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Anaphylaxis is an acute, life-threatening, multisystem syndrome resulting from the 
sudden release of mediators from effector cells. There are two potential pathways 
for anaphylaxis. The first one, IgE-dependent anaphylaxis, is induced by antigen (Ag) 
cross-linking of Ag-specific IgE bound to the high-affinity IgE receptor (FcεRI) on 
mast cells and basophils. The second one, IgG-dependent anaphylaxis is induced by 
Ag cross-linking of Ag-specific IgG bound to IgG receptors (FcγRI, FcγRIIA, FcγRIIB, 
FcγRIIC, and FcγRIIIA) on macrophages, neutrophils, and basophils. Macrophages 
exhibit a huge functional plasticity and are capable of exerting their scavenging, bac-
tericidal, and regulatory functions under a wide variety of tissue conditions. Herein, we 
will review their potential role in the triggering and development of anaphylaxis. Thereby, 
macrophages, among other immune cells, play a role in both anaphylactic pathways 
(1) by responding to anaphylactic mediators secreted by mast cells after specific IgE 
cross-linking or (2) by acting as effector cells in the anaphylactic response mediated by 
IgG. In this review, we will go over the cellular and molecular mechanisms that take place 
in the above-mentioned anaphylactic pathways and will discuss the clinical implications 
in human allergic reactions.
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PATHwAY FOR AnAPHYLAXiS: ige AnD igG DePenDenT

IgE-mediated anaphylaxis is well established and is thought to be the main anaphylactic pathway. 
However, increasing evidence obtained from animal models supports the existence of a second path-
way. In this IgG-dependent pathway, macrophages instead of mast cells, and IgGs rather than IgE, are 
the immunoglobulins involved, and the main mediator released is platelet-activating factor (PAF) 
instead of histamine. Differences were detailed in Table 1. Data from IgG-mediated anaphylaxis were 
recopilated mainly from previous murine models, while data from IgE-mediated anaphylaxis were 
obtained from both animal and human previous reports (Table 1).

In this review, we will analyze the evidence obtained from murine experimental models support-
ing the existence of an IgG-dependent anaphylaxis pathway and speculated about the possibility of 
a similar mechanism in humans, either as a stand-alone pathway or as a synergistic mechanism to 
IgE-mediated anaphylaxis.

The main body of evidence for IgG-mediated anaphylaxis comes from animal models.
Passive immunization, result of the administration of specific Igs, followed by enteral or paren-

teral challenge with the appropriate antigen (Ag) supported the relevance of IgE and mast cells in the 
development of anaphylaxis (1–3). Indeed, animals with depleted mast cells, IgE or FcεRI, subjected 
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TAbLe 1 | Main features in the mechanisms and triggering factors 
involved in ige- and igG-dependent anaphylactic pathways.

ige-dependent 
pathway

igG-dependent pathway

Ig involved IgE IgGs

Antigen concentration Low High

Fc receptor FcεRI FcγRI, FcγRIIA, FcγRIIB, 
FcγRIIC, FcγRIIIA, and 
FcγRIIIB

Effector cells Mast cells Macrophages, monocytes, 
and neutrophils

Mediators Histamine (leukotrienes, 
prostaglandin, 
serotonin, etc.)

Platelet-activating factor 
(leukotrienes, prostaglandin, 
serotonin, etc.)

Triggering factors Food, drugs  
(e.g., beta-lactam 
antibiotics), insect sting 
and bites, exercise 
(food dependent)

Food, drugs [monoclonal  
antibodies (omalizumab or 
infliximab)], or dextrans, others
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to active or passive immunization followed by oral challenge, 
completely suppress the anaphylactic reaction.

However, animal immunization followed parental challenge 
with the same Ag, revealed that anaphylaxis could even occur 
in the absence of the IgE/FcεRI/mast cell pathway. This demon-
strates the existence of an alternative anaphylaxis pathway that 
closely resembles IgE-mediated anaphylaxis but involves other 
key players (3–5).

Both pathways display significant differences in their main 
features (Table 1), such as the requirement of different concentra-
tions of Ag and Ab to induce the reaction.

In fact, studies comparing Ag doses required to elicit IgE- or 
IgG-mediated anaphylaxis suggested that the IgG-dependent 
pathway requires approximately 100-fold more Ag than the IgE 
pathway to induce a similar response (3).

Additionally, anaphylaxis mediated through IgG also 
appeared to require much more Ab than anaphylaxis mediated 
through IgE. In fact, IgE-mediated anaphylaxis can even be seen 
with serologically undetected sIgE levels, in which sIgE bound 
to mast cells is sufficient (5). In contrast, relatively high levels of 
serum IgG are required for Ag induction of anaphylaxis through 
the IgG pathway (3). This could be due to two factors: first, the 
much higher affinity of FcεRI for IgE than FcγRIII for IgG, and 
second, the fact that IgE binds directly to mast cell-associated IgE, 
whereas Ag/IgG complexes are presumably formed in blood and 
lymph before binding by FcγRIII on other immune cells such as 
macrophages (6, 7).

In the case of IgG-mediated anaphylaxis, the immunoglobu-
lin subclasses and receptors involved in the reaction also play 
an important role. Regarding IgG subclasses, IgG1, IgG2a, and 
IgG2b have been reported to enable the induction of systemic 
anaphylaxis, inducing mild to severe hypothermia (8, 9). 
Furthermore, IgGs can bind to six different FcγR, namely, FcγRI, 
FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, and FcγRIIIB, which have 
different affinities, downstream signaling routes, and patterns 
of expression (10, 11). FcγRI is considered as the high-affinity 

receptor, although FcγRIIIB can bind IgG with high and low 
affinity depending on the IgG subclass (7).

Another crucial issue for development of either the IgE or IgG 
pathways of anaphylaxis is the balance between Ag concentration 
and the levels of IgG or IgE. Usually, both Ag-specific IgE and 
IgG are present in blood, with IgG levels being higher. Under 
these conditions, Ag will encounter IgG in blood before it can 
bind to mast cell-associated IgE, which results in blockage of 
IgE-mediated anaphylaxis. However, when Ag levels are insuf-
ficient to induce IgG-mediated anaphylaxis, high levels of IgG 
can prevent the development of any anaphylactic response. For 
a similar reason, larger amounts of Ag trigger anaphylaxis pre-
dominantly through the alternative pathway when Ag-specific 
IgG antibody levels are high, even though Ag-specific IgE is 
present. In this situation, the anaphylactic pathways will only 
be triggered simultaneously when the amount of challenge Ag 
exceeds the capacity of IgG antibody to block Ag binding to mast 
cell-associated IgE (5).

Taken together, these data clearly support significant differ-
ences between both anaphylactic pathways regarding the type 
of Ig as well as the conditions needed for the development of 
one pathway or the other (Figure  1). However, in humans the 
relevance of the alternative pathway is still a matter of debate.

eFFeCTOR CeLLS AnD MeDiATORS 
invOLveD in ige- AnD igG-MeDiATeD 
AnAPHYLAXiS

There is complete segregation of the effector cells and mediators 
underlying both anaphylactic pathways.

While it is well known that the IgE-dependent pathway of 
anaphylaxis is triggered by an allergen interacting with allergen-
specific IgE bound to the FcεRI on mast cells, which leads to 
cross-linking and subsequent degranulation of the cells, the 
exact mechanism underlying the IgG anaphylactic pathway 
has not been completely elucidated. In fact, there is significant 
controversy about the effector cells involved in IgG-mediated 
anaphylaxis, and it seems that the main effector cells, at least 
in murine experimental models are macrophages/monocytes 
and basophils. However, some authors also suggest a role for 
neutrophils (8) and basophils (12). In fact, the latest publication 
of Khodoun et al., covering all three known effector cell types, 
concluded that all cells, monocytes/macrophages, basophils, and 
neutrophils, participate in IgG-induced anaphylaxis (13).

Another point of controversy is the level of FcγR expression 
and the type of myeloid cell expressing the receptor. In this 
regard, Beutier et  al. showed that the differential expression of 
inhibitory FcγRIIB on myeloid cells and its differential binding of 
IgG subclasses control the contribution of basophils, neutrophils, 
and monocytes to IgG-dependent anaphylaxis, thus revealing 
novel complexities in cell population regulation mechanisms and, 
therefore, their relative contribution to IgG-induced reactions in 
murine models (14).

The outcome of this process of Ab–receptor recognition and 
subsequent cellular signaling activation is the release of several 
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FiGuRe 1 | Diagram showing the classical (ige-dependent) and alternative (igG-dependent) anaphylactic pathways: effector cells, mediators, igs, 
and FcR implicated.
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mediators responsible for the hypothermia and hypotension that 
characterize anaphylaxis.

The main mediator involved in IgE-mediated anaphylaxis is 
histamine. Histamine is known to play an essential role in the 
evolution of the anaphylactic process (15–17). Moreover, it is also 
involved in regulation of the immune response (18, 19). Other 
mediators released during IgE-mediated anaphylaxis are prosta-
glandins and leukotrienes (17, 20). Furthermore, a receptor for 
prostaglandins has also been described in several immune cells, 
such as macrophages or innate lymphoid cells (ILC2) (21).

Another significant metabolite reported to be released by mast 
cells upon IgE cross-linking is serotonin (22–24). The role of sero-
tonin in the anaphylactic process is still unknown, although recent 
reports have suggested that this metabolite is key in immune 
response regulation (23, 25) and, more specifically, in the regula-
tion of macrophage polarization and inflammatory resolution (26, 
27), allergy (28), and hypotension (29). Serotonin participation 
in the regulation of inflammation and immune response upon 
anaphylaxis will be further discussed.

In the case of IgG-mediated anaphylaxis, the main mediator 
is PAF (5, 30, 31). It has been reported that serum PAF levels 

correlate with the severity of anaphylaxis (32). This metabolite is 
produced and secreted by several types of cells and is active at 
concentrations as low as 10−12 mol/L despite its short half-life (32).

Platelet-activating factor (PAF) is implicated in platelet aggre-
gation and activation through the release of vasoactive amine 
during inflammatory responses, thus resulting in an increase in 
vascular permeability, circulatory collapse, a decreased cardiac 
output, and other biological effects (33).

Strikingly, platelets have been reported to be the major 
reservoirs of serotonin outside the nervous system (34), once 
again suggesting a novel role for serotonin in progression of the 
anaphylactic pathway as well as in allergic disease progression.

MACROPHAGeS AnD SeROTOnin: 
POTenTiAL nOveL PLAYeRS in 
AnAPHYLAXiS?

In anaphylaxis, macrophages have been described as effector 
cells in the IgG-dependent pathway, since they express FcγR and 
release PAF. This has been demonstrated in mouse models of 
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anaphylaxis. Apart from this, no specific role has been described 
for these immune cells in IgE-dependent anaphylaxis in neither 
human nor mice. However, one could speculate that all the 
mediators released by mast cells (histamine, leukotrienes, and 
prostaglandin) might significantly affect macrophage polarization 
status and, thus, immune response outcome. These mechanisms 
will probably occur in both mouse and humans.

Macrophages and dendritic cells occupy a prominent position 
during immune responses, being essential for their initiation 
(a function primarily displayed by dendritic cells) and for the 
final effector phases (mostly macrophages) (35). In fact, and 
regardless of the triggering stimulus, macrophages are usually 
the final effectors of any given immune response, because they 
can acquire a continuum of functional states, thus adapting their 
effector functions to the surrounding environment and to the 
prevailing T  cell-derived cytokines in the extracellular milieu 
receptor signals (36). By virtue of this plasticity, macrophages 
are not only critical for maintaining tissue homeostasis but can 
either display pro- or anti-inflammatory functions, promote 
or resolve an inflammatory response, and cause tissue damage 
or help in tissue repair. Results generated in recent years have 
clearly established the widespread homeostatic functions of 
macrophages, as they fine-tune physiological parameters as 
relevant as body temperature and even transit time in the gut 
(37–39).

Regarding factors with a prominent role in macrophage 
polarization and anaphylaxis, serotonin has also been shown to 
modify macrophage polarization in the phenotypic, cytokine, 
and transcriptional profile (27). Besides its production by 
mast cells (40), peripheral serotonin is mostly produced by 
enterochromaffin cells and later stored by platelets in dense 
granules (34). Serotonin not only promotes proliferation of 
numerous cell types but also functions as a regulator of immune 
and inflammatory responses. In fact, the immunomodulatory 
activity of serotonin is partly mediated through direct actions 
on macrophages: serotonin favors angiogenesis in colon cancer 
allografts by acting on tumor-infiltrating macrophages (41), con-
tributes to pulmonary arterial hypertension by altering myeloid 
cell differentiation potential (42), and limits postoperative bowel 
inflammation via recognition by muscularis and peritoneal mac-
rophages (43). At the molecular level, these actions appear to be 
mediated by serotonin receptors expressed on the macrophage 
cell surface. We have previously demonstrated that human 
anti-inflammatory macrophages specifically express HTR2B 
and HTR7 serotonin receptors, whose ligation results in altered 
macrophage transcriptome and inhibition of pro-inflammatory 
cytokine production (27). In fact, serotonin appears to switch 
the macrophage transcriptome toward a growth-promoting, 
anti-inflammatory, and pro-fibrotic gene profile, whose acquisi-
tion depends on both HTR2B and HTR7 (27). Therefore, we 
can speculate that agonists/antagonists of serotonin receptors 
might be therapeutically useful for limiting the uncontrolled 
production of pro-inflammatory cytokines that takes place in 
chronic inflammatory diseases (44). Surprisingly, HTR7 is the 
receptor responsible for serotonin-induced hypothermia (45), 
but whether macrophage HTR7 contributes to this response is 
currently unknown.

A reasonable hypothesis for the role of serotonin in the 
IgG-mediated anaphylaxis might be the generation of a feed-
back loop that favors the acquisition of an anti-inflammatory 
phenotype by macrophages right after the induction of an 
anaphylactic shock, aiming to restore homeostatic conditions 
(Figure 1).

Another strategy in line with the alternative anaphylactic 
pathway in humans that also supports the connection between 
changes in IgG concentration and a regulation of macrophages 
polarization is treatment with intravenous immunoglobulins 
(IVIg). IVIg is a preparation of polyclonal poly-specific IgG 
from the plasma of thousands of donors that is currently used 
as immunoregulatory and anti-inflammatory treatment in 
autoimmune and inflammatory disorders (46). The mechanism 
of action of IVIg has not been completely elucidated, but we 
have reported that IVIg skews human and mouse macrophage 
polarization through FcγR-dependent mechanisms (47). IVIg 
immunomodulatory activity is dependent on the macrophage 
polarization state, as it limits the pro-inflammatory nature of 
GM-CSF-dependent macrophages and favors the acquisition of 
pro-inflammatory properties in anti-inflammatory macrophages 
(47). In fact, IVIg enhances inflammatory tissue-damaging 
responses in murine models of stroke and sepsis and reduces 
tumor growth and metastasis by shifting the polarization state 
of tumor-associated myeloid cells toward the pro-inflammatory 
side (47). Since the latter effect was dependent on the expression 
of Fc receptors, we can conclude that ligation of molecules, such 
as CD16 and FcRγ, might be useful targets for the modulation of 
macrophage polarization.

eviDenCe FOR igG-MeDiATeD 
AnAPHYLAXiS in HuMAn

The existence of IgG-mediated anaphylaxis in humans is not 
clear. In spite of a lack of direct evidence, the findings of some 
studies imply a possible alternative mechanism to IgE-mediated 
anaphylaxis (5, 30). PAF, which seems to be associated with 
the IgG mechanism in mice, is an essential mediator in human 
anaphylaxis, and its levels are elevated in patients undergoing 
anaphylaxis compared with a control group (48). The catabolism 
of this mediator is controlled by the enzyme PAF acetylhydrolase 
(PAF-AH), which is in charge of PAF inactivation (49). Some 
studies have correlated the levels of these two markers with the 
severity of anaphylaxis, with increases in PAF levels and decreases 
in PAF-AH activity. Moreover, patients with the lowest levels of 
PAF-AH activity were found to exhibit a 27-times higher risk of 
developing severe or fatal anaphylaxis than patients with normal 
levels (48, 50).

Several cases of drug anaphylaxis are classified as non-allergic 
due to the absence of specific IgE titers (measured in sera or by 
skin test) and the lack of increased serum tryptase or baso phil 
activation (51), although no study has addressed the IgG-mediated 
mechanism in these patients.

However, in patients treated with biological drugs, these can 
induce anaphylaxis without the presence of detectable specific 
IgE, although they do present high levels of specific IgG (52). 
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This observation derives from patients with IgA deficiency 
who developed anaphylaxis after receiving a blood transfu-
sion or treatment with intravenous injections of IgA. In these 
subjects, increased levels of IgG anti-IgA antibodies were also  
found (53, 54).

Moreover, in a later study patients with higher levels of IgG 
were found to present an increased frequency of a gain-of-
function allele of the stimulatory FcγRIIA (55), although this 
study was conducted in a limited number of subjects.

The presence of increased titers of specific IgG has also 
been observed in patients treated with human, humanized, or 
chimeric mAbs, such as infliximab or adalimumab (56), and 
other biological factors (57–59). In the case of infliximab, the 
presence of high levels of specific IgG has been related to an 
increased risk of suffering anaphylaxis (60). A common fac-
tor to all these reported cases was the administration of high 
quantities of the suspected Ag, leading to the presence of high 
levels of specific IgG.

As with drug allergies, evidence for the existence of IgG-
mediated anaphylaxis has also been found in cases of food 
allergy, especially in anaphylaxis induced by lipid transfer 
proteins (LTP). Increased levels of anti-LTP IgG1 and IgG3 and 
increased expression of the three genes coding for the activat-
ing receptor FcγRI (CD64) have been observed in a group of 
patients with food anaphylaxis induced by LTP (61). Mast cells 
can be activated by IgG via this receptor (62, 63) and are able 
to recognize both IgG1 and IgG3 with high affinity (64, 65). 
Interestingly, both anti-LTP specific IgG and IgE have been 
found in LTP allergic patients, which could suggest an involve-
ment of both pathways in the anaphylactic mechanism in these 
subjects (61). The most severe food allergens are milk, egg, and 
peanut, and all of them share a high allergenic concentration, 
thus fulfilling the criteria necessary to elicit an alternative 
anaphylactic pathway.

COnCLuSiOn AnD FuRTHeR 
eXPeCTATiOnS

Anaphylaxis is the most serious allergic reaction that can occur 
and may even endanger the patient’s life. Moreover, epide-
miological data indicate that cases of anaphylaxis are increasing 
worldwide. The mechanisms involved in the pathogenesis of ana-
phylaxis can be immunological or non-immunological. Classical 
immunological reactions mediated by IgE are observed in food 
anaphylaxis, beta-lactam antibiotics, or hymenopteran stings. 
Immunological reactions mediated by IgG are being observed 
following administration of certain monoclonal antibodies 
(omalizumab or infliximab) or dextrans. The role of macrophages 
is relevant in this type of IgG-mediated immunological anaphy-
laxis. PAF released by activated macrophages can activate mast 
cells, explaining the pathogenesis of this anaphylaxis. Given 
the increased use of different monoclonal antibodies in clinical 
practice for the treatment of immune-based diseases, an increase 
in this type of IgG-mediated anaphylaxis might be observed.
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