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The family of innate lymphoid cells (ILCs) consists of a heterogeneous group of cytokine-producing 
cells that have features in common with adaptive T helper (Th) cells. Cytokines acting through 
the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways are key 
players in both Th and ILC biology. Observations in animal models, supported by evidence from 
humans, have highlighted the importance of the downstream events evoked by the cytokines that 
signal through the common IL-2 γ-chain receptor. Similarly, it is reasonable to assume that thera-
peutic targeting of this signaling cascade will also modulate ILC effector function in disease. Since a 
major limitation of gene knockout studies in mice is the complete loss of ILC populations, including 
NK cells, we believe that an attractive, alternative, strategy would be to study the role of cytokine 
signaling in the regulation of ILC function by pharmacological manipulation of these pathways 
instead. Here, we discuss the potential of JAK inhibitors as a drug class to elucidate mechanisms 
underlying ILC biology and to inform the design of new therapeutic strategies for inflammatory 
and autoimmune disorders.

DiSTinCTiVE FEATURES OF iLC SUBSETS

In the last 10 years, ILCs have emerged as a new class of lymphocytes with the ability to regulate and 
amplify the immune response through a variety of effector functions that parallel those of T lympho-
cytes (1, 2). We now divide ILCs into three groups based on their pattern of cytokine expression (3). 
NK cells are the only subset with cytolytic ability and, along with other IFN-γ-producing subsets, 
fall in the group of type 1 ILCs. One major difference between NK cells and other ILC1 is their tissue 
distribution; while ILC1 are mainly tissue-resident cells, NK cells recirculate in the body (4–7). Type 
2 ILCs consist of cells producing IL-13 and IL-5, including nuocytes, natural helper cells, and innate 
type 2 helper cells. These cells are involved in the resolution of parasitic infections and in allergic 
airway inflammation (8). The type 3 group comprises cells producing IL-22 and/or IL-17, including 
lymphoid tissue inducer (LTi)-like cells and a subset expressing NK  cell markers (NCR) named 
NCR+ ILC3. Type 3 ILCs are enriched at mucosal sites and contribute in maintaining the integrity 
at intestinal barriers but also play a key role in promoting inflammation in mouse models of colitis 
(9). Although a potential role in inflammatory bowel disease can be indirectly inferred in humans, 
further studies are needed to better understand their function (3, 10).

Generation and development of ILC functional diversity depends on complex network of lineage-
defining and signal-dependent transcription factors (LDTFs and SDTFs) that control both ILC and 
Th cell differentiation (11). The pathways delineating ILC subsets can be simplified according to the 
requirement of four LDTFs: Eomes for NK cells, T-bet for ILC1, GATA-3 for ILC2, and RORγt for 
ILC3. However, these TFs also have broad lineage-defining activity and there is considerable overlap 
among them (12–18). Thus, as for Th cells, the boundaries among ILC lineages are blurred and 
plasticity across the three groups has been observed both in humans and mice (19–23).

One substantial difference between ILCs and T cells is that commitment to ILC lineage is inde-
pendent of the presence of pathogens and occurs early in development (24). In fact, ILC precursors 
share epigenetic features with mature ILCs (25, 26). Importantly, a common feature of all ILCs 
is their requirement for IL-15 and IL-7, two JAK-dependent cytokines that utilize the common 
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FiGURE 1 | Schematic diagram of the downstream signaling pathway of cytokines sharing the common γ chain receptor: iL-2, iL-4, iL-7, iL-9, iL-15, 
and iL-21. All depend on the same set of Janus kinases (JAKs), JAK1 and JAK3, but may use a different combination signal transducer and activator of 
transcription (STATs). When cytokines bind to their respective receptors, JAK–STAT phosphorylation occurs. JAK inhibitors blocking JAK1, JAK3, or both are shown. 
NK cells and ILC1 depend on IL-15, while ILC2 and lymphoid tissue inducer (LTi)-like cells require IL-7 for development and maintenance. Finally, NCR+ ILC3 subset 
relies on IL-7 and IL-15.
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γ chain receptor (IL2RG) (2). The non-redundant function of 
these two cytokines makes the JAK/STAT pathway the main 
signaling cascade involved in ILC development and homeostasis 
(Figure 1).

iLC DEVELOpMEnT AnD HOMEOSTASiS: 
ALL ROADS LEAD TO JAK3?

The JAK/STAT pathway transduces signals downstream of type 
I and type II cytokine receptors and has been described in great 

details elsewhere (27). Its importance was demonstrated in 
genetically modified animals and in patients (28). Individuals 
with mutations of IL-7Rα, IL-2R common γ chain (IL2Rγ), and 
JAK3 develop severe combined immunodeficiency. Given that 
these defects are restricted to the immune system, compounds 
blocking the enzymatic activity of JAKs have been developed as 
immunosuppressants to be used in immune-mediated diseases. 
While mutations in IL7Rα cause a T(−), B(+), and NK(+) immu-
nodeficiency, the latter two mutations result in a T(−), B(+), and 
NK(−). Recently, no ILCs were found in patients with JAK3 
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and IL-2Rγ mutations (29). Notably, after hematopoietic stem 
cell transplantation (HSCT) in non-myeloablative conditioning 
regimens, patients remained ILC(−), while ILCs were partially 
reconstituted only in myeloablative HSCT. Altogether, these find-
ings highlight the importance of common γ chain cytokines on 
the development of T, NK cells, and ILCs.

The non-redundant role of IL-15 in the regulation of NK cell 
differentiation and homeostasis has long been appreciated 
(30–33). Recently, a critical role for IL-15 has been also shown 
for several subsets of tissue-resident ILC1 (34–36). Conversely, 
IL-7 is required for ILC2 and ILC3 development and mainte-
nance (37, 38). Nonetheless, not all the subsets conform to this 
dualistic model. For instance, NCR+ ILC3 require IL-7 as do 
other ILC3 subsets, but IL-15 also affects their maintenance 
(35, 38). Moreover, IL-7Rα-deficient mice show a more severe 
defect in ILC2 and LTi-like ILC3 numbers as compared to 
IL-7-deficient mice, probably because of the cytokine TSLP, 
which also signals through the IL-7Rα (39, 40). Finally, T cell-
derived IL-2 also regulates the number of NK  cells, and this 
effect becomes evident in the absence of regulatory T cells (41). 
Overall, among the signaling molecules downstream of all 
these cytokines, JAK3 and JAK1 appear to have a critical role 
as gatekeeper of the signals leading to activation of SDTF like 
the STATs.

iLCs: FACTS AnD STATs

It is not surprising that STATs have a major role in ILC func-
tions since they transduce signals received by cytokine–cytokine 
receptor interactions. For example, the role of STAT5 in NK cells 
has been investigated using several mouse models that show the 
key role of this TF in the biology of NK cells (42–45). However, 
in terms of lineage diversification, the requirement of STATs 
between ILCs and Th cells does not overlap.

The traditional “monolithic” view of Th differentiation relies 
on the paradigm “one STAT/one subset.” In this model, STAT4 
is the main driver of Th1 development, STAT6 is critical for 
Th2, and STAT3 for Th17/22 (46). Although Th differentiation 
is now thought to be a fluid process based on networks of TFs, 
activation of selected STATs is still thought to drive the genera-
tion of distinct Th subsets. In contrast, ILC diversification is not 
driven by selective activation of STATs. Notably, several studies 
have shown no role for STAT4 in the regulation of type 1 ILC 
differentiation, STAT6 for ILC2 nor STAT3 for ILC3 (6, 47, 
48). However, activation of distinct STATs is important for ILC 
function: deficiency of STAT4 profoundly affects NK  cell and 
ILC1 responses during infections. Similarly, STAT6-deficient 
ILC2 produce less IL-13, while STAT3 controls production of 
IL-22 in ILC3 (6, 18, 47–50). Thus, the paradigm “one STAT/
one subset” better reflects the effector functions of distinct ILCs, 
whereas lineage diversification is probably obtained through 
early expression of LDTFs, also known as the “master regula-
tors.” What regulates the regulators is still unknown, but the 
JAK/STAT pathway represents an obvious candidate and could 
be modulated during ILC activation and alter their effector 
function.

TARGETinG JAKs in iLCs

Given the critical role of IL-2Rγ-using cytokines for ILCs, 
targeting their signaling cascade could be used to modulate 
ILC function. The non-selective JAK inhibitor, tofacitinib, is 
currently approved for the treatment of rheumatoid arthritis. In 
this context, ex vivo treatment of CD4+ T cells with tofacitinib 
affects the differentiation programs of Th cells (51) and alters 
the expression of rheumatoid arthritis risk genes endowed with 
super enhancer structure (52). Tofacitinib and other “first genera-
tion” JAK inhibitors block multiple JAKs and, therefore, inhibit 
the actions of a large variety of cytokines. Several JAK-selective 
inhibitors are being developed. Molecules like decernotinib and 
PF-06651600 (JAK3 selective) are already in late-phase clinical 
development, but they are also useful tools to understand the 
biological role of JAK3 in ILCs. On the other hand, given that 
several of the cytokines mentioned above also signal through 
JAK1, compounds like filgotinib (JAK1 selective but with some 
activity on JAK2), upadacitinib, and PF-04965842 (JAK1 selec-
tive) could be very helpful to understand the biological role of 
each the JAKs (53). Interestingly, tofacitinib has shown promising 
results in the treatment of ulcerative colitis but a lack of efficacy in 
Crohn’s disease whereas filgotinib has shown some efficacy. Given 
the role that ILCs have in the gastrointestinal immune response, 
we are tempted to speculate that altering the effector functions of 
ILCs could contribute to these different responses.

In homeostatic condition, mice treated with JAK inhibitors 
show no major changes in the pool of adaptive immune cells, 
with the only exception being FoxP3+ regulatory T cells, which 
decrease following JAK1 inhibition (54). On the other hand, 
JAK3 and JAK1 inhibition significantly decreased the frequency 
of NK cells (54–56). At the transcriptional level, NK cell effector 
programs are similarly affected by both JAK1 and JAK3 inhibition 
(54). Similar results have been obtained using NK cells treated 
ex vivo with IL-2, where activation of several target genes is 
inhibited by targeting both JAK1 and JAK3. From a therapeutic 
point of view, it is interesting to note that a JAK1-selective inhibi-
tor is more effective than a JAK3-selective inhibitor in blocking 
secondary autocrine responses induced by IFN-γ released by 
activated NK cells (54).

COnCLUSiOn

Innate lymphoid cells are now recognized as critical components 
of the immune response and translational studies have shown 
that they also play a role in immune-mediated diseases (57–59). 
Like Th cells, ILCs are dependent on specific cytokines signaling 
through JAK1 and JAK3 for their development and acquisition 
of effector function. Single gene knockout animals have limited 
use in the study of ILCs as they cause significant perturbation of 
immune compartments. We suggest that the availability of drugs 
that specifically block the JAK/STAT pathway can be very useful 
in the study of ILCs and may, to an extent, obviate the need for 
gene knockout animals in the study of ILC biology. Furthermore, 
JAK inhibitors are already in clinical use, so the effect of these 
drugs on ILCs in patients being treated in the clinic for autoim-
mune and inflammatory diseases will also shortly be evident.
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