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Staphylococcus aureus is a successful human pathogen that has adapted itself in 
response to selection pressure by the human immune system. A commensal of the human 
skin and nose, it is a leading cause of several conditions: skin and soft tissue infection, 
pneumonia, septicemia, peritonitis, bacteremia, and endocarditis. Mice have been used 
extensively in all these conditions to identify virulence factors and host components 
important for pathogenesis. Although significant effort has gone toward development of 
an anti-staphylococcal vaccine, antibodies have proven ineffective in preventing infection 
in humans after successful studies in mice. These results have raised questions as to 
the utility of mice to predict patient outcome and suggest that humanized mice might 
prove useful in modeling infection. The development of humanized mouse models of 
S. aureus infection will allow us to assess the contribution of several human-specific 
virulence factors, in addition to exploring components of the human immune system in 
protection against S. aureus infection. Their use is discussed in light of several recently 
reported studies.
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Staphylococcus aureus

Staphylococcus aureus is a Gram-positive pathogen that can exist as a commensal on skin. It is a 
human pathogen and a leading cause of skin and soft tissue infections, pneumonia, endocarditis, 
and osteomyelitis (1, 2). In particular, methicillin-resistant S. aureus (MRSA) is a major problem 
not only in the hospital setting but also in the community causing significant economic burden 
(3–5). MRSA strains are twice as likely to kill and cost the US economy in excess of $4 billion/
year (6–8). In contrast to hospital-acquired strains, community-acquired strains of S. aureus infect 
otherwise healthy individuals. The MRSA strain USA300 (4, 9, 10) infects healthy, hospitalized, and 
post-influenza patients in the context of pneumonia (11–14), is the dominant clone, and is epidemic 
in the United States. Secondary bacterial infection post-influenza is a leading cause of morbidity 
and mortality (15–17), which has been shown for history’s major pandemics, and S. aureus is one 
of the most common pathogens (12, 18, 19). This is of increasing concern as the population ages, as 
they are at increased risk of influenza infection. Colonization of the nose with S. aureus is relatively 
common with up to 30% of the population being persistent carriers, while the proportion colonized 
with MRSA is increasing (20–23). Carriage increases the risk of infection (24, 25), and as a result of 
this, patients are often decolonized prior to surgery to prevent infection (26).

MOUSe MODeLS OF inFeCTiOn

Studies investigating the pathogenesis of S. aureus infection have relied heavily on the use of mouse 
models. Mice have been used to understand the role virulence factors play during infection as well 
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as the contribution of specific host pathways and factors in the 
response to S. aureus. Mouse models for several important clini-
cal diseases have been developed, including: peritonitis (27, 28), 
pneumonia (29–31), sepsis (32), skin and soft tissue infection  
(33, 34), endocarditis (35, 36), abscesses (37, 38), osteomyelitis 
(39, 40), arthritis (41), and nasal colonization (42–44).

Mice possess a number of attributes that make them desir-
able in modeling infection. They are small in size, do not occupy 
significant space, are cheap, reproduce rapidly, and have similar 
immune, nervous, cardiovascular, and endocrine systems to 
humans (45–47). Another major advantage is their genetic trac-
tability. In mice, genes can be readily inactivated “knocked out,” 
genes inserted “knocked in,” gene reporter fusions integrated 
into the genome, and tissue specific mutations developed. This 
genetic utility makes them attractive to study host immune 
factors important in infection. However, the use of mice is not 
without their limitations. Many features of mice are significantly 
different from humans, such as their small size, altered metabolic 
rate, fatty acid composition of cells, higher rates of reactive 
oxygen species generation and thus oxidative damage, different 
diet, microbiome, and typically being inbred (48). There has also 
been some controversy recently on how well mice correlate with 
human inflammatory stresses based on transcriptional profiling 
and pathway analyses (49–51).

wHY DO we neeD HUMAniZeD MiCe 
FOR S. aureus inFeCTiOn?

Although mice have proven extremely useful in determining 
the role of many S. aureus virulence factors and identifying host 
pathways that contribute to infection, they have been unable to 
predict success for vaccine candidates in humans (52, 53). This 
disconnect between the mouse model and efficacy in humans 
supports the conclusion that the mouse lacks all the necessary 
components to truly model S. aureus infection. It has also become 
increasingly apparent that S. aureus produces a number of viru-
lence factors that have high species specificity toward the human 
molecular counterpart that they target.

One major group of proteins that possess human specificity 
are the bi-component toxins (54). Panton–Valentine leukocidin 
(PVL; LukSF), LukAB, and HlgCB, all preferentially target the 
human version of their receptor. PVL and HlgCB target the C5aR 
receptor, while LukAB targets CD11b (55). PVL does have some 
activity toward the rabbit version of the receptor; however, the 
other two toxins display only high specificity toward the human 
equivalent. The S. aureus superantigens/enterotoxins also show 
much greater affinity toward human cells, with vastly higher 
doses of protein required to invoke a response in mice (56, 57). 
S. aureus produces a large array of surface proteins required for 
its adherence to proteins encountered on the mucosal surface. 
Some of these surface proteins also display specificity toward 
their human counterpart, such as SdrG for human fibrinogen, 
Fnbp for fibronectin, and IsdB for hemoglobin (58). There 
are also likely to be several other yet-to-be-identified proteins 
that have human specificity based on the fact that S. aureus is 
a human-adapted pathogen. Thus, the development of a model 

that actually possesses the correct receptor targets and cells for 
these virulence factors to be investigated would be advantageous. 
The presence of an immune system to better model the human 
immune response would also no doubt prove useful in future 
vaccine development as well as gaining an improved understand-
ing of the host–pathogen interaction in the context of S. aureus 
infection.

The host specificity of S. aureus toward human proteins has 
already been investigated in the context of superantigens and 
iron acquisition. It has been observed with the staphylococcal 
superantigens that HLA class II molecules control the superan-
tigenic response and that this response is significantly reduced 
in non-human (including mice) models. A trend in this field 
has been to utilize knock-in mice expressing the appropriate 
HLA molecule for the superantigen (enterotoxin) under study. 
This has included HLA-DR3, HLA-DR4, and CD4 knock-in 
mice (59–63). Studies conducted using these mice have shown 
a significant increase in the immune response, indicative of the 
increased sensitivity of these cells to the superantigens. The pref-
erence for human hemoglobin over other mammal’s hemoglobin 
has been observed and is dependent upon the staphylococcal 
hemoglobin receptor IsdB. S. aureus grows better in the presence 
of human hemoglobin when iron is limited and the expression of 
human hemoglobin in mice leads to increased susceptibility to  
S. aureus infection (64). Thus, evidence already exists that war-
rants humanizing mice would improve the capacity to model  
S. aureus infection.

HUMAniZeD MiCe

The use of humanized mice has only relatively recently become 
prevalent. Their use was accelerated through the development 
of the NSG mouse (non-obese diabetic/severe combined immu-
nodeficient mouse with a null mutation in the IL2R common 
gamma chain) (65). These mice lack B, T, and NK cells, comple-
ment, and have defective myeloid cells (65, 66). The NSG mice 
have been observed to possess the most efficient engraftment 
rates and support human hemato-lymphopoiesis (66–68). The 
mice are typically generated through the transfer of human 
CD34+ stem cells (69). Additionally, the implantation of human 
fetal liver/thymus tissue under the kidney capsule improves 
T cell development (70, 71). Humanized mice have been shown 
to evoke a human immune response to infection. The combina-
torial diversity on their T cell receptors and IgG fully replicates 
the human samples that are used to populate the mice (72). 
Humanized mice have been utilized in the study of several viral 
pathogens such as EBV, HIV, and Dengue, as well as Malaria 
and Salmonella (73–76). Recently, a succession of studies has 
investigated the utility of these mice in the study of S. aureus  
pathogenesis.

ReCenT DeveLOPMenTS wiTH S. aureus 
AnD HUMAniZeD MiCe

The first study to investigate the utility of humanized mice with 
S. aureus highlighted their increased susceptibility to infection. 
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Knop et al. (77) conducted intraperitoneal infections in human-
ized mice generated from irradiated NSG pups transferred with 
CD34+ cells. Humanized mice displayed significantly increased 
mortality compared to their controls. While non-reconstituted 
NSG mice did display some residual toxicity from radiation, the 
addition of human cells was shown to confer the lethality seen 
with the humanized mice. Increased bacterial counts were also 
observed in several organs; lungs, spleen, kidneys, liver, brain, 
and the bone marrow. The T cells in the humanized mice showed 
evidence of activation (CD69 expression), Fas receptor expres-
sion, and increased apoptosis after infection. Analysis of the 
human cells indicated a large proportion of B cells, followed by 
T  cells and myeloid cells. Levels of chimerism were highest in 
the spleen (60%) and bone marrow (50%), 30% in the peripheral 
blood and <20% in the peritoneal exudate. This study indicated 
that humanized mice could be useful in modeling S. aureus infec-
tion, and subsequent studies have built on this to investigate the 
role of human-specific virulence factors.

The second study to utilize humanized mice with S. aureus 
investigated their utility in the context of skin infection, also 
showing an increased susceptibility to infection (78). In a subcu-
taneous model of infection, 10- to 100-fold less organisms were 
required to cause analogous disease pathology in non-humanized 
mice. Tseng et al. (78) found no differences in bacterial clearance 
or cytokine production. The phenotype observed was patho-
logical, indicating that cellular toxicity did not influence bacterial 
clearance. The size of the skin lesions also correlated to the levels 
of chimerism in the mice, larger lesions were observed in mice 
with a higher percentage of human CD45+ cells. This model was 
then used to investigate the role of PVL in infection. PVL has 
a controversial role in infection. Conflicting epidemiological 
reports and animal studies exist, partly due to the fact many 
animal studies were performed prior to the identification of its 
receptor, C5aR, and its high preference for the human version of 
this receptor (79–87). The expression of PVL led to larger areas of 
dermonecrosis. This effect was due to its ability to target and kill 
neutrophils, as transfer of human neutrophils alone to NSG mice 
was able to recapitulate this phenotype. While the authors suc-
cessfully showed a role for PVL in skin infection with molecular 
Koch’s postulates, a PVL inhibitor in vivo was unable to reduce 
disease severity. Like the first study, this work also utilized stem 
cell transfer into neonate NSG mice and observed similar levels 
of engraftment in the spleen. This work proved the utility for the 
humanized mouse in delineating the functions of staphylococ-
cal virulence factors as well as its usefulness as a model for skin 
infection.

The third and most recent humanized mouse study showcased 
the utility of these mice for respiratory infection (71). As in the 
previous studies, the humanized mice displayed a significant 
increase in susceptibility to infection. Compared to the standard 
mouse strains C57BL/6J, NOD and murinized controls (NSG 
mice transferred with murine bone marrow), the humanized 
mice contained bacterial burdens 40-fold higher. The role of PVL 
was also investigated in this pulmonary model and was shown 
to contribute to infection, using both bacterial mutants and 
neutralizing antibody (71). The presence of PVL led to increased 
bacterial burden, increased lung pathology and decreased 

cytokine production. The target of PVL appeared to be the 
macrophage, with increased numbers present in mice infected 
with the PVL-deficient strain. The NSG transgenic mouse with 
human Il3 and Csf2 knocked in has improved macrophage 
reconstitution compared to the standard NSG humanized 
mouse (88). Consistent with human macrophages conferring 
the increased susceptibility, the use of these additional knock-in 
mice had even higher levels of bacteria present in the airways 
and lung tissue. While a role for PVL in pulmonary infection 
was identified, this was not the case for another human-specific 
toxin LukAB, which displayed no phenotype in this model (71). 
This study differed from the previous two in its use of adult mice 
and the implantation of thymus tissue under the kidney capsule. 
This was apparent in the higher levels of T cells present among 
the human CD45+ population, approximately 50% in the lung 
(71). What these three studies do show is that irrespective of the 
inoculation site the humanized mice had an increased suscepti-
bility to infection, which will only improve as better humanized 
mouse models are generated.

FUTURe MODeLS

The development of improved humanized mouse models will 
further increase the susceptibility and hence sensitivity of mod-
eling S. aureus infections in vivo. This will be achieved through 
improved overall reconstitution of the human immune system, 
improved differentiation, and development of myeloid subsets, 
as well at the improved expression of neutrophils, an integral 
cell type particularly in pneumonia and skin infection models. 
Significant work has already been done in this area with the 
insertion of Csf1, Csf2, and Il3 into mice, leading to improved 
differentiation of macrophages and alveolar macrophages, res-
pectively (88, 89). The knocking in of Csf2 and Il3 was shown 
to increase the susceptibility of S. aureus in the context of acute 
pneumonia (71). Further studies have shown that the integra-
tion of thrombopoietin enhances maintenance and multilineage 
differentiation and insertion of signal-regulatory protein alpha 
prevents phagocytosis of the human cells by the remnant murine 
immune system (90, 91). Additional transgenics appropriate to 
S. aureus would include a combination of the aforementioned 
along with: human HLA types for the study of superantigens 
(92), insertion of human toll-like receptors for the innate immune 
response (75), as well as the incorporation of epithelial cells in 
the lung and skin for mucosal models (34, 93) and red blood cells 
for systemic studies (94, 95). These developments will facilitate 
adequate modeling of a broad range of S. aureus human-specific 
virulence factors.

COnCLUSiOn

Staphylococcus aureus is a significant human pathogen that has 
long been modeled in mice. Studies to-date in mice have deline-
ated the roles of various bacterial and host factors important in 
infection; however, data on potential vaccine candidates identified 
in these models have not had similar success in human studies. 
Recent studies utilizing humanized mice have illuminated their 
utility in models of peritonitis, skin and soft tissue infection, 
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and pneumonia. Researchers have shown humanized mice have 
increased susceptibility to S. aureus and in skin and pneumonia 
models a role for PVL in infection has been identified. As the 
next generation of humanized mouse models are developed, the 
capacity for modeling S. aureus will only improve. Humanized 
mice will facilitate determining the role of virulence factors with 
human host specificity and hopefully provide a system whereby 
potential vaccine candidate translate efficacy to humans.
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