CFA alone. Three mice 
of each class were culled at days 5, 14, and 60. The second set 
contained six mice immunized with OVA + CFA and four mice 
with CFA alone. Three OVA and two CFA mice were culled at 
days 7 and 60. Repertoires from a set of five mice immunized 
with a peptide coding for a sequence of the heatshock protein 
HSP60, VLGGGCALLRCIPALDSLTPANED (p277) (23) were 
also analyzed. After immunization, mice were sacrificed and 
spleens collected at either early time points (samples from days 
5, 7, and 14 were combined for this analysis), or a late time point 
(day 60). Mice taken down at 60 days were given a booster of 
incomplete Freund’s adjuvant with or without OVA at day 14. 
Mice were housed at the Weizmann Institute of Science under 
conditions approved by the Institutional Animal Care and Use 
Committee in compliance with national and international 
regulations.

The ultra high dimensionality of the data precludes conven-
tional power calculations; the minimum group size of five mice 
per group is toward the lower limit typically used for the appli-
cation of the machine learning algorithms used in the study.

CD4+ T cells were isolated from spleens and TCRβ chains from 
these cells were sequenced via the protocol described in Ref. (14). 
Briefly, total RNA was reverse transcribed with a primer specific 
to the TCRβ constant region, and resulting cDNA was amplified 
via PCR using a set of TCRVβ primers. Illumina adaptors were 
ligated to the product, including indexes to identify each sample, 
and the sequencing was performed on a Genome Analyzer II. The 
repertoires were sequenced in a total of four sequencing runs, 
one with six OVA and six CFA run on each run (days 5 and 14 
together); one run with three OVA and three CFA together (days 
60 experiment 1); and two runs with three OVA + CFA and two 
CFA alone on each run (days 7 and 60).

Data Preprocessing
Raw sequence data were analyzed and error corrected using a 
short read modification of Decombinator as described in detail 
previously (16). The fastq files are available at http://www.ncbi.
nlm.nih.gov/sra/?term=SRP075893.
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sequence Distance/similarity Measures
In order to compare two CDR3β amino acid sequences, two 
measures are used. The Levenshtein distance counts the number 
of edits (insertions, deletions, or substitutions) that are needed 
to transform one of the CDR3s into the other. The p-spectrum 
kernel is a similarity measure, counting the number of substrings 
of length p that are shared between two CDR3s (24).

sequence Features
Each CDR3β sequence was mapped to a numeric feature space 
using string features. The string feature is the number of times 
(term frequency) each p-length substring (typically triplets, 
p = 3, number of features = 203 = 8,000) appears in a set of CDR3 
sequences (i.e., a repertoire).

linear Programming Boosting
Linear programming boosting is described in detail in Ref. (20). 
The classification method generates a classifier which is a linear 
combination of features and can be viewed as an example of soft 
margin maximization algorithms like SVM, but minimizing 
a 1-norm. Since the optimization problem only involves linear 
terms in both constraints and objective (as compared to classic L2 
minimization) it reduces to a linear programme (LP). In order to 
reduce the potentially very high computational cost of solving the 
LP with many features, LPBoost makes use of the column genera-
tion technique by iteratively optimizing the dual misclassification 
costs and generating weak learners as new LP columns.

The algorithm is described in brief below. Let H denote 
an m × n matrix, where each column is one weak learner (a 
vector of string features as defined above) and each row is 
a different repertoire. Let yi  ∈  {−1, +1} denote the label of  
the i-th data sample (for example, OVA immunized or non-
OVA immunized). The primal form of the LP formulation is 
given by
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where m is the number of training data points, n is the number of 
dimensions (or weak learners or features), H is the set of features 
associated with each data point, D is the penalty for misclassifica-
tion (set by user), ρ is the classification margin (learnt during the 
algorithm), ξ are the set of slack variables for data points within 
margin (learnt during the algorithm), and a are coefficients 
defining classifying hyperplane (i.e., feature weights learnt by 
the algorithm). D (and the misclassification penalty for the SVM 
discussed below) were chosen by randomly dividing the data for 
each mouse into two disjoint sets sharing no sequences; selecting 
optimum parameters using leave-one-out validation on one set 
of data, and then applying these parameters to the leave-one-out 
train/test validation sequence as described. In this way, we use one 
sample to select the parameters before effecting an independent 

leave-one-out estimation of the accuracy of classifiers trained 
with these parameters.
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where β is the objective function to be minimized, u are the 
sample weights.

Linear programming boosting assigns non-negative weights 
to both features and samples, but typically produces a sparse 
feature vector where only a few features (i.e., substrings) have 
non-zero coefficients. The LPBoost algorithm therefore serves 
as a feature selection step as well as a classification. We there-
fore experimented with combining LPBoost with SVM, thus 
combining the advantages of sparse feature selection (with 
associated improved biological interpretability) with the non-
linear classification advantages of SVM. The code for LPBoost 
can be found at https://github.com/YuxinSun/LPBoost-Using- 
String-and-Fisher-Features.

Data repository
The raw fastq sequence files can be found at the Short Read 
archive (http://www.ncbi.nlm.nih.gov/sra/), accession number 
SRP075893.

Other analysis
Multiple sequence alignments were viewed in Aliview (25) which 
uses MUSCLE (26) for executing the alignment. The phylogenetic 
trees of the alignments were created using FastTree (27) and dis-
played using the APE package in R (28). Heatmaps were created 
using the heatmap.2 function in the gplots R package.

resUlTs

The OVa expanded repertoire is Private 
but shares some sequence similarity
We analyzed CDR3β sequences from a total of 33 mice 
(8–12 weeks old), immunized with CFA emulsified with either 
PBS only, OVA dissolved in PBS, or the p277 peptide dissolved 
in PBS. The immunized mice were classified as “early” (days 5, 7, 
and 14) or “late” (day 60). CDR3β sequences from eight unim-
munized mice and two mice injected with PBS only were also 
available.

We first investigated whether exposure to OVA produced 
a detectable common CDR3 signature by measuring the 
overlap between the OVA immunized repertoires, and the 
non-OVA immunized repertoires (Figure  1A). However, 
there was no evidence that OVA immunized mice shared a 
greater proportion of CDR3s than were shared between any 
OVA immunized and any non-OVA immunized mouse. We 
hypothesized that the OVA-specific CDR3s might be enriched 
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FigUre 1 | (a) The number of shared CDR3 sequences between pairs of mice of different immunization status (as shown on x axis) measured as the Jaccard 
index. Squares = early (days 5–14); triangles = late (day 60); and hexagons = early/late comparisons. (B) As for panel (a), but calculated using only the top 5% 
CDR3s ranked according to frequency in each sample.
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in the more expanded (i.e., higher frequency) set. However, the 
same result was obtained when sharing was evaluated using the 
most abundant 5% (Figure 1B) or 10% of CDR3s (Figure S1 in 
Supplementary Material) as when using the whole repertoire 
(Figure 1A).

In order to identify individual CDR3βs that were potentially 
shared by the OVA immunized repertoires we plotted the fre-
quency of the 100 most abundant CDR3βs from each OVA + CFA 
mouse (Figure 2A) or the frequency of the 100 most abundant 
CDR3βs from each CFA only immunized mouse (Figure 2B). 
We focused our initial analysis on the “early” samples, reasoning 
that the clonal expansion was likely to be more pronounced dur-
ing this period than 2 months after immunization. Two major 
patterns of CDR3 abundance could be observed in the OVA 
repertoires. The first rarer pattern consisted of CDR3s which 
were abundant in the repertoires of both OVA + CFA and CFA 
only immunized mice. These CDR3s are observed in more than 
one mouse and across both groups of mice. We hypothesize that 
these may represent abundant “public” CDR3βs which have 
been reported previously [e.g., Ref. (15)], and which do not 
reflect antigen-specific responses. The second pattern observed 
(represented by the blocs of sequences observed in each mouse) 
were CDR3βs that are highly abundant in mice that received 
the OVA  +  CFA immunization and are mostly absent in the 
group that received only CFA. These CDR3βs are private—they 
are found in one mouse and mostly absent from others. In CFA 
only repertoires, the 100 most abundant CDR3βs all showed 
pattern 1 (i.e., individual specific, and absent in OVA +  CFA 
repertoire), perhaps reflecting that the stronger individual-
specific responses to CFA in these mice reduce the rank of the 
public TCRs so they do not appear in the top 100 most abundant 
CDR3s.

In order to exclude the public CDR3s, and focus on potential 
antigen expanded CDR3s we calculated an “expansion index,” 
which measures the abundance of each CDR3 relative to its aver-
age abundance in unimmunized mice and is expressed in Log2 
(Figure 2C). The number of sequences in CFA + OVA immu-
nized mice with an expansion index above a given minimum 

threshold is shown in Figure 2D. We selected a threshold of six 
for further analysis, which is equivalent to a minimum of six 
doubling divisions assuming no death. This is a reasonable esti-
mate for the maximum likely number of divisions in our earliest 
time point (5 days post vaccination) given available estimates of 
cell division times (29, 30). The expansion index of each of the 
10,175 CDR3βs with an expansion index greater than 6 in any 
OVA + CFA repertoire, across all early immunized repertoires 
is shown in Figure 2E. The overall pattern observed remains the 
same as in Figure 2A, showing sets of individual expanded CDR3s 
that are mostly specific to each mouse (putative OVA-specific 
TCRs), plus CDR3βs common to all early immunized repertoires 
(putative public CFA-specific TCRs). The complementary plot 
of each of the CDR3βs with an expansion index greater than 6 
in any CFA repertoire is shown in supplementary Figure S2 in 
Supplementary Material. The pattern is very similar, showing 
sets of individual expanded CDR3s that are mostly specific to 
each mouse (putative private CFA-specific TCRs), plus CDR3βs 
common to all early immunized repertoires (putative public 
CFA-specific TCRs).

In order to focus on the OVA-specific response, we further 
refined our CDR3 selection by excluding all CDR3βs with an 
expansion index >4 in any CFA only repertoire. Each CDR3β 
in this set therefore had an expansion index >6 in at least one 
OVA + CFA repertoire, and <4 in all CFA only mice. This left a 
total of 2,335 CDR3β sequences. The expansion index of these 
“OVA-associated” CDR3s across the repertoires of CFA and 
OVA + CFA mice is shown in Figure 3A. Importantly, we did 
not observe any public clones within this set; specifically there 
were no TCRs which satisfied these criteria (i.e., >6 in OVA but 
<4 in CFA) and were found in all (or even the majority of) OVA 
immunized mice. Instead the CDR3s with a high expansion index 
in OVA + CFA repertoires, but not in CFA repertoires are almost 
completely private.

We next investigated whether the set of OVA-associated 
CDR3s we identified above shared any detectable sequence simi-
larities. We measured the sequence distance (the Levenshtein 
distance, defined as the number of additions, deletions, and 

http://www.frontiersin.org/Immunology/
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FigUre 2 | (a,B) The abundance of high frequency CDR3s across repertoires of ovalbumin (OVA) or complete Freund’s adjuvant (CFA) mice. The 100 most 
abundant CDR3s from each OVA + CFA “early” repertoire (a) or CFA only “early” repertoire (B) were selected, and their abundance (shown as Log2 counts/million) is 
shown in each OVA + CFA or CFA only immunized repertoire. Each column of the heat map represents one mouse repertoire. Each row of the heat map represents 
a distinct CDR3. Abundances below 26 counts/million are in white. Pattern I indicates CDR3s which are abundant in both OVA + CFA and CFA only repertoires. 
Pattern II indicates CDR3s which are abundant in OVA + CFA repertoires. (c) The frequency distribution of the expansion index over all early immunized repertoires. 
The expansion index for each CDR3 is calculated as Log2 (abundance in a specific repertoire/average abundance in all unimmunized repertoires). For those 
sequences present in immunized repertories but absent from all unimmunized repertories, the abundance in unimmunized mice was set to 1 in 106 for calculation of 
expansion index. // shows that the column height is truncated. (D) The number of CDR3s in all early immunized repertoires with an expansion index greater than the 
threshold shown. The expansion index for each CDR3 is calculated as Log2 (abundance in a specific repertoire/average abundance in all unimmunized repertoires). 
(e) The expansion index of all CDR3s with expansion index >6 in any OVA + CFA repertoire plotted for each OVA + CFA or CFA early immunized repertoires. Each 
column of the heat map represents one mouse repertoire. Each horizontal row of the heat map represents a distinct CDR3 with expansion index >6 in one or more 
OVA + CFA repertoires. Only those positions with an expansion index of >6 in that mouse are colored non-white. Pattern I indicates CDR3s which are abundant in 
both OVA + CFA and CFA only repertoires. Pattern II indicates CDR3s which are abundant in OVA + CFA repertoires.
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substitutions required to go from one sequence to another) 
between all pairs of CDR3βs within this set, and compared 
these to 100 sets (of the same size) of CDR3βs selected ran-
domly from the combined repertories of all mice (Figure 3B). 
The CDR3s from the OVA-associated set showed a small but 
consistent decrease in pairwise distance compared to random 
sets. We also measured similarity between the CDR3s using the 
p-length string kernel (a measure of sharing of p-length contigu-
ous amino acid substrings between CDR3s). The results, again 
compared to 100 random CDR3 sets, for p  =  1, 2, and 3 are 
shown in Figure 3C. The CDR3s from the OVA-associated set 
showed a small but consistent increase (note this is now a simi-
larity metric) in pairwise similarity compared to random sets. 
This increased similarity was more pronounced for p = 2, 3 than 
p = 1 suggesting that short amino acid motifs rather than simply 
single amino acid abundance characterized the OVA-associated 
set of CDR3βs. Taken together these results suggest that the 
CDR3s with a high expansion index in OVA + CFA repertoires 
and low expansion index in “CFA only” repertoires share some 
sequence features.

linear Boosting can Distinguish between 
cFa + OVa and cFa Only repertoires, 
Using a small number of amino acid 
Motifs
The results presented above suggest that the response to OVA is 
made up of CDR3βs which are largely private to individual mice 
and that there is no core set of shared CDR3 sequences which 
can distinguish between CFA  +  OVA and CFA repertoires. 
However, the results also suggest that some sequence features 
may be enriched within the OVA-associated repertoire. We ini-
tially examined the frequency of V or J gene usage between the 
OVA and the CFA + OVA (Figure 4). However, no individual 
V or J region differed significantly between the two repertoires. 
We initially examined the frequency of V or J gene usage 
between the OVA and the CFA + OVA (Figure 4). However, 
no individual V or J region differed significantly between the 
two repertoires.

In order to determine whether the frequencies of triplet amino 
acid motifs could be used to classify between CFA + OVA and 
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http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 4 | The frequency of V and J genes in complete Freund’s adjuvant (cFa) versus ovalbumin (OVa) + cFa repertoires. Each dot shows the 
frequency of a specific V or J gene in CFA + OVA (x axis) and CFA only (y axis) repertoires. The error bars show mean ± SD calculated from 50 samples of 10,000 
TCRs from each repertoire.

FigUre 3 | (a) The expansion index of all CDR3s with expansion index >6 in any ovalbumin (OVA) + complete Freund’s adjuvant (CFA) repertoire, but excluding 
CDR3s with an expansion index of >4 in any CFA repertoire. The expansion index is plotted for each OVA + CFA or CFA early immunized repertoires. Each column 
of the heat map represents one mouse repertoire. Each horizontal row of the heat map represents a distinct CDR3 with expansion index >6 in one or more 
OVA + CFA repertoires, but excluding CDR3s with an expansion index of >4 in any CFA repertoire. (B) The mean pairwise Levenshtein distance between 
OVA-associated (red circle) and 100 sets of random (black) CDR3s. + SD above/below the mean for random sets; X shows max/min for random sets. (c) As for 
panel (B) but showing the p-spectrum kernel pairwise similarity metric for p = 1, 2, 3.
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CFA only immunized repertoires, we explored the LPBoost algo-
rithm (LPBoost, see Materials and Methods for details) which 
produces solutions which are sparse in both samples and features 
(20). As input for LPBoost we used the frequencies of individual 
amino acid triplets, as in our previous publication (16). We also 

combined LPBoost with SVM, by using the features selected by 
the LPBoost algorithm as input for an SVM. We emphasize that 
these samples were selected from the complete unselected CDR3 
repertoire from each mouse, and not just those CDR3s which 
were enriched in OVA + CFA repertoires. The performance of 
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FigUre 5 | (a) Performance of linear programming boosting (LPBoost) with (B) or without (a) subsequent SVM in the classification of boosting for early (left) and all 
(right) repertoires. The overall accuracy for each algorithm calculated by majority vote of 99 samples of CDR3s from each repertoire. The results show a trend for 
correct classification, but are not significantly better than random using Fisher’s exact test. The numbers above each bar show the number of correctly classified 
repertoires, the 95% confidence range for this estimate, and the Fisher’s exact test p value for the result. (B) As for panel (a) but using only CDR3s within the top 
5% percentile of the CDR3 frequency from each repertoire (only one CDR3 sample from each repertoire could be analyzed because of limitation of sample size) or 
using only clones present once in each repertoire (i.e., singlets). The numbers above each bar show the number of correctly classified repertoires, the 95% 
confidence range for this estimate, and the Fisher’s exact test p value for the result. **p < 0.01 Fisher’s exact test. (c) The results of 11 separate subsamples of the 
early repertoires using singlet CDR3s as in panel (B). Each row of the heatmap represents the repertoire from one immunized mouse, which is omitted from the 
training set, and then used as test. Each train/test combination was carried out 11 times. Each column of the heatmap therefore represents one replicate train/test 
cycle. Black indicates incorrect classification. (D) As for panel (c), but for all repertoires. (e) The filled bars show classification accuracy of LPBoost algorithms on 
early repertoires using the set of CDR3s with expansion index >6 in any early immunized mouse (cf., Figure 2e). The empty bars show the average classification 
accuracy obtained from 100 sets (same size) of CDR3s drawn randomly from the combined repertories of all immunized mice. *p < 0.05 Fisher’s exact test.
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these different algorithms using the “early” repertoires (days 
5–10) or all the repertoires [to include both later time points, and 
a different antigen (p277)] is shown in Figure 5A. We obtained 
modest classification accuracies of between 59 and 71%. With the 
small sample sizes available these differences are not significantly 
better than random using Fisher’s exact test. The algorithms gave 
efficiencies of 52  ±  13% on average if the sample labels were 
randomized before analysis.

We next explored whether the information required for clas-
sification was predominantly found in the more frequent CDR3s, 
or was distributed among the whole repertoire. The classification 
performance using only those CDR3 sequences found at high 
frequency (top 5%, Figure 5B) was consistently poorer than that 
obtained the whole repertoire (cf., Figure  5A). Unexpectedly, 
however, classification using clones only appearing once 
(Figure 5B) gave excellent classification efficiencies using either 

LPBoost alone or LPBoost plus SVM (p < 0.01, Fisher’s exact test; 
randomized gave 57 ± 11%). The classification was quite stable to 
repeatedly sampling the data, and some repertories were consist-
ently poorly classified (Figures 5C,D). Overall, information for 
classification appeared to be distributed across many rare CDR3s 
suggesting that information reflecting immunization status seems 
to be quite widely distributed across the CDR3 repertoire.

We also explored whether the more restricted subset of CDR3s 
with a high expansion index in early immunized repertoires which 
we identified above (Figure  2E; Figure S2 in Supplementary 
Material) could provide string triplet features which would 
improve the classification of the repertoires. The performance 
of each LPBoost algorithm using either this preselected set of 
CDR3s or 10 random sets (of same size) of CDR3s is shown in 
Figure 5E. Using the preselected CDR3s with a high expansion 
index gave improved classification for 3/4 algorithms, although 
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FigUre 6 | (a) Common features selected by linear programming boosting (LPBoost) algorithm (with SVM) using singlet CDR3s (those which appear once only) 
from repertoires from early repertoires only, all repertoires, and expanded CDR3s as defined in Figure 2D. Only those features selected in a proportion of examples 
above a threshold are shown. The thresholds are shown in Figure S3 in Supplementary Material. The numbers in brackets show the ranking of the triplet in the plots 
shown in Figure S3 in Supplementary Material. (B) The LPBoost algorithm selects some features with positive coefficients in the equation defining the classifying 
hyperplane. A higher frequency of these features in a repertoire favors a prediction of an ovalbumin (OVA) + complete Freund’s adjuvant (CFA) classification for that 
repertoire. By contrast, the LPBoost algorithm selects some features with negative coefficients in the equation defining the classifying hyperplane. A higher 
frequency of these features in a repertoire favors a prediction of CFA only classification for that repertoire (i.e., it predicts the absence of OVA from the immunization). 
The panel shows the position of the OVA + CFA predictive triplets along the CDR3. Each CDR3 within a random sample of 106 is divided into 10 equal size units of 
length (in units of number of amino acids). Individual triplets are assigned a position determined by the relative position of the starting amino acid. The figures show 
the frequency with which each triplet is found at each position. Black: frequency ≥ 10%; gray: 10% > frequency ≥ 1%; and white: frequency < 1%. (c) The 
frequency (count per 104 CDR3s) of the CFA + OVA-predictive triplets in total early immunized OVA (black) or CFA (gray) repertoires. Bars show average of each 
population. X shows the frequency of the triplet in the subset of CDR3s which are found at high frequency in OVA repertoires which are illustrated in Figure 3a.
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combining LPBoost with SVM on untransformed string features 
showed good classification efficiency even on small random sets 
of CDR3s.

The Properties of amino acid Motifs 
selected by lPBoost
We examined further the properties of those triplets that were 
selected by the LPBoost algorithm using CDR3s which were 
present only once, since these gave the best classification efficien-
cies. The amino acid sequences of these triplets are shown in 
Figure 6A, together with those triplets selected from the OVA-
associated CDR3s. Since slightly different sets of triplets were 
selected by the algorithm from each different random CDR3 
sample of training sequences, and also for each different mouse 
“left-out,” only those triplets commonly selected are shown 
(Figure S3 in Supplementary Material). We note that we cannot 
offer any guarantees that some of these CDR3s were selected by 
chance and not on the basis of vaccination status. The triplets 
shown in the top part of the figure have coefficients in LPBoost 

which positively classify OVA repertoires, while triplets at the 
bottom negatively classify OVA repertoires (i.e., are associated 
with non-OVA immunization). The three classifications using 
CDR3s from early immunized repertoires or all (early and late) 
immunized repertoires (Figures 5C,D), or using only the subset 
of 10,175 CDR3s with expansion index >6 (Figure 2E) all identi-
fied very similar sets of amino acid triplet features.

We examined where the OVA classifying triplets for the 
early immunized repertoires were found along the length of 
the CDR3 (Figure 6B). Strikingly, each triplet showed a highly 
restricted and non-uniform distribution of expression along the 
CDR3 [reminiscent of the restricted distributions of amino acids 
along antibody CDR3s described in Ref. (13)]. The two “OVA-
predictive” triplets are found predominantly at the beginning or 
end of the CDR3s and can be coded for by germline sequences 
found within some V or J segments (Figure S4 in Supplementary 
Material). For example, ASG is found in the germ line sequence 
of TRBV13-2*01. However, 10% of the TCRs which contained 
the OVA-predictive ASG triplet used Vβ regions other than 
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FigUre 7 | (a) One example of a subtree from the whole tree shown in Figure S6 in Supplementary Material. The tip labels show the CDR3s sequence and the 
individual mouse repertoire(s) from which it was derived (colored according to key). (B) Sequence alignment of the CDR3s shown in panel (a).
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TRVB13-2*01. In these cases, the ASG sequence has been recre-
ated by deletion and non-template addition. Furthermore, the 
frequency of TRVB13-2*01 does not differ between OVA + CFA 
and CFA only repertories (Figure S5 in Supplementary Material). 
This suggests that the ASG sequence is being selected for inde-
pendently of V gene.

The frequencies of each of these OVA classifying triplets in each 
early immunized repertoire for OVA and CFA mice are shown in 
Figure 6C. The mean frequency of the OVA classifying triplets 
was higher in the OVA + CFA immunized repertories than in 
the CFA repertoires. The ASG triplet was also overrepresented 
in the OVA-associated subset of CDR3s illustrated in Figure 2E. 
However, the distributions of frequencies in the OVA + CFA and 
in the CFA alone repertoires were largely overlapping and the 
frequency of any one triplet alone could not predict immuniza-
tion status with any degree of accuracy. Each triplet therefore acts 
only as a “weak learner,” and only a combination of a number of 
triplets provides good classification.

The ASG triplet was predictive of OVA immunization in 
analysis of both early and late repertoires and also of the CDR3s 
with expansion index >6. We therefore extracted the full amino 
acid sequence for all the “OVA associated” CDR3s shown in 
Figure 2E which contained ASG. For improved clarity, we show 
a subtree representing a cluster of CDR3s with more closely 
related sequence (Figure  7A). A multi sequence alignment of 

this subset of CDR3s is shown in Figure 7B. The full alignment 
and a phylogenetic tree representation of these sequences are 
also available in Figure S6 in Supplementary Material. The set 
of CDR3s share considerable sequence similarity which extends 
beyond the defining ASG triplet. As captured by the sequence 
logo (Figure 7B), the alignment represents a set of highly related 
CDR3s, many of which share over half their amino acids. The 
repertoires in which each sequence is found are illustrated by the 
colored circles in Figure  7A. The sequences are found in one, 
or occasionally two repertoires, but there is no obvious relation-
ship between the relatedness of the sequence and the repertoire 
from which they are derived. The ASG motif therefore defines a 
set of diverse but related sequences of OVA-associated CDR3s. 
Interestingly, the other OVA selecting triplet FGS is not dominant 
in this set, suggesting these two triplets are independent predic-
tors of an OVA response.

DiscUssiOn

In the analysis above, we tackle the challenging problem of 
distinguishing between the T cell repertoires of mice immunized 
with CFA with and without OVA, by looking only at TCRβ CDR3 
sequences. A number of interesting conclusions emerge.

First, our analysis highlights the extraordinary diversity and 
heterogeneity of the adaptive immune response when considered 
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at a molecular level. In particular, the results show that even when 
considering beta chains only, the responding set of TCRs in each 
individual are rarely shared with another individual. This is true 
even when the individuals are as genetically close as possible, 
as in the case of the inbred laboratory strain of C57Bl/6 mice 
considered here, because the diversity arises not from germline 
diversity but from the vast number of possible outcomes of the 
somatic stochastic recombination machinery which generates the 
TCR repertoire in developing T cells. Every individual therefore 
responds to the same challenge (i.e., OVA in this case) by using 
T cells expressing differing sets of TCRβs. In fact, each TCRβ will 
be paired independently with different sets of TCRαs, further 
expanding the diversity of responding TCRs.

Although at first glance surprising, this conclusion follows on 
inevitably from a consideration of the quantitative parameters of 
repertoire generation which have been explored in detail in sev-
eral recent papers (13, 31, 32). The median probability of finding a 
particular TCR in mouse TCRβ repertoires is in the order of 10−9 
[Elhanati, personal communication, cf., Ref. (32) who provide 
an estimate of 10−14 in human TCRβs]. However, each mouse 
contains only in the order of 50–100 million CD4 T cells. Thus 
the probability of finding any one particular TCR of “average” 
generation frequency in a particular mouse is 10−9 × 108 = 0.1. 
To be certain that every mouse will mount an immune response 
against a specific epitope of OVA, there must be many different 
TCRs with the potential to recognize OVA. Experimental meas-
urements suggest that in the order of at least 20 and as many as 
two thousand CDR3β can bind a single MHC peptide epitope 
(4, 33). The inevitable conclusion seems to be that there must be 
hundreds or even thousands of different potential TCRβ which 
could form part of a TCR with OVA specificity. In other words, 
achieving OVA specificity at the level of TCRs requires a highly 
degenerate solution (34).

The discussion above has emphasized the diversity and 
uniqueness of different individual’s immune responses to OVA 
at the level of CDR3β. Nevertheless, OVA recognition ultimately 
requires a physical/chemical interaction of a certain minimum 
energy between the surface of the MHC/peptide complex and the 
TCR antigen binding site. For OVA recognition in mice of the 
strain C57BL/6 used here, this probably includes a small number 
of different OVA epitopes which bind efficiently to I-Ab MHC 
molecules. The energy of this interaction will be determined by 
the (probably non-linear) combinations of interactions at differ-
ent points of the surface between amino acids of the TCR and 
amino acids of the peptide in the MHC binding groove (35). It 
seems likely that achieving a sufficient binding energy for any 
one particular MHC/peptide target will therefore impose some 
(perhaps weak) constraints on the structure of binding TCRs, 
which may be reflected in local sequence features within the 
CDR3s. Indeed, we observed that the OVA expanded CDR3βs 
described here are more similar to each other than to same sized 
sets of CDR3s chosen randomly from the combined repertoires 
of all the immunized mice. How one might reconcile diversity 
and degeneracy with specificity is illustrated in the second part of 
our study, where we provide evidence that particular sets of short 
amino acid motifs (e.g., contiguous triplets) may encode such 
binding constraints. We examine this possibility by exploring 

whether the relative enrichment or depletion of such features, 
when taken in combination, contains sufficient information to 
allow classification of the immune status of the repertoire as a 
whole. Although the methodology we use has been developed 
primarily in the machine learning framework arising from text or 
image classification, we are specifically motivated by the emerg-
ing consensus that such short local protein sequence motifs may 
define conserved protein/protein interactions in a much wider 
context (36, 37).

Our previous attempts to classify immune repertoires 
using non-zero weighted combinations of all possible triplet 
frequencies by SVM were successful in distinguishing between 
unimmunized repertories and CFA immunized repertories. We 
extend this approach to include an automatic feature selection 
step, which focuses the classifier on a much more restricted 
set of features by introducing a 1Norm, in place of a 2Norm 
term into the optimization algorithm. The optimization can be 
solved efficiently using a column generation algorithm so that 
the global optimum solution could be obtained although only 
a limited number of features need be considered at each step 
of the algorithm (20). We adapted this approach to the TCR 
classification problem, and typically obtained optimal solutions 
which identified some 20–40 non-zero features. We note that the 
classification results we obtained may be subject to upward bias 
due to the lack of out-of-sample testing. As such, the classification 
accuracies should be considered provisional, until validated on a 
new and independent experiment. Repeat experiments which use 
improved sequencing protocols, with molecular barcoding and 
more sophisticated error correction may also lead to improved 
algorithm performance.

A striking finding was that most amino acid triplets occupy a 
rather specific location along the CDR3. This presumably reflects 
the germ line sequences of the V, J, and D region, but may also 
reflect structural constraints in producing a functional CDR3 
loop. A similar observation has been reported for B  cells (31). 
A number of triplets selected by LPBoost were actually formed 
by the end of the V and J regions (e.g., AGS, CAS, CAW, etc.). 
The amino acids toward the ends of the CDR3 may therefore 
play an important role in interacting with the MHC/peptide 
complex and determining antigen specificity. Alternatively, this 
association may reflect a hidden statistical association between 
these sequences and other rarer sequences found within the 
central area of the CDR3.

One might argue that analysis of the antigen-specific TCR 
repertoire should start with a simpler problem, for example using 
a simpler antigen (e.g., a single peptide) in combination with a 
simpler adjuvant (e.g., LPS or dsDNA) which do not themselves 
stimulate a significant T cell immune response. The responding 
T cells could also be purified, for example using MHC multimer 
technology. Indeed such alternative approaches are extremely 
valuable and are being pursued both in our own and several other 
laboratories (33). However, the model we examine is closer to 
the long term goal of analyzing human TCR repertoires, where 
immune responses to complex antigens (e.g., viruses or bacteria, 
which contain a combination of targets of innate and adaptive 
immunity) must be distinguished against a background of a 
lifelong exposure to a variety of other immunological stimuli. 
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Furthermore, a global analysis of repertoire does not restrict 
analysis to T cells binding an individual MHC/peptide epitope, 
but allows for the possibility that the repertoire will respond more 
broadly to exposure to specific antigen by readjusting the fre-
quency of both antigen-specific and antigen-non-specific T cells. 
This allows for such emerging properties as homeostasis, clonal 
cooperativity, feedback, clonal competition, and cross-reactivity 
to play a role in shaping the observed TCR repertoire.

In conclusion, we report the results of the first study which 
uses HTS to examine the global CD4 T cell receptor repertoire 
of mice immunized with a defined protein antigen in the context 
of adjuvant. Our results emphasize the extreme diversity of the 
adaptive immune response at the level of individual antigen-
specific receptors, which results in individuals mounting essen-
tially private immune responses. Nevertheless, we also report 
that the diversity of the responding TCRs may be limited by the 
requirement for specific sets of amino acid motifs which may be 
important in determining specificity at a molecular level. Further 
study of antigen-responsive TCR repertories may shed more light 
on the rules which govern the physical/chemical interactions 
between TCRs and MHC/peptide and may ultimately provide 
tools with which to exploit the TCR repertoire as a sensitive 
biomarker of an individual’s immune status.
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FigUre s1 | The number of shared cDr3 sequences between pairs of 
mice of different immunization status (as shown on x axis), measured as 
the Jaccard index, calculated using only the top 10% cDr3s ranked 
according to frequency in each sample. Squares = early (days 5–14); 
triangles = late (day 60); and hexagons = early/late comparisons.

FigUre s2 | as for Figure 2e but showing those cDr3s with expansion 
index >6 in any complete Freund’s adjuvant (cFa) repertoire plotted 
across all ovalbumin (OVa) + cFa or cFa early immunised repertoires. 
Each column of the heat map represents one mouse repertoire. Each row of the 
heat map represents a distinct CDR3 with expansion index >6 in one or more 
CFA repertoires. Only those positions with an expansion index of >6 in that 
mouse are colored non-white.

FigUre s3 | The proportion of times each feature is selected by linear 
programming boosting + sVM, in descending ranked order, across all 
mice and all replicate subsamples shown in Figure 5. Those features 
selected >80% of the time (dotted lines) are illustrated in Figure 6.

FigUre s4 | amino acid sequences of the ends of the mouse V and J 
genes encoding the ends of the cDr3s. Motifs selected by linear 
programming boosting as predicting ovalbumin immunization are shown  
in red.

FigUre s5 | The proportion of Tcrβs which use TrBV13-2*01 (which 
codes for the triplet asg), TrBJ1-2*01, and TrBJ2-3*01 (which code for 
the triplet Fgs) in repertoires from mice immunized with ovalbumin 
(OVa) + complete Freund’s adjuvant (cFa) or cFa alone.

FigUre s6 | (a) Alignment of all CDR3s selectively enhanced in early ovalbumin 
(OVA) repertoire but not in early complete Freund’s adjuvant (CFA) repertoires, 
which contain the triplet ASG. (B) Phylogenetic tree showing relationships of this 
set of CDR3s. Circle shows subtree expanded in Figure 7.
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