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Our understanding of development and function of natural killer (NK) cells has progressed 
significantly in recent years. However, exactly how uterine NK (uNK) cells develop and 
function is still unclear. To help investigators that are beginning to study tissue NK cells, 
we summarize in this review our current knowledge of the development and function of 
uNK cells, and what is yet to be elucidated. We compare and contrast the biology of 
human and mouse uNK cells in the broader context of the biology of innate lymphoid cells 
and with reference to peripheral NK cells. We also review how uNK cells may regulate tro-
phoblast invasion and uterine spiral arterial remodeling in human and murine pregnancy.

Keywords: uterine natural killer cells, uterine innate lymphoid cells, placenta, pregnancy, arterial remodeling, 
trophoblast

iNTRODUCTiON

CD56superbright uterine natural killer (uNK) cells are present in human endometrium prior to the 
initiation of pregnancy, and markedly expand and become progressively more granulated during 
the progesterone-dominated secretory phase after ovulation and throughout the first trimester 
(1–3). uNK  cells within the decidua have a distinct phenotype compared to peripheral blood  
NK (pbNK) cells and share features of both CD56bright and CD56dim pbNK subsets (Table 1). Similarly 
to CD56bright pbNK cells, uNK preferentially produce cytokines and are poorly cytotoxic, despite 
their abundant intracellular granules containing granzymes, granulysin, and perforin (4–9). 
Killer-cell immunoglobulin-like receptors (KIR) and natural killer group 2 (NKG2)A/C/E recep-
tors, which recognize trophoblast MHC class I human leukocyte antigen (HLA)-C and HLA-E, 
respectively, are expressed at higher levels among uNK than their pbNK cell counterparts, and are 
skewed toward recognition of their respective ligands (8, 10, 11). All human decidual uNK cells 
are CD49a+, also known as very late antigen-1 (VLA-1) or integrin α1β1, and express CD69 (2, 12). 
uNK cells peak in frequency during the first trimester, before becoming progressively less granular 
and beginning to diminish in numbers midway through gestation, so that only small numbers are 
present at term (13, 14).

In comparison to humans, two functionally disparate populations of uNK  cells have been 
identified in mice, which are distinguished in most studies to date by their reactivity to Dolichos 
biflorus agglutinin (DBA). Gene expression studies show that DBA+ uNK  cells predominantly 
express transcripts for angiogenic factors, whereas interferon (IFN)-γ transcripts dominate in 
the DBA− subset (27). Murine uNK do not begin to mature into large, granulated lymphocytes 

Abbreviations: cNK, conventional natural killer cells; NKR, natural killer receptor; pbNK, peripheral blood natural killer cells; 
pNK, peripheral natural killer cells; trNK, tissue-resident natural killer cells; uNK, uterine natural killer cells.
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Table 1 | Characterization of human natural killer (NK) cells in peripheral 
blood and decidua.

Characteristic Peripheral blood  
NK (pbNK) cells

Uterine  
NK (uNK) cells

CD56bright  
CD16−

CD56dim  
CD16+

CD56superbright  
CD16−

% of total ~ 5–30% circulating  
lymphocytes (15)

≥70% leukocytes  
in first trimester (2)

% of total NK cells 10% (16) 90% (16) 80% (2)
CD94 CD94bright (17) 50% CD94dim (18) CD94bright (18)
Natural killer group 2 
(NKG2)A/C/E

+ (8) + (8) ++ (8, 11)

NKG2D + (19) + (19) ++ (20)
Killer-cell 
immunoglobulin-like 
receptors (KIR)

− (21) + (21) ++ (8, 22)

NKp46 + (23) + (23) + (4)
CD9 − (8) − (8) + (8)
CD49a − (12) − (12) + (12)
CD57 − (24) 60%+ (24) − (2)
CD69 − (25) − (25) 40%+ (2)
Cytokine production +++ (26) + (26) +++ (4, 5)
Cytotoxicity − (21, 24) +++ (21, 24) − (6)
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until blastocyst implantation, and they acquire reactivity to 
DBA after g.d. 5 alongside their increase in granularity (28, 
29). As in humans, murine uNK  cells are poorly cytotoxic 
despite containing granules encasing perforin and granzymes 
(30–32). At the mesometrial pole of the implantation site and 
adjacent to the decidua basalis, a lymphocyte-rich accretion of 
leukocytes composed largely of uNK  cells, macrophages, and 
dendritic cells develops (29, 33, 34). This mesometrial lymphoid 
aggregate of pregnancy (MLAp) is a feature of pregnancy unique 
to rodents, which is established by g.d. 8. Mature uNK  cells 
are most abundant throughout the decidua basalis and MLAp 
approximately halfway through gestation (Figure  1) (28, 29, 
35). uNK undergoing apoptosis begin to appear from mid-
gestation onwards and are highly prevalent by g.d. 12 (28, 
35). Expression of lectin-like Ly49 receptors, which recognize 
MHC class I, is higher among uNK than peripheral (pNK) cells 
and, as in humans, some receptors are mildly skewed toward 
recognition of trophoblast MHC ligands (36, 37). uNK in mice 
also express killer-cell lectin-like receptor G1 (KLRG1) more 
highly than their pNK  cell counterparts, indicating a more 
mature phenotype (36, 38). The features of murine uNK  cells 
are summarized in Table 2.

The relatively recent designation of CD49a as a marker of 
tissue residency and its inclusion in the cytometric analysis 
of uterine lymphocytes alongside common NK cell markers 
such as CD49b (DX5) has enabled the redefinition of murine 
uNK subsets (33, 48). uNK cells in mice can now be classified 
as CD49a+ DX5+/− uterine tissue-resident NK (trNK) cells and 
CD49a− DX5+ uterine conventional NK (cNK) cell populations 
(33, 48, 58, 59), which will be described in greater depth later in 
this review. DBA reactivity is strongest on uterine CD49a+ trNK, 
and is weak on DX5+ uterine cNK (40, 58). As in DBA+ uNK, 
decidual CD49a+ DX5+/− trNK  cells produce less total IFN-γ 
at mid-gestation than CD49a− DX5+ cNK  cells, which further 

supports the correlation between CD49a and DBA reactivity 
(27, 58, 59). Although the correlation between CD49a and DBA 
co-expression is not sufficiently clear-cut to consider DBA as a 
specific marker of uterine trNK cells, it does enable some recon-
sideration of historical histological studies.

Despite numerous anatomical and physiological differences 
between murine and human pregnancies, the functions and 
regulation of uNK cells are reasonably comparable between these 
species. In both species, uNK contribute to fundamental physi-
ological processes of pregnancy within the decidua, but there are 
key differences in how these effects are mediated (Figure  2). 
Human uNK assist in the initial stages of decidua-associated vas-
cular remodeling and control the depth of invasion of extravillous 
trophoblast (EVT), which are responsible for the majority of arte-
rial transformation in human pregnancy. Comparatively, murine 
uNK are composed of two subsets, with largely differing roles. 
uNK-derived IFN-γ is essential for remodeling of the decidual 
vasculature in mice, whereas the contribution of trophoblast is 
relatively insignificant and, indeed, rodent uNK predominantly 
suppress trophoblast invasion. In both species, uNK produce 
angiogenic factors, but in mice this is predominantly mediated by 
the DBA+ subset. As such, considering the broader themes of the 
decidual adaptations to pregnancy, mice provide a useful animal 
model in which to study reproductive immunology.

iNNaTe lYMPHOiD CellS

Natural killer cells are the most abundant and well-characterized 
subset of innate lymphoid cells (ILCs), which comprise lympho-
cytes belonging to the innate arm of the immune system exhibit-
ing features of both innate and adaptive immunity (60, 61). ILCs 
are an important component in the immune response to a wide 
range of pathogens, particularly at epithelial barrier surfaces. 
They also contribute to tissue and metabolic homeostasis and 
have been implicated in the pathogenesis of cancer and inflam-
matory diseases. Features common to all ILCs are the absence of 
recombination activating gene (RAG)-dependent antigen-specific 
receptors, absence of myeloid lineage markers, and a lymphoid 
cellular morphology. Based upon this classification, ILCs can be 
broadly categorized into three major groups according to their 
development, cell surface markers, and functions (62, 63).

Our understanding of the origins and functions of ILCs is 
rapidly evolving, and the identities of disparate ILC populations 
are becoming increasingly apparent (64–67). While the pathways 
of ILC development in mice have been well defined, ILC dif-
ferentiation in humans has yet to be determined. There is also a 
degree of phenotypic plasticity among ILCs, indicating that ILCs 
are capable of adapting their identities and functions in vivo in 
response to other immune cells and secreted factors in the local 
environment.

Functional comparisons have been made between ILCs and 
T cells, as the stimuli and cytokine profiles of ILC1s, ILC2s, and 
ILC3s are analogous to those of the TH cell subsets TH1, TH2, and 
TH17, respectively. Group 1 ILCs comprise bona fide helper-like 
ILC1s and NK  cells. NK  cells can be further subdivided into 
cNK and trNK subsets that differ in their phenotype, function, 
and development. cNK  cells are the only ILC population to 
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FigURe 1 | Dual immunohistochemical staining of Dolichos biflorus agglutinin (Dba)+ uterine natural killer (uNK) cells and trophoblast in a mouse 
implantation site at mid-gestation. Trophoblast (shown in pink) migrate centrally into the decidua to form an ectoplacental cone, which is surrounded by a layer 
of moderately invasive trophoblast giant cells expressing MHC class I. Mature uNK are abundant throughout the decidua basalis, and in a lymphocyte-rich accretion 
at the uppermost pole of the implantation site, known as the mesometrial lymphoid aggregate of pregnancy. Interactions between uNK Ly49 receptors and 
trophoblast MHC class I can modulate the activity of DBA+ uNK (shown in brown) and DBA− uNK cells, and impact on their production of angiogenic factors and 
interferon (IFN)-γ respectively. Reproduced from Moffett and Colucci (39) with permission.
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exhibit cytotoxicity mediated by exocytosis of cytotoxic granules 
containing perforin and granzymes, similarly to CD8+ cytotoxic 
T-lymphocytes (60).

UTeRiNe ilCs

Since the amalgamation of diverse innate lymphocyte popula-
tions into the ILC family, there has been considerable focus on 
determining the distribution and biological significance of these 
cells in  vivo (68). Other than uNK  cells, first defined in 1991, 

ILC1s and ILC3s have also been identified in human decidua 
(2, 33, 69, 70). Uterine ILC3s (uILC3s) were initially classified 
as stage 3 uNK cell progenitors based upon their CD34− CD117+ 
CD94− CD56+ KIR− phenotype. These cells produced interleukin 
(IL)-22 and expressed RORC and LTA, encoding the transcription 
factor RORγ and lymphotoxin (LT)-α, respectively, which makes 
them indistinguishable from uILC3s (62, 69). The presence of 
human uILC3s and lymphoid tissue inducer (LTi)-like uILC3s 
has since been confirmed in accordance with currently accepted 
ILC definitions (33, 70). However, it has since been proposed 
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FigURe 2 | Physiological processes of pregnancy within the decidua 
in human and mice. In both humans and mice, uterine natural killer (uNK) 
cells are thought to contribute to spiral arterial remodeling (purple), 
angiogenesis (red), and control of trophoblast invasion (green). Interactions 
between uNK receptors and trophoblast MHC class I antigens may modulate 
uNK cell activity (blue). In humans, uNK cells may contribute directly to 
decidua-associated vascular remodeling through secretion of matrix 
metalloproteinases (MMPs). Human uNK may also influence trophoblast-
mediated vascular remodeling through secreting factors which enhance 
extravillous trophoblast (EVT) invasion [XCL1, CCL1, granulocyte-
macrophage colony-stimulating factor (GM-CSF)] or suppress EVT migration 
[transforming growth factor (TGF)-β]. uNK cells in humans also secrete 
several angiogenic factors including vascular endothelial growth factor 
(VEGF), placental growth factor (PLGF), Ang1, and Ang2. Their activity may 
be modulated by killer-cell immunoglobulin-like receptors (KIR) and natural 
killer group 2 (NKG2) receptors, which recognize human leukocyte antigen 
class I ligands expressed by EVT. In mice, IFN-γ secreted by Dolichos biflorus 
agglutinin (DBA)− uNK cells is essential for decidual vascular remodeling. 
DBA+ uNK cells are predominantly responsible for producing angiogenic 
factors, including VEGF and PLGF. Evidence from studies in rats and mice 
suggests that uNK cells primarily suppress trophoblast motility, but the 
mechanisms for this are not currently understood. Murine uNK cell function 
can be modulated by Ly49 receptors, which recognize MHC class I 
expressed by trophoblast giant cells.

Table 2 | Characterization of murine natural killer (NK) cells in spleen 
and decidua.

Characteristic Peripheral NK 
(pNK) cells

Uterine natural killer  
(uNK) cells

% of total lymphocytes ~ 2% ~ 30% at mid-gestation (40)
CD94 + (41) No published evidence
NKG2A/C/E + (41, 42) No published evidence
NKG2D + (43) + (44)
Ly49s + (45) ++ (36)
NKp46 + (46) + Dolichos biflorus agglutinin 

(DBA)−, ++ DBA+ (47)
CD49a − (48) ~ 75% CD49a+ CD49b+/− (33)
CD49b + (49) ~ 25% CD49a− CD49b+ (33)
CD69 − (50) ++ (38, 51)
Killer-cell lectin-like receptor G1 + (52) ++ (36)
Cytokine production + (53) + (54, 55)
Cytotoxicity + (56) − (57)
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that a population of CD34+ CD122+ CD309− lymphoid-like cells 
in human decidua represent NK-committed decidual hemat-
opoietic progenitor cells (HPCs) (71). If these cells can be more 
definitively characterized as such, through detection of multiple 
co-expressed cell surface markers and transcription factors, 
it is likely that the population described by Male et  al. were a 
heterogeneous mix of stage 3 uNK cell precursors and uILC3s. A 
proportion of uILC3s have been shown to differentiate to stage 
3-like CD117+ CD56+ CD94+ uNK cells upon in vitro culture with 
IL-15 (70). A similar report indicates that uILCs can differentiate 
into stage 4 CD117− CD56+ CD94+ uNK  cells in  vitro, further 
suggesting that uNK cell precursors were present (69). In view of 
the recent finding that tonsillar ILC3s can differentiate to stage 4 
CD94+ CD56bright NK cells upon aryl hydrocarbon receptor (AhR) 
silencing in vitro, it would also be interesting to ascertain whether 
AhR is expressed by uILC3s and whether its manipulation is simi-
larly able to induce differentiation to an NK cell phenotype (72).

All groups of ILCs are present in the uteri of virgin and preg-
nant mice (33). Uterine trNK  cells were initially considered to 
develop independently of the transcription factors nuclear factor, 
interleukin-3 regulated (Nfil3) and T-box transcription factor 
Tbx21 (T-bet), but their dependency on Eomesodermin (Eomes) 
was not ascertained. As such, it was not possible to deduce their 
identity as belonging to an NK cell or bona fide ILC1 lineage (48). 
Similarly to those in the salivary gland, trNK cells in the uterus do 
express Eomes and, together with uterine cNK cells and Eomes− 
uILC1s, they are found throughout the decidua and myometrium 
during pregnancy. uILC1s can produce tumor necrosis factor 
(TNF)-α and IFN-γ but, owing to the fact that uILC1-sufficient 
Nfil3−/− females exhibit poor decidual vascular remodeling, the 
contribution of uILC1-derived IFN-γ to vascular modification is 
seemingly negligible (33, 58, 59). uILC2s, uILC3s, and LTi-like 
uILC3s are found only in the myometrium and in the MLAp (33). 
The MLAp is of unknown function but, since it is traversed by 
branches of the uterine artery, it is possible that it exerts some 
effect on the perfusion of individual implantation sites through 
leukocyte-mediated modification of vessels proximal to the 
spiral arteries (73, 74). Unlike lymph nodes, MLAp formation 
does not depend on LTα and LTβ-receptor signaling, making a 

role for LTi-like uILC3s in MLAp development unlikely (35, 75). 
Whether uILC2s and uILC3s and their derived cytokines, IL-5, 
IL-13, IL-17, and IL-22 participate in local immune regulation or 
tissue remodeling is currently unknown (33).

NK Cell DevelOPMeNT

Murine cNK  cells arise from NK progenitors (NKP), which 
represent the first of six defined stages of murine NK  cell 
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development (76–78). In contrast to helper-like ILCs, cNK cells 
develop independently of IL-7 and become CD127− CD122+ 
(IL-2Rβ; IL-15Rβ) at the NKP stage. IL-15 signaling is essential 
for the differentiation of NKPs to immature NK (iNK) cells 
(79–81). Subsequently, iNK cells acquire functionally modula-
tory receptors such as NK1.1, NKp46, Ly49, and NKG2 receptors. 
Expression of the integrin CD49b (DX5) denotes the transition 
of iNK  cells to a mature phenotype, which correlates with the 
development of functional competence such as IFN-γ produc-
tion and cytolytic potential (82, 83). Three further stages of 
maturation can be defined by the differential expression of CD27 
and CD11b, which culminate in the development of terminally 
mature NK cells expressing KLRG1 and CD43 (52, 84).

However, NK  cell development can occur via alternative 
pathways. NK  cells of thymic origin have been identified, 
which depend upon the GATA-binding protein-3 (GATA-3) 
transcription factor and IL-7 signaling. These cells appear 
phenotypically immature compared to cNK  cells, but are 
more effective cytokine producers (85). More recently, Nfil3-
independent NK  cells have been described in skin, uterus, 
and salivary glands, which all express the integrin CD49a as 
a marker of tissue residency but which differ in their depend-
ency on T-bet (33, 48, 86–88). However, since the population 
originally classified as CD49a+ DX5− hepatic trNK  cells does 
not express the transcription factor Eomes, it is more appropri-
ate to consider these as hepatic ILC1s. These exhibit a broader 
cytokine profile than cNK and highly express TNF-related 
apoptosis-inducing ligands (TRAIL), which confer potential 
to induce apoptosis (48, 89, 90).

Ontogenesis of human NK cells is broadly analogous to that 
in mice, but there are notable differences in the sequence and 
anatomical sites of each developmental stage. Human NK cells 
arise from bone marrow (BM)-derived CD34+ HPCs. Although 
elusive until recently, NK lineage-restricted progenitors have 
been identified in adult and fetal bone marrow, fetal liver, and 
adult tonsils (91). Evidence suggests that CD34dim pro-NK cells 
are exported from BM comparatively early and home to sec-
ondary lymphoid tissues where they continue to differentiate 
(92). Five continuous stages of human NK  cell development 
have been characterized in lymph node and tonsil. IL-15 acts 
on stage two pre-NK cells to support their transition to stage 
three. Human NK cells do not begin to express receptors for 
class I HLA antigens, including KIR and CD94/NKG2 dimers, 
until they reach a mature CD56bright phenotype (17). At this 
stage, human NK  cells are competent cytokine producers, 
which either remain in  situ or terminally differentiate in 
peripheral blood to acquire cytotoxic potential as CD56dim 
CD16+ NK cells (21, 26, 93).

The transcriptional control of human NK  cell develop-
ment has not been delineated clearly, but GATA-3 transcripts 
are abundant in stage 3 NK  cells, and T-bet and Eomes are 
highly expressed in stage four and stage five NK cells (17, 94). 
However, as in mouse, subpopulations of CD49a+ trNK  cells 
have been identified in uterine endometrium and liver (59, 95). 
A subpopulation of CD127− CD56+ Eomes+ tonsillar and intes-
tinal intraepithelial ILC1s are phenotypically and functionally 
resemblant of NK cells, but their murine counterparts develop 

independently of IL-15  (96). As such, it is possible that these, 
and perhaps other ILC1s, arise from pre-NK cells, and are more 
closely developmentally linked to NK  cells than we currently 
appreciate.

ORigiN OF uNK CellS

Uterine natural killer cells account for over 70% of decidual 
leukocytes in the first trimester of human pregnancy and for 
approximately 30% of lymphocytes in murine decidua at mid-
gestation (2, 40). The origin of these distinct and specialized 
NK cells has been a subject of investigation for over 30 years, but 
it is becoming increasingly accepted that uNK cells are likely to be 
a heterogeneous population arising from in situ progenitors and 
from homing of NKPs and/or pNK cells (97).

When mice were lethally irradiated in the presence of a pro-
tective lead shield covering one uterine horn, and subsequently 
rat BM cells were adoptively transferred, only uNK cells of rat 
origin could be identified in the irradiated uterine tissue, indicat-
ing that peripherally derived NKPs contribute to the generation 
of uNK  cells (98). This is supported by observations that uteri 
from NK-sufficient mice are devoid of uNK cells when engrafted 
into NK-deficient hosts (99). Leukocytes of donor origin 
can be found in both murine and human decidua, following 
experimental transgenic labeling of BM cells and hematopoietic 
stem cell transplantation (HSCT) respectively, which suggests 
that decidual leukocytes are derived, at least in part, from BM 
HPCs in vivo (100, 101). A very small population of stage 3 NK 
precursors in peripheral blood, which are capable of maturing 
to stage 4 cells in the presence of IL-15, also raises the possibil-
ity that NK precursors home to the uterus and differentiate to 
mature uNK cells in situ (69). As pbNK cells can be induced to 
acquire phenotypic and functional attributes of uNK cells under 
the influence of hypoxia, transforming growth factor (TGF)-β, 
and demethylating agents, it is also possible that some uNK cells 
develop as a result of pbNK cell recruit ment (102).

However, in the study by Peel and Stewart, no uNK cells could 
be detected in the irradiated uterine horn in half of the mice 
which had retained functional BM as a result of lead shielding 
of their legs during irradiation. This suggests that uNK  cell 
precursors present in uterine tissue prior to irradiation were 
either destroyed or rendered incapable of proliferation, and 
that recruitment of circulating NKPs was insufficient to restore 
the uNK  cell population (98). The proposed NK-committed 
decidual HPCs identified by Vacca et  al. can differentiate to 
mature uNK cells in the presence of IL-15, which is expressed 
abundantly in first trimester decidua and placenta (71, 103). 
The presence of in situ HPCs would also account for the CD56+ 
NK cells detected in human endometrial tissue which had been 
xenografted into hormone-treated immunodeficient mice (104). 
NK  cell development from resident hematopoietic progeni-
tors has also been documented in mice (105). Taken together, 
it seems probable that uNK  cells arise from proliferation of 
peripherally derived HPCs and/or NK precursors which have 
homed to the pregravid uterus, but a potential contribution by 
pbNK cells which undergo phenotypic adaptation in situ cannot 
be discounted.
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Table 3 | ly49 receptors and their respective ligands in C57bl/6 and 
balb/c mice.

ly49 
receptor

ligands Notes

Ly49A H-2Dd, H-2Db, H2-M3 (128–130) 
Ly49C H-2Kb, H-2Db, H-2Kd, H-2Dd (128, 129)
Ly49D H-2Dd (131) Absent in BALB/c
Ly49G2 H-2Dd (128, 129)
Ly49H Murine cytomegalovirus m157  

glycoprotein (127)
Absent in BALB/c

Ly49I H-2Kb, H-2Kd (128, 129) Pseudogene in BALB/c

Inhibitory receptors denoted in red, and activating receptors denoted in blue.
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eFFeCTOR FUNCTiONS OF NK CellS

Soluble factors secreted by other leukocytes can stimulate 
cytokine production by NK cells, which provides a means by 
which these immune cells can indirectly interact with each 
other and reciprocally induce effector functions. NK cells are 
responsive to a number of cytokines released by monocytes, 
including IL-1, IL-10, IL-12, IL-15, and IL-18, and TH lympho-
cytes, including IL-2 and IL-21. These induce production of 
key NK  cell-mediated cytokines such as IFN-γ, granulocyte-
macrophage colony stimulating factor (GM-CSF), TNF-α, and 
macrophage inflammatory protein (MIP)-1 (106). Of these, 
IFN-γ has the most diverse immunomodulatory roles and 
promotes TH1 cell differentiation, activation of macrophages 
and enhancement of antigen presentation via upregulation of 
class I and class II MHC molecules; all of which cumulatively 
contribute to antimicrobial, antiviral, and anti-tumor immu-
nity (107).

All mature murine cNK  cells have the capacity to produce 
cytokines and mediate perforin-dependent cytotoxicity. Distinct 
tissue-specific NK cell subpopulations display variation in func-
tionality, such that salivary gland trNK cells only induce TRAIL-
dependent cytolysis and uNK  cells are weakly cytotoxic under 
physiological conditions (57, 87). In humans, CD56dim CD16+ 
NK  cells contain lytic granules, and are less effective cytokine 
producers and express KIR at far higher frequencies than their 
CD56bright CD16− counterparts (21, 26). That the CD56dim CD16+ 
subset accounts for 90% of circulating NK cells emphasizes the 
importance of HLA class I recognition as a means of immuno-
surveillance by pNK cells. Indeed, the absence of NK cells in vivo 
enhances susceptibility to viral infections and metastatic progres-
sion of malignant tumors (108–110).

Natural killer cells express a broad repertoire of modulatory 
receptors, of which many are common to both human and mouse. 
Among these are the activating receptors NKp46, which recog-
nizes viral hemagglutinins, NKG2D which binds cellular stress-
induced ligands, and CD16, which mediates antibody-dependent 
cellular cytotoxicity (ADCC) in response to immunoglobulin G 
(IgG) (111, 112). The induction of cytotoxic effector responses 
is tightly regulated and, with the exception of CD16, requires 
the synergistic input of signaling via two activating receptors, 
reduced inhibition and/or the presence of stimulatory cytokines 
(113). As many inhibitory NK cell receptors recognize MHC class 
I ligands, reduced inhibition predominantly occurs in the context 
of downregulation of MHC class I molecules by virally infected 
and malignant cells.

The probable roles of uNK in both human and mouse are the 
production of cytokines, chemokines and angiogenic factors, 
which may mediate the key physiological processes required 
for successful pregnancy, discussed in greater depth later in this 
review (Figure 2). Comprehensive gene expression analyzes have 
demonstrated the extent to which human NK cells in the uterus 
functionally and phenotypically differ from those in peripheral 
blood (4, 8). Although uNK cells are phenotypically and func-
tionally distinct from pNK  cells, their activity can be similarly 
modulated through interactions with soluble factors and cell-
bound ligands, including MHC class I.

NK Cell ReCOgNiTiON OF MHC 
MOleCUleS

Recognition of class I MHC is mediated by KIR in humans, Ly49 
receptors in mice, and by CD94/NKG2 heterodimers in both 
species (114). KIRs are highly polymorphic receptors encoded 
within the leukocyte receptor complex (LRC) on chromosome 
19, which bind to HLA class I molecules (115). Sixteen KIR genes 
have been identified and, for each, between 18 and 112 alleles 
are currently known (116, 117). Fourteen of these genes encode 
functional receptors for classical HLA, of which six are inhibitory 
and eight are activating.

KIR genes can be grouped into two main haplotypes, termed 
A and B. With the exception of KIR2DS4, which is most com-
monly truncated, haplotype A encodes only inhibitory receptors 
whereas haplotype B contains genes for both inhibitory and 
activating KIR. The majority of KIR2D receptors exhibit binding 
specificity for one of two epitopes of all HLA-C allotypes, C1 
and C2, which differ due to diallelic polymorphism at positions 
77 and 80 of the α1 chain (116, 118). Binding affinities between 
KIR2DL and HLA-C molecules also influence functional res-
ponses, such that weak interactions induce less inhibition. KIR 
A haplotypes are typified by KIR2DL1, which binds C2 epitopes 
with high avidity, and KIR2DL3, which weakly binds C1 epitopes. 
Comparatively, KIR B haplotypes are characterized by an allo-
type of KIR2DL1 which binds C2 epitopes with low affinity,  
and KIR2DL2, which binds more strongly than KIR2DL3 to C1  
epitopes (119).

The functionally analogous receptors for classical MHC 
class I molecules in the mouse are polymorphic lectin-like Ly49 
receptors. These are encoded within the natural killer complex 
(NKC) on chromosome 6 and bind classical H-2 antigens. Ly49 
gene content varies considerably between strains, ranging from 
eight in BALB/c mice to 22 in non-obese diabetic (NOD) mice  
(120, 121). Ly49 receptors use the same signaling pathways as 
KIR, including intracytoplasmic immunoreceptor tyrosine-based 
inhibition motifs (ITIM) for inhibitory receptors and signaling 
through DAP12 for activating receptors (122–124). Nomenclature 
of Ly49 genes, which are synonymous with killer cell lectin-like 
receptor subfamily A (Klra) genes, is non-descriptive and each 
receptor is designated a letter between A and X (125). The major 
Ly49 receptors in C57BL/6 (H-2b) and BALB/c (H-2d) strains and 
their respective ligands are summarized in Table 3. Of particular 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Table 4 | Features of pregnancy in humans and mice (154–157).

Feature Human Mouse

Decidualization Cyclical (approx. 28 days) Post-implantation
Prior to implantation

Implantation ~ 6 days post-conception 
(p.c.)

Gestation day (g.d.) 4.5

Type of placentation Discoid Discoid
Hemochorial Hemochorial
Villous Labyrinthine

Placental 
development

First functional at 10 weeks 
p.c.

First functional at g.d. 
10.5

Growth continues until term Maximal size at g.d. 16.5
Fetal growth Disproportionate to placental 

growth in third trimester 
Disproportionate to 
placental growth from 
g.d. 14.5

Fetal:placental weight 
ratio

Approx. 7.5:1 Approx. 15:1

Duration of gestation ~ 40 weeks 19–21 days
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functional significance is the activating Ly49H receptor, which 
recognizes the murine cytomegalovirus (MCMV) m157 glyco-
protein. BALB/c mice notably lack this receptor and, as such, are 
highly susceptible to MCMV, with high viral titers and increased 
mortality following infection (126, 127).

In both humans and mice, recognition of non-classical MHC 
class I molecules is predominantly mediated by CD94/NKG2 
heterodimers. Inhibitory CD94/NKG2A dimers signal via an 
ITIM-dependent pathway, whereas activating CD94/NKG2C and 
CD94/NKG2E associate with DAP12 (132–136). CD94/NKG2 
dimers recognize HLA-E in humans and Qa-1b in mice, which 
are expressed in complex with peptides derived from leader 
sequences of other MHC class I molecules (41, 42, 137, 138).  
As such, HLA-E and Qa-1b provide an additional means by which 
aberrant MHC class I expression in diseased cells can be detected 
by NK cells. There are potentially some species-related differences 
in the expression profiles of these receptors, as human CD94/
NKG2E exists only in an intracellular form, and cell surface 
expression of neither CD94/NKG2C nor CD94/NKG2E has been 
definitively detected in mice (41, 42, 134).

It has long been considered that acquisition of individual 
KIR and Ly49 receptors occurs stochastically, such that the co-
expression frequencies of individual receptors do not deviate 
markedly from the product rule (139). This generates subsets of 
NK cells expressing anywhere between zero and the full comple-
ment of NK cell receptors for MHC class I herein referred to as 
NKRs. However, deviations in the NKR repertoire in accordance 
with the MHC environment indicate that there are some selective 
influences (140–143). Specific NKRs are downregulated in the 
presence of their cognate MHC ligands in a manner that is both 
MHC dose-dependent and reflective of receptor–ligand binding 
avidity (142, 144, 145). Refinement of the NKR repertoire is 
an important aspect of the adaptation of NK cells to their host 
environment, and is complementary to a process referred to as 
NK  cell education, during which interactions with self-MHC 
calibrate NK cell responsiveness. Taken together, these processes 
may allow for selection of the most biologically useful and least 
self-reactive NK cell subsets in vivo.

NK Cell eDUCaTiON

The concept of NK cell education, or “licensing,” was first proposed 
in 2005 when it was observed that cells expressing inhibitory 
NKRs for self-MHC are functionally more responsive than those 
that do not, both in terms of cytotoxicity and IFN-γ production. 
This was proposed as a mechanism for NK cell self-tolerance, so 
that uneducated cells lacking NKRs for self-MHC respond poorly 
to activating stimuli, such as cross-linking of activating receptors 
and MHC class I deficient cells. This negates the requirement 
for NKR-mediated counter-inhibition and reduces the potential 
for autoreactivity (140, 146). However, NK  cell education is 
by no means an essential requirement for functionality, since 
responsiveness can be at least partially restored among unedu-
cated NK  cells in the presence of pro-inflammatory cytokines  
(140, 146–148).

The outcome of the educative process is that NK cells attain 
the capacity to respond to aberrant MHC class I expression. This 

occurs through “missing-self ” recognition, which may result from 
the absence of self-MHC class I or in the presence of allogeneic 
MHC class I ligands. The latter effect can be harnessed for thera-
peutic benefit in HSCT, used in the treatment of hematological 
malignancies. NK cells from HLA haplotype-mismatched donors 
enhance graft tolerance in patients with acute myeloid leukemia 
and induce disease remission with protection against relapse 
(149). The only physiological situation in which allogeneic class 
I MHC is presented to a host is during pregnancy. uNK  cells 
are a sufficiently distinct subset that their behavior cannot be 
effectively modeled on pNK cells, owing to significant phenotypic 
and functional differences. However, a wealth of evidence from 
human genetic association studies and mouse models suggests 
that uNK cell activity can be modulated through interactions with 
class I MHC from both parents, and that this has the potential to 
significantly impact on reproductive outcome (150).

RegUlaTiON OF SPiRal aRTeRial 
ReMODeliNg bY uNK CellS

The placenta was originally thought to provide the means of “ana-
tomical separation of fetus from mother,” enabling development 
of the semi-allogeneic fetus without maternal immune rejection 
(151). A modern view of immunogenetics of pregnancy proposes 
that in fact maternal NK cells regulate placentation and vascular 
remodeling through direct interactions with fetal trophoblast 
cells (150). Despite numerous anatomical and physiological 
differences between human and murine pregnancy, mice can 
provide a useful model in which to study trophoblast differentia-
tion and immune regulation of placental development because 
both species exhibit hemochorial placentation, where placental 
trophoblast cells invade the maternal decidua and come into 
direct contact with maternal blood (152–154). Key features of 
human and murine pregnancy are summarized in Table 4.

Remodeling of the maternal spiral arteries is an essential local 
vascular adaptation to pregnancy, which transforms the arteries 
supplying the feto-placental unit to large bore, high conduct-
ance vessels with non-turbulent flow (158). The initial stages of 
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vascular transformation in humans occur during the secretory 
phase of the menstrual cycle and become more pronounced in 
early pregnancy independently of trophoblast invasion (159). 
The maternal vessels during these stages are closely apposed 
by leukocytes, particularly macrophages and uNK  cells, which 
may contribute to this decidua-associated remodeling through 
secretion of proteolytic matrix metalloproteinases (MMPs). 
CD56+ cells have been shown histologically to express MMP-7, 
MMP-9, MMP-19, and MMP-23 (160–162). However, since 
CD56 is also expressed by endovascular EVT, it cannot be 
asserted from dual immunohistochemical staining alone that 
intramural and endovascular CD56+ MMP+ cells are uNK cells 
(159). Subsequent stages of remodeling in humans are dependent 
upon the deep invasion of EVT by interstitial and endovascular 
routes. Interstitial EVT migrate through the decidua and are 
thought to intravasate into the walls of the maternal spiral arteries 
to contribute to disorganization of the vascular smooth muscle 
(159, 163). Perivascular trophoblast may intravasate further into 
the vascular lumen to account for some of the endovascular 
trophoblast which migrates retrogradely along the lumen of the 
arteries (164). It is considered that EVT from both interstitial and 
endovascular routes become incorporated into the vascular wall 
and replace vascular smooth muscle cells (VSMCs) with fibrinoid 
material, which maintains the vessel in a dilated state and renders 
it incapable of vasoconstriction (165).

The contribution of trophoblast to decidual vascular transfor-
mation in mice is less well defined. Moderately invasive tropho-
blast giant cells (TGCs) associate with decidual vessels in their 
more distal segments, and line the arterial canals which supply 
the feto-placental unit (166). It seems likely that vascular modifi-
cation in mice is predominantly mediated by other decidual cells, 
including uNK cells which become integrated into the vascular 
media (167). Indeed, it is well established that IFN-γ of uNK cell 
origin is essential for spiral arterial remodeling in murine preg-
nancy (54). NK  cell-deficient mice consistently have defective 
decidual vascular remodeling, characterized by narrow vascular 
lumens, thick vascular walls, and retention of vascular smooth 
muscle actin (58, 168–170). Through utilizing alymphoid mice 
which were engrafted with BM from IFN-γ−/− mice or severe 
combined immunodeficient (SCID) mice, which lack T- and 
B-lymphocytes, it has been elegantly and conclusively demon-
strated that IFN-γ of uNK cell origin is essential for murine spiral 
arterial remodeling (54). NK  cell-deficient mice also exhibit 
IFN-γ-dependent morphological abnormalities such as decidual 
hypocellularity and failure of MLAp formation, which can be 
restored through adoptive transfer of BM from C57BL/6 or SCID 
mice (54, 169, 171). The mechanisms by which IFN-γ mediates 
vascular remodeling have not been elucidated. Although murine 
uNK cells have not been reported to produce MMPs, decidual 
macrophages do produce MMP-9, and MMP-2 and MMP-9 
expression can be observed throughout the decidua basalis and 
in close proximity of decidual arteries (172, 173). Since uNK cells 
produce IFN-γ and MIP-1α, which are key cytokines involved 
in macrophage activation, it is possible that uNK cells mediate 
vascular remodeling through stimulation of MMP production 
by macrophages (36, 107). Indeed, MMP-2 and macrophage-
derived MMP-9 are essential in the pathogenesis of murine 

abdominal aortic aneurysms, in which pathological destruction 
of the aortic vascular media leads to extensive dilatation and risk 
of rupture (174).

More similarly to humans, modification of the spiral arteries 
in rats involves initial medial disorganization by uNK cells and 
subsequent destruction of the smooth muscle layer by intersti-
tial and endovascular trophoblast, which invade deep into the 
decidua and myometrium (175, 176). This demonstrates that, 
even among species that exhibit hemochorial placentation, there 
is significant variability in the dependence upon trophoblast and 
uNK cells for transformation of the spiral arteries supplying the 
feto-placental unit.

RegUlaTiON OF TROPHOblaST 
iNvaSiON bY uNK CellS

Uterine natural killer cells may also contribute to modification  
of spiral arteries indirectly, through their influence on EVT. A 
recent study shows that human uNK produce the chemokines 
XCL1 and CCL1. The receptor for XCL1, XCR1, is expressed by 
several cell types in the placenta, including fetal endothelial cells 
and EVT. XCR1 is also expressed by decidual cells, including a 
small population of CD14+ macrophages. The CCL1 receptor, 
CCR8, has been identified on all decidual macrophages and on a 
small proportion of uNK (177). It has been determined by intra-
cellular cytometry that uNK secrete GM-CSF, and the chemokines 
IL-8 and interferon-inducible protein (IP)-10 have been detected 
in supernatants of uNK cells in vitro. All of these factors enhance 
motility of primary trophoblast in cell migration and invasion 
assays (4, 177–180). Intracellular cytometry has since shown 
that macrophages are probably the predominant source of IL-8 
among decidual leukocytes, although activated uNK cells were 
not assessed in this study (181). IL-8 stimulates production of 
MMP-2 and MMP-9 in a first trimester EVT cell line, which is 
suggestive of a mechanism by which leukocyte-derived factors 
may promote EVT-induced vascular remodeling (180). However, 
uNK also secrete TGF-β, which impairs the invasive properties of 
primary trophoblast in vitro (5, 182). As such, human uNK seem-
ingly mediate a balance between enhancing and inhibiting EVT 
invasion, and alterations in their function may lead to placental 
pathology and associated disorders of pregnancy. Supernatants 
from IL-15-activated uNK  cell isolates from women with high 
uterine artery resistance, which denotes incomplete arterial 
remodeling, do not effectively induce motility of a first trimester 
EVT cell line and apoptosis of VSMC and endothelial cell lines 
in vitro (183). While this likely indicates that uNK cell-derived 
factors contribute to vascular remodeling and modulating 
trophoblast migration in  vivo, uNK  cells were harvested in 
this study at 9–14 weeks gestation, when transformation of the 
decidual sections of the spiral arteries is advanced and uNK cell 
function is declining (184). Assessment of uNK function at an 
earlier gestational time-point would be more informative for 
understanding the relative contribution of uNK  cells to these 
physiological processes.

Whereas human uNK cells have been demonstrated to both 
enhance and inhibit EVT invasion, evidence from studies in rats 
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Table 5 | Uterine natural killer (uNK) cell receptors and respective 
trophoblast ligands in human and mouse.

uNK cell receptor Trophoblast ligand

Human
KIR2DL1 (A and B haplotypes) Human leukocyte antigen (HLA)-C2 (116, 119)
KIR2DL2 (B haplotype) HLA-C1 (116, 119)
KIR2DL3 (A haplotype) HLA-C1 (116, 119)
KIR2DL4 (A and B haplotypes) HLA-G? (201)
KIR2DS1 (B haplotype) HLA-C2 (116, 119)
KIR2DS4 (A haplotype) HLA-C1, HLA-C2 (202)
LILRB1 HLA-G (197, 203)
CD94:NKG2A HLA-E (197)
CD94:NKG2C; CD94:NKG2E HLA-E (197)
NKp44 Unidentified (4, 179)
NKp46 Unidentified (4, 204)
NKG2D Not expressed (20)

Mouse
Ly49A, Ly49G2 H-2Dd (BALB/c) (36)
Ly49C, Ly49I H-2Kb (C57BL/6) (37)
Ly49D H-2Dd (BALB/c) (36)
Ly49H Not expressed
CD94:NKG2A Not expressed (205)
CD94:NKG2C; CD94:NKG2E Not expressed (205)
NKG2D Rae1 (44)

Inhibitory receptors denoted in red, and activating receptors denoted in blue.
KIR2DL4 can be both inhibitory and activating.

9

Gaynor and Colucci Human and Mouse uNK Cells

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 467

and mice suggests that uNK cells primarily suppress trophoblast 
motility. The onset of trophoblast invasion in both rats and 
mice was observed to correlate with the demise of uNK cells, 
at around g.d. 14 and was accelerated in NK  cell-deficient 
and IFN-γ−/− mice (176). This is seemingly dependent upon a 
profound deficit in uNK  cell number and/or function, as no 
effect on depth of trophoblast invasion could be determined in 
a model of more subtle, MHC-dependent uNK inhibition (36). 
It has also been suggested that, through contributing to decidual 
angiogenesis, uNK cells contribute to increased oxygen tensions 
at the maternal–fetal interface, which prevents trophoblast 
adopting an invasive phenotype (175). This would most likely 
be mediated by murine DBA+ uNK  cells, which are known 
to produce angiogenic factors including vascular endothe-
lial growth factor (VEGF) and placental growth factor (PLGF)  
(27, 55, 185).

Human uNK also secrete several angiogenic factors includ-
ing VEGF, PLGF, angiopoietin (Ang)1, and Ang2 (4, 5, 179). 
Production of all factors mentioned can be modulated through 
KIR/HLA interactions and by the activating receptors NKG2D, 
NKp30, NKp44, and NKp46 (4, 178, 179). Human trophoblast 
express ligands for NKp44, but not for NKG2D (4, 20, 179). 
However, since decidual stromal cells express ligands for NKp30 
and NKG2D, it is likely that uNK cell function is also modulated 
through interactions with maternal tissues (4, 186). There is some 
evidence to suggest that ligation of NKp30 also induces produc-
tion of IFN-γ, TNF-α, MIP-1α, and MIP-1β, but since uNK cells 
were stimulated in the presence of IL-2, the physiological sig-
nificance of these results is questionable (187). Moreover, recent 
work suggests that the decidual microenvironment influences the 
expression of NKp30 and NKp44 splicing variants that may be 
responsible for decreased cytotoxicity and altered cytokine secre-
tion of uNK cells compared to pbNK cells (188).

SeQUelae OF DeFeCTive 
PlaCeNTaTiON

Defective vascular remodeling, characterized by the absence of 
intramural EVT and retention of VSMCs, particularly within the 
myometrial segments of the spiral arteries, is a common pathologic 
feature in cases of pre-eclampsia, early miscarriage, unexplained 
stillbirth, and fetal growth restriction (FGR) (189–191). As such, 
these conditions may reasonably be considered as a spectrum 
of disorders that can arise from a common primary pathology 
and, collectively, they are often referred to as the Great Obstetric 
Syndromes. Some cases of recurrent miscarriage (RM) may also 
be caused by insufficient trophoblast invasion (192).

To date, many of the studies investigating impaired decidual 
vascular transformation in mice have focused on the causative 
mechanisms and histological features. Defective remodeling of 
spiral arteries does not spontaneously induce systemic hyperten-
sion in mice, but is linked to poor fetal growth, indicating that 
pre-eclampsia only occurs as a response to placental stress from 
underperfusion in humans (36, 193).

Human EVT invasion may also occur excessively when a blas-
tocyst implants in poorly or non-decidualized tissue. Placenta 
accreta occurs due to pathological trophoblastic invasion of 

the myometrium, which most commonly occurs as a result of 
implantation at the site of uterine scar tissue from previous intrau-
terine surgery (194). Similar pathological features are observed in 
ectopic pregnancies, in which the thin wall of the Fallopian tube is 
commonly entirely infiltrated by EVT in the absence of decidual 
tissue (195). Given that trophoblast migration is enhanced in 
mice and rats depleted of NK  cells, excessive invasion of EVT 
in non-decidualized tissue in humans is highly suggestive of a 
fundamental role for human uNK cells in regulating trophoblast 
invasion (175, 176).

iMMUNOgeNeTiCS OF TROPHOblaST 
aND uNK Cell iNTeRaCTiONS

Uterine natural killer cell activity can be directly modulated through 
interactions with decidual stromal cells, uterine leukocytes, and 
invasive trophoblast. Of these, the regulation of uNK cell function 
by trophoblast has been particularly well explored, owing to the 
association between certain KIR/HLA interactions and disorders 
of pregnancy. Trophoblast cells express a distinct repertoire of 
HLA ligands in comparison to somatic cells. Syncytiotrophoblast, 
which directly contacts maternal blood, and villous cytotropho-
blast are HLA negative (196). Invasive EVT express a unique 
combination of polymorphic HLA-C and oligomorphic HLA-E 
and HLA-G, but not HLA-A, HLA-B, or MHC class II (197). 
Each of the EVT HLA class I ligands is able to interact with 
uNK  cell receptors (uNKRs), as outlined in Table  5. Soluble 
HLA-G is reportedly produced by trophoblast, and is suggested 
to modulate uNK cell activity (198, 199). However, assessment 
of the crystal structure of KIR2DL4 and its potential interaction 
with HLA-G has revealed no evidence of direct receptor–ligand 
binding (200). In view of this, and in the absence of functional 
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data using non-preactivated uNK cells, hypotheses regarding the 
role of uNK-expressed KIR2DL4 remain unsubstantiated.

As in humans, murine trophoblast cells at the site of physi-
ological exchange are MHC negative, whereas invasive tropho-
blast does express MHC class I antigens (36, 37, 206). Invasive 
TGCs from C57BL/6 mice have been shown to express H-2Kb 
ligands at far greater intensity than H-2Db, which is only detect-
able at very low levels (37). Trophoblast expression of transgenic 
H-2Dd epitopes in C57BL/6 mice has also been demonstrated 
by immunofluorescence staining (36). uNK  cells interact with 
trophoblast class I MHC through Ly49 receptors (Table 5), but 
since trophoblast do not express Qa-1b, any functional modula-
tion of uNK cells through NKG2A/C/E is most likely mediated 
by decidual stromal cells (205, 207).

TROPHOblaST aND uNK Cell 
iNTeRaCTiONS iN DiSORDeRS  
OF PRegNaNCY

Immunogenetic associations between maternal KIR/fetal HLA 
variants and disorders of pregnancy show that combinations of 
a maternal KIR AA genotype and fetal C2 epitopes are present 
at significantly higher frequencies in pregnancies complicated 
by pre-eclampsia (208). Extension of this work later showed 
that this increased risk of developing pre-eclampsia is highest 
when trophoblast C2 epitopes are paternally inherited (209). An 
increased frequency of maternal KIR AA and paternally derived 
C2 epitopes has also been observed in cases of RM (209, 210). 
There is an additional weaker correlation, between maternal KIR 
AA and FGR (209). Within the KIR A haplotype are two genes for 
inhibitory KIR, KIR2DL1 and KIR2DL3, which encode receptors 
for C2 and C1 epitopes, respectively (Table 5). It may be reason-
ably considered that KIR2DL1/C2 interactions are particularly 
detrimental to uNK cell function, as binding between KIR2DL1 
and C2 epitopes is stronger and more specific than that between 
KIR2DL3 and C1 epitopes (211). Furthermore, interaction 
between KIR2DL1 and its cognate HLA-C ligand significantly 
reduces production of chemokines and angiogenic factors by 
IL-2-activated uNK cells in vitro (4).

Conversely, the presence of the telomeric region of the KIR B 
haplotype (Tel-B) was shown to be protective against RM and pre-
eclampsia, particularly when trophoblast expressed C2 epitopes 
(208–210). The Tel-B region contains KIR2DS1, which encodes 
an activating KIR that binds C2 epitopes (Table  5). Maternal 
KIR2DS1 predisposes to high birth weights, above the 90th 
centile, when the fetus expresses paternally derived C2 epitopes 
(212). Interaction between uNK cell KIR2DS1 and C2-expressing 
target cells in vitro induces GM-CSF production, which enhances 
trophoblast migration in a Transwell assay (178). Taken together, 
these data strongly indicate that uNK cell activity is modulated 
through KIR/HLA interactions and further support the hypoth-
esis that imbalance in uNK cell function, potentially leading to 
dysregulation of physiological processes essential to pregnancy, 
can lead to undesirable reproductive outcomes in humans.

Most studies investigating murine uNK  cell function to 
date have assessed the contribution of uNK  cell deficiency or 

uNK  cell-derived factors to reproductive success. Only more 
recently have mouse models been used to examine the impact 
of more subtle variations in uNK  cell activity, such as that 
mediated by parental MHC disparity. Allogeneic, paternally 
inherited MHC class I is sufficient in isolation to modulate 
uNK  cell function, and to directly impact on spiral arterial 
remodeling and fetal growth (36, 37). BALB/c females mated 
with BALB.B males, which express the C57BL/6 H-2b MHC 
allotype, exhibit enhanced decidual vascular remodeling and 
increased fetal growth (37). However, the underlying mecha-
nisms for this remain unclear. Paternally derived trophoblast 
H-2Dd has been convincingly demonstrated to inhibit uNK cell 
function in C57BL/6 females. Reduced production of IFN-γ 
by uNK cells was mediated by inhibitory interactions between 
H-2Dd with Ly49A and Ly49G2, which resulted in incomplete 
spiral arterial remodeling and reduced fetal growth. Maternally 
expressed H-2Dd was also disadvantageous for vascular 
transformation and fetal growth, which suggests that murine 
uNK cell education does not confer protective benefits during  
pregnancy (36).

The relative impact of maternal NKR variability as a deter-
minant of pregnancy outcome in mice has been less well investi-
gated. Ncr1−/− mice, which lack NKp46, exhibit impaired decidual 
vascular remodeling and disrupted angiogenesis, which suggests 
that NKp46-mediated activation of uNK is important for optimal 
reproductive outcome in mice (47). Expression of Ly49 recep-
tors can also influence pregnancy, as Ly49 knockdown (Ly49KD) 
mice, in which Ly49s are expressed by only 50% of DX5+ and 
6% of DBA+ uNK, exhibit subfertility, impaired angiogenesis, 
reduced vascular remodeling and, unexpectedly, enhanced fetal 
growth (213). However, given the incongruence of the fetal 
phenotype in this model, it is feasible that extraneous factors 
are contributing to the outcomes observed. As the transcription-
ally silenced region in Ly49KD mice spans approximately 10.2 
megabase pairs (Mbp), encompassing the ~2 Mbp NKC region, 
the potential impact of genes irrelevant to NK and/or leukocyte 
function cannot be discounted (214, 215). In keeping with 
defective angiogenesis, VEGF expression within the decidua and 
MLAp was reduced in Ly49KD females. The total concentration 
of IFN-γ within these tissues was unaffected but, as uNK func-
tion was not specifically assessed in this study, it is not possible 
to determine whether uNK dysregulation is responsible for 
the vascular phenotype observed (213). As such, the strongest 
data relating to the consequences of NKR-MHC interactions 
in murine pregnancy are from studies investigating parental  
MHC disparity.

CONClUDiNg ReMaRKS

Results from many studies using mouse models to date have 
substantiated data from human genetic association studies, 
which strongly suggest that reduced uNK cell activation is dis-
advantageous for reproductive outcome. However, it is apparent 
that the success of pregnancy depends upon a highly complex 
network of interactions between trophoblast, uNK  cells, 
decidual stromal cells, and other decidual leukocytes. New tech-
nology, including improved mouse models, high-throughput 
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genotyping, mass cytometry, and single-cell RNA sequencing 
should help to define the role of immune cells in pregnancy, 
including tissue NK cells and other ILCs in human and mouse 
uterus.
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