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Apoptosis is induced during the course of immune response to different infectious 
agents, and the ultimate fate is the recognition and uptake of apoptotic bodies by 
neighboring cells or by professional phagocytes. Apoptotic cells expose specific 
ligands to a set of conserved receptors expressed on macrophage cellular surface, 
which are the main cells involved in the clearance of the dying cells. These scavenger 
receptors, besides triggering the production of anti-inflammatory factors, also block the 
production of inflammatory mediators by phagocytes. Experimental infection of mice 
with the parasite Trypanosoma cruzi shows many pathological changes that parallels 
the evolution of human infection. Leukocytes undergoing intense apoptotic death are 
observed during the immune response to T. cruzi in the mouse model of the disease. 
T. cruzi replicate intensely and secrete molecules with immunomodulatory activities that 
interfere with T  cell-mediated immune responses and secretion of pro-inflammatory 
cytokine secretion. This mechanism of immune evasion allows the infection to be estab-
lished in the vertebrate host. Under inflammatory conditions, efferocytosis of apoptotic 
bodies generates an immune-regulatory phenotype in phagocytes, which is conducive 
to intracellular pathogen replication. However, the relevance of cellular apoptosis in the 
pathology of Chagas’ disease requires further studies. Here, we review the evidence 
of leukocyte apoptosis in T. cruzi infection and its immunomodulatory mechanism for 
disease progression.
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inTRODUCTiOn

Chagas disease or American trypanosomiasis was discovered by Carlos Chagas in the early twentieth 
century. The disease is caused by the protozoan parasite Trypanosoma cruzi. It is estimated that 18–20 
million people in Latin America are infected with T. cruzi, and approximately 100 million people are 
living in areas at risk of infection (1). T. cruzi is an obligate intracellular parasite that infects a variety 
of the mammalian host cells but shows preference for cells of the macrophage and muscle lineage. 
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The biological cycle in man has two evolutionary forms (1) 
trypomastigotes, the flagellate form of the parasite that invades 
cells, where they differentiate into (2) amastigotes that have no 
free flagellum and replicate inside almost all nucleated cells of 
the vertebrate host (2). Soon after infection, trypomastigotes have 
the ability to escape the parasitophorous vacuole and differenti-
ate into amastigotes in the host cell cytoplasm. After several 
rounds of binary divisions inside the infected cells, amastigotes 
differentiate to trypomastigotes forms, lyse the infected cells, and 
reinvade adjacent cells (3, 4).

An important successful factor that allows T. cruzi to survive 
in the vertebrate host is the evasion of the cellular immune 
response (5–7). Many studies in this area describe the existence 
of different strategies developed by the parasite to modulate the 
immune response of the vertebrate host in its favor (4, 8–12).

One of the most efficient mechanisms that T. cruzi parasites 
use to establish a persistent infection is the induction of T and 
B cell apoptosis, and such process has immunomodulatory effects 
on the host immune response (8, 13).

APOPTOSiS AS A HALLMARK OF T. cruzi 
inFeCTiOn

Apoptosis is crucial for normal tissue homeostasis and for 
modulation of immune response. During parasitic infections, 
apoptosis or programmed cell death can be triggered by antigens, 
factors secreted and/or released by pathogens, by chronic infec-
tion, and by intense cellular activation (14–16). Recent evidences 
have shown that in order to survive in their hosts, intracellular 
protozoan parasites have to limit the defense mechanisms and are 
taking advantage of cell death to facilitate parasite spreading. It 
was described that T. cruzi infection triggers activation-induced 
cell death (AICD) of CD4+ T lymphocytes during the acute 
phase of infection (8, 17). The AICD occurs after stimulation 
with anti-TCR and anti-CD3 agonist antibodies in vitro. When 
cultured in the presence of anti-Fas agonist antibody, CD4+ 
T cells from infected mice, but not from normal mice, undergo 
apoptosis (17, 18).

The interaction between the Fas molecule (CD95) and its 
ligand, the Fas ligand (FasL) molecule (CD95L) induces death by 
apoptosis (19). The involvement of Fas/FasL molecules was con-
firmed during the acute phase of T. cruzi experimentally infected 
mice. It was found that there is an increased expression and func-
tion of the Fas/FasL in CD4+ T cells, and cells from FasL-deficient 
mice (gld mice) do not undergo AICD during T. cruzi infection 
(20). It has been suggested that AICD could have a deleterious 
role in T. cruzi infection, causing early elimination of effector 
T cells and supporting parasite escape (13). In agreement with 
these results, Rodrigues et al. (21) observed high levels of FasL in 
the serum of T. cruzi chronically infected patients (21). In addi-
tion, studies by Guillermo et al. (22) and Vasconcelos et al. (23) 
have revealed more information about the kinetics of Fas/FasL 
expression and T lymphocytes apoptosis during T. cruzi experi-
mental infection (22). Splenic CD4+ and CD8+ T cells showed an 
upregulation in CD95/CD95L expression in a time-dependent 

manner during T. cruzi acute infection, which was associated 
with activation-induced cell death (AICD). In vivo injection of 
anti-FasL, but not anti-TNF-alpha or anti-TRAIL antibodies, 
blocked activation-induced cell death of CD8+ T cells, improved 
type 1 immune responses, and reduced the infection severity as 
estimated by parasitemia (22, 23). Recently, Chaves et  al. (24) 
demonstrated that T cell apoptosis was related to decreased cell 
proliferative and modulation of genes associated with apoptosis 
and caspase family receptors in chagasic patients with heart 
problems. Thus, the authors concluded that the T cell death was 
interfering with the clinical manifestations of the disease (24).

Infection caused by T. cruzi results in polyclonal lymphocyte 
activation (24–27), which, by itself, triggers T  cell apoptosis  
(28, 29). T. cruzi released molecules such as trans-sialidase, 
an enzyme that catalyzes the transfer of exogenous sialic acid 
residues from the host acceptor molecules on the T. cruzi surface, 
induces a strong cell death by apoptosis and resulted in increasing 
parasite infectivity (30–32).

The T. cruzi surface expresses an unusual family of glycoi-
nositolphospholipid (GIPL) molecules that are present in all 
T. cruzi evolutionary forms (33). Studies from our group have 
shown that in the presence of the cytokine IFN-γ, the ceramide 
portion of the GIPL induced intense macrophage apoptosis, 
independent of nitric oxide production. This effect was not 
observed when macrophages were treated with intact T. cruzi 
GIPL or with the GIPL-derived glycan chain. In T. cruzi-
infected macrophages, apoptosis also increased the release of 
infective trypomastigotes and spheromastigotes (34). The pro-
apoptotic action of ceramide had been described in previous 
studies, in which permeable ceramides were shown to promote 
a strong cytotoxic effect of this molecule (35, 36). Recently, the 
α-galactosylceramide molecule derived from T. cruzi induced 
NK T cell anergy and IL-33-mediated myeloid-derived suppres-
sor cell accumulation (37).

Clearance of apoptotic cells involves the recognition of the 
dying cell by the phagocytes, internalization, the immunological 
consequences to host–parasite interaction, and pathogenesis of 
disease (38). In recent years, the term “efferocytosis” has been 
introduced to specifically refer to the engulfment or phagocy-
tosis of apoptotic cells (39–42). Macrophages undergo specific 
molecular and functional changes upon encounter, interaction 
with, and uptake of apoptotic cells (efferocytosis) that control 
both phagocytosis and immune signaling (42).

In vitro studies showed that engulfment of apoptotic CD4+ 
T  lymphocytes from infected mice by T. cruzi experimentally 
infected macrophages exacerbate parasite replication. When 
apoptosis of CD4+ T cells from infected mice was blocked with 
anti-FasL mAb, parasite growth was also blocked. Prevention of 
parasite growth was observed in a transwell coculture system, 
where CD4+ T cells were cultured and separated from infected 
macrophages, showing that the contact and phagocytosis of 
apoptotic cells ensures parasite replication. This finding was also 
associated with decreased IFN-γ production, suggesting that 
AICD was occurring on Th1 CD4+ cell population (18). Apoptotic 
cells trigger production of anti-inflammatory cytokines such as 
IL-10 and TGF-β by the phagocytes (41, 43–47). The process of 
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apoptotic cells uptake by T. cruzi-infected macrophages is associ-
ated with the release of TGF-β IL-10 and prostaglandin PGE2 (8, 
9, 12). Together, these mediators would deactivate macrophages 
and favor the growth of T. cruzi amastigotes and other intracel-
lular parasites (8, 18, 48).

Phagocytic cells express on the cell surface a group of recep-
tors that actively participate in the recognition and capture of 
apoptotic bodies, the vast majority of these receptors have affinity 
to phosphatidylserine (PtdSer) expressed by apoptotic cells (49). 
The integrin αVβ3 is one of these receptors, which recognizes 
PtdSer through molecules that act as bridges, such as lactadherin, 
glycoprotein produced by phagocytes, and the fat globule of 
opsonin-factor-8 EGF (MFG-E8) (50). In addition, the αvβ3 
integrin express on phagocytes can bind to thrombospondin, 
helping the recognition of PS on the surface of apoptotic cells 
(51). Other apoptotic cell recognition receptors, such as the fam-
ily of receptor tyrosine kinases Tyro3, Axl, and MerTK (TAM), 
also need to bind to bridge molecule to interact with PtdSer on 
the surface of apoptotic cells (52–54).

Because T. cruzi is an intracellular pathogen that can not pro-
duce putrescine, and is an auxotrophic parasite for polyamines, 
because of its incapacity to produce putrescine due to the lack of 
both, ornithine decarboxylase (ODC) and arginine. T. cruzi needs 
to capture exogenous putrescine for the proliferation of amastig-
ote forms within the cells (55, 56). Besides the fact that binding of 
apoptotic lymphocytes to αVβ3 expressed by macrophages results 
in secretion of PGE2 and TGF-β, the engulfment of apoptotic cells 
is also followed by induction of ODC and synthesis of putres-
cine: this functions as a growth factor for intracellular forms of  
T. cruzi (8, 9). In addition, this deleterious effect of apoptotic cells 
is eradicated by inhibitors of prostaglandin synthesis (NSAIDs 
drugs) and neutralizing antibodies for TGF-β (11, 12). Injection 
of apoptotic cells increases parasitemia in  vivo, and treatment 
with the cyclooxygenase inhibitors aspirin or indomethacin 
reduces parasitemia (8).

The use of NSAIDs in T. cruzi experimental infection has 
been used by different groups. However, it is important to 
emphasize that the use of cyclooxygenase blockers in experi-
mental infection may lead to conflicting results, depending 
on the experimental model (8, 11, 57, 58). Recently, it was 
described that aspirin in low doses decreased mortality, 
parasitemia, and heart damage in T. cruzi-infected mice, and 
they suggested that the protective effect was established to the 
generation of anti-inflammatory mediator 15-epi-LXA4 (59). 
However, when aspirin was given in high doses, this protective 
effect disappeared (59). Also, it has been characterized that 
the use of COX inhibitors inhibits T. cruzi infection of murine 
cardiac cells (60). The results presented by Michelin and col-
laborators suggest that the prostaglandins produced mainly by 
the activation of the COX-2 enzyme favor the immunosuppres-
sion of the acute phase of infection (61). These data reinforce 
our hypothesis that NSAIDs may somehow favor the immune 
response of the vertebrate host (8, 11).

The contribution of apoptotic T cell pathways in the outcome 
of T. cruzi infection in vivo was addressed by injection of caspase 
8 inhibitor or by the use of caspase 8-deficient mice. However, 

blockade of the initiator caspase 8 in vivo was unable to inhibit 
apoptosis, and mice that have received treatment demonstrated 
a profound CD8+ T cell depletion. Furthermore, caspase 8-defi-
cient mice upregulated Th2 cytokine responses and increased 
susceptibility to T. cruzi infection (62). Therapy with zIETG 
(caspase 8 inhibitor), initiated 4 days after infection, resulted in 
inhibition of T cell expansion and increased parasitemia (62). 
In contrast, administration of zVAD, a pan caspase inhibitor 
(or anti-FasL antibody) initiated at day 7 after T. cruzi infection 
was shown to reduce T  cell death, promotes type 1 immune 
response and reduced parasitemia. Spleen cells produced more 
IFN-γ when stimulated with parasite antigens, while peritoneal 
macrophages showed a reduced parasite load (63). The number 
of inflammatory cells in the hearts of acutely infected mice 
injected with zVAD was not affected (63). Treatment with anti-
FasL mAb starting at 11 days after infection, but not anti-TNF 
or anti-TRAIL antibodies, protect CD8 T  cells from AICD, 
improved cytokine production by CD4 T  cells, activate CD8 
T cells, upregulate Fas expression by CD8 T cells earlier than 
CD4 T cells, and decreased parasitemia (22). Mice vaccinated 
with an adenoviral vector expressing two T. cruzi-dominant 
epitopes improved CD8 T  cell functionality and decreased 
parasitemia after parasite challenge, a phenotype attributed to 
the lack of CD95 expression in parasite-specific CD8 T  cells 
(23). Recently, Cabral-Piccin and collaborators demonstrated 
that treatment of T. cruzi-infected mice with anti-FasL prevents 
CD8+ T  lymphocytes apoptosis, upregulates type 1 responses 
to parasite antigens, and reduces macrophages infection when 
cocultured with CD8 T  cells (64). Further analysis showed 
that injection of anti-FasL mAb resulted in a polarized M1 
macrophage phenotype, both in vitro and in vivo. The authors 
suggested that rescuing CD8 T cells from death with anti-FasL 
treatment prevents the negative effects of efferocytosis on mac-
rophage activation.

COnCLUDinG ReMARKS

The role of T  cells-mediated immune response in controlling 
intracellular protozoan parasite infection is well established. 
In the acute phase of infection, T. cruzi proliferates within the 
cells of the vertebrate host, besides producing and secreting 
molecules with immunomodulatory activities that obstruct the 
immune response mediated by T lymphocytes. The final result 
of this important modulatory mechanism is the propagation of  
T. cruzi to different organs of the vertebrate host (13). It is also 
clear that T cell apoptosis occurs during human and experimen-
tal infection with T. cruzi (8, 24). Some studies showed evidences 
that parasites have adapted to their hosts modulating or even 
taking advantage of cell death in order to facilitate their own 
survival in a hostile environment and promoting disease. In 
this context, elucidation of apoptotic cell-mediated signaling 
mechanisms would help to discover new effective therapies and 
vaccines.

The modulation of host immune response is an important 
approach in the efficacy of treatment against T. cruzi in the 
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experimental acute models of Chagas disease. The quality of 
response could be an important factor, not only in T cell disease 
progression but also in chemotherapy responsiveness. Apoptosis 
modulation has a beneficial therapeutic effect in various cardio-
vascular diseases, as well as infectious diseases (65). There appears 
to be an association between apoptosis and heart failure, as well 
as in disease severity in Chagas patients, such that pharmacologi-
cal use of apoptosis inhibitors could be an attractive choice for 
adjuvant therapy in the chronic treatment phase; this restores 
an efficient T  cell immune response to parasite infection, thus 
diminishing the pathological signals of disease.
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