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Since being discovered over half a century ago, mesenchymal stem cells (MSCs) have 
been investigated extensively to characterize their cellular and physiological influences. 
MSCs have been shown to possess immunosuppressive capacity through inhibiting 
lymphocyte activation/proliferation and proinflammatory cytokine secretion while 
simultaneously demonstrating limited allogenic reactivity, which subsequently led to the 
evaluation of therapeutic feasibility to treat inflammatory diseases. Although regulatory 
constraints have restricted MSC development pharmacologically, limited clinical studies 
have shown encouraging results using MSC infusions to treat systemic lupus erythe-
matosus (SLE); but, more trials will have to be performed to conclusively determine the 
clinical efficacy of MSCs to treat SLE. Moreover, there are some data to suggest that 
MSCs possess tumorigenic potential and that the immunosuppressive influence can be 
dramatically affected by both donor variability and ex vivo expansion. Given that recent 
studies have found that the immunosuppressive effects of MSCs are a result, at least 
in part, to extracellular vesicle (EV) secretion, the use of MSC-derived EVs has been 
suggested as a cell-free therapeutic alternative. Despite the positive data observed using 
EVs isolated from human MSCs to suppress inflammatory responses in  vitro and in 
inhibiting autoimmune disease pathogenesis in preclinical work, there are no studies to 
date examining EVs from MSCs to treat SLE in humans or animal models. Considering 
that EVs are not subject to the strict regulatory constraints of stem cell-based pharma-
cological development and are more readily standardized with regard to industrial-scale 
production and storage, this review outlines the anti-inflammatory biology of MSCs and 
the scientific evidence supporting the potential use of EVs derived from human MSCs to 
treat patients with SLE.

Keywords: systemic lupus erythematosus, extracellular vesicles, mesenchymal stem cells, autoimmunity, 
inflammation, emerging therapies
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inTRODUCTiOn

Mesenchymal stem cells (MSCs) are stem cells that retain multi-
potency and have robust immunoregulatory influence. MSCs can 
affect many different immune cell subtypes of both the innate and 
adaptive immune systems. Previous studies have demonstrated 
that MSCs can suppress proliferation of T-cells, B-cells, natural 
killer cells, and dendritic cells (DCs) in a dose-dependent manner 
(1–3). Furthermore, MSCs have the ability to direct macrophages 
to a more immunotolerant phenotype that is characterized by 
alternative activation (4). Cytokine secretion profiles of T and 
B-cells are also significantly altered to a less inflammatory phe-
notype by incubation with MSCs, which can further contribute 
to the observed immunosuppressive properties (5). In addition 
to suppression of proinflammatory cells, MSCs can stimulate the 
production of regulatory T-cells (Tregs) that can inhibit inflam-
matory responses (6). Collectively, these data characterize MSCs 
as active suppressors of inflammation that effectively modulate 
the immune response at many levels.

Since MSCs are mainly found in the bone marrow (BM), a 
distinct physiological association with the immune system is 
evidenced despite not having hematopoietic origin (7). In addi-
tion to BM, MSCs can also be isolated from multiple fetal and 
adult tissue sources, including placenta, umbilical cord (UC), 
amniotic fluid, Wharton’s jelly, adipose tissue, and dental tissues 
(8, 9), which makes MSCs one of the most accessible primary cell 
subtypes and an attractive candidate to develop therapeutically.

Systemic lupus erythematosus (SLE) is a prototypic and 
chronic autoimmune disease resulting in a multi-organ inflam-
matory response that can cause significant morbidity and mor-
tality without medical intervention using immunosuppressive 
agents (10). The autoimmune-mediated inflammatory responses 
observed in SLE are characterized by autoantibody complex 
formation and proinflammatory cytokine induction that result 
in activation of cells of both the innate and adaptive immune 
systems. The pathogenesis of SLE is complex and most likely 
influenced by a combination of genetics, environment, and 
hormonal factors. In our research, we have demonstrated that 
estrogen can lower the threshold of immune cell activation and 
induce the upregulation of a unique set of genes that may be 
involved in autoimmune-mediated pathology, including toll-like 
receptor (TLR)8, STAT1, and ZAS3 (11, 12). Despite consider-
able time and research over many years in our laboratory and 
others, the mechanism of SLE pathogenesis still remains largely 
elusive. Consequently, only one SLE-targeted drug has been 
approved by the USA Food and Drug Administration (FDA) to 
treat patients in more than 50 years, but the efficacy is still under 
extensive debate (13). Therefore, SLE patients could significantly 
benefit from the development of new therapies that target the 
autoimmune-mediated inflammatory pathology associated with 
this disease.

PReCLiniCAL STUDieS USinG MSCs TO 
TReAT SLe

To investigate the potential of MSCs to suppress autoimmune-
mediated inflammatory processes, animal models were initially 

evaluated, and compelling experimental evidence was pro-
duced in the MRL/lpr and NZB/W F1 mouse models of SLE. 
To compare against conventional cyclophosphamide (CTX) 
treatment, MRL/lpr mice-given human BM MSC transplants 
showed a significant reduction in levels of anti-dsDNA and 
anti-nuclear autoantibodies, immunoglobulin (Ig)G, IgM, and 
serum albumin. Additionally, MSC therapy prevented damage 
to glomerular morphology/structure and reduced renal complex 
deposition of both complement component 3 (C3) and IgG (14). 
Further research investigations into this mechanism in MRL/
lpr mice have shown that MSCs can suppress B-cell activation 
(15). Moreover, infusion of human MSCs derived from BM sup-
pressed glomerulonephritis, decreased autoantibody production, 
reduced proteinuria, and improved overall survival in NZM/W 
F1 mice via inhibition of follicular helper cell (Tfh) development 
and activation of humoral immunity (16). Collectively, the data 
from these animal studies provided the preclinical validation 
necessary to move forward with human clinical trials using MSCs 
from healthy donors to treat SLE.

CLiniCAL TRiALS USinG MSCs in 
ReFRACTORY SLe PATienTS

Over 300 refractory SLE patients have been treated at Nanjing 
Drum Tower Hospital in China with MSC therapy. This hospital 
was part of a multicenter study using two intravenous infusions 
of UC MSCs in patients with disease refractory to treatment 
and displaying active lupus nephritis (17). Their results dem-
onstrated a well-tolerated safety profile with 32.5% (13/40) of 
patients achieving a major clinical response and a significant 
decrease in disease-activity scores. In addition, a 4-year review 
of both UC MSC and BM MSC transplantation in active and 
treatment-resistant SLE patients was published by this group 
to examine long-term safety and efficacy of treatment (18). 
Following one intravenous infusion of allogenic MSCs, there 
were no adverse events related to transplantation, but disease 
activity scores, serum autoantibody levels, and complement 
component fragments all significantly declined. The results 
from these trials indicate the efficacy of MSCs to be used as 
a therapeutic strategy to treat refractory SLE. Currently, there 
is a multicenter clinical trial (NCT02633163) in the United 
States that intends to establish the safety and efficacy of using 
UC-derived MSCs to treat SLE. This placebo-controlled, rand-
omized, and double-blinded trial has been approved, but is not 
currently enrolling patients.

MSC SeCReTOMe CAn COnTRiBUTe  
TO iMMUnOSUPReSSive eFFeCTS

To examine if MSCs are perpetuating immunosuppressive 
signaling via secreted paracrine mediators rather than through 
cell-to-cell contact, BM-derived macrophages were stimulated 
with TLR7 and TLR8 ligand and cultured with either MSCs or 
conditioned media derived from MSCs; under both conditions 
and to similar extents, IL-6, TNF-α, and NFκB were significantly 
inhibited, and IL-10 was increased (19). The results of this study 
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suggested that the extracellular mediators produced from MSCs 
may be responsible, at least in part, for the immunosuppressive 
effects.

Previous research has indicated that the components of the 
MSC secretome that may be mediating this immunosuppressive 
function are extracellular vesicles (EVs) (20). As defined by the 
International Society of Extracellular Vesicles (ISEV), EVs are 
spherical membrane-enclosed bodies secreted by cells and can be 
divided into subpopulations based on size and cellular biogenesis: 
exosomes (50–150 nm) originating from multivesicular bodies; 
microvesicles (150–1,000 nm) originating from the plasma mem-
brane; and apoptotic bodies (>1 µm) originating from the plasma 
membrane of dying cells (21). However, since the sizes of the 
vesicles overlap, well-defined markers still lack consensus, and 
the precise origination of the vesicles obtained is often unknown, 
ISEV has suggested to use the term EV to describe the vesicles 
present in experimentally purified samples (22). Although identi-
fied over 30 years ago and described as a mechanism by which cells 
eliminate unwanted proteins/molecules (23), incontrovertible 
evidence generated over the past decade has now characterized 
the role of EVs in cell-to-cell communication (24). In support of 
the critical role of MSC-derived EVs in regulating in vivo bio-
logical activity, size fractionation analysis of conditioned media 
from human MSCs shown to reduce myocardial infarct sizes in 
pig and mouse models revealed a 50–200 nm exosomal complex 
originating from multivesicular intracellular endosomes as the 
principal bioactive component (20). Since extracellular particles 
of this size range can be consistently isolated from human sources 
and used successfully in the clinic following standardized differ-
ential ultracentrifugation protocols (25), these EVs have been the 
focus of recent molecular characterization (26) and therapeutic 
development (27).

EVs facilitate cellular communication by delivering bioactive 
cargo containing, among other molecules, microRNAs (miRs) 
that can elicit functional consequences in recipient cells (28). 
Results from our previous studies have demonstrated that extra-
cellular miRs are contained primarily within EVs and that specific 
miRs can act as an endogenous ligand for TLR7 and TLR8, which 
are upregulated in SLE patients and induced by estrogen (29, 30). 
This novel signaling mechanism in addition to the conventional 
role in suppressing gene expression by targeting specific mRNA 
sequences make EV-encapsulated miRs potent immunoregula-
tory elements.

BARRieRS TO THe USe OF MSCs  
in CLiniCAL TRiALS

Despite the positive data from human clinical trials using MSCs 
to treat SLE, there are no trials in the United States that are actively 
enrolling patients. Clinical trials will require that the MSCs are 
produced in an FDA-approved clean facility and that each trial is 
approved individually, which presents logistical and/or cost-lim-
iting hurdles to commercial production and to the establishment 
of these trials. Additionally, there is some experimental evidence 
to suggest that MSCs have the potential to develop into sarcomas 
(soft tissue cancers derived from cells of mesenchymal origin) in 

mouse, rat, and rabbit models after transfer of MSCs cultured as 
early as the third passage (31–33). Moreover, in vitro data have 
demonstrated that human MCSs have oncogenic transformation 
potential and differentially expressed transcripts (34). In contrast, 
multiple studies have demonstrated that human MSCs are resist-
ant to spontaneous transformation and clinical trials with MSCs 
have not revealed associations with cancer (35). Furthermore, 
while MSCs may promote tumorigenesis as a co-culture or in a 
tumor microenvironment in vivo at higher concentrations, a well-
documented anti-tumorigenic influence has been characterized 
when present at a lower ratio to cancer cells (35). Also, in some 
studies where human MSCs have been associated with oncogenic 
potential, DNA fingerprinting has shown cross-contamination 
containing a significant percentage of misidentified cells (36). 
Thus, while the evidence to suggest an association of MSCs with 
cancer in humans is weak, the uncertainty may negatively impact 
MSC approval for clinical trials.

In addition to regulatory constraints and malignant poten-
tial, there are other drawbacks to using MSC therapy in SLE 
patients. While high numbers of MSCs can suppress lymphocyte 
proliferation and Th17 proinflammatory activation, lower num-
bers can actually elicit cellular responses to the contrary (37, 38). 
Treatment methods also require multiple MSC donor sources, 
which introduces heterogeneity to the therapeutic process. In 
examining BM MSC markers, significant differences were found 
in subpopulations of cells corresponding to gender and age of 
donors (39). Consequently, the inevitable donor variability leads 
to cell products that may greatly differ from sample to sample. 
In addition, a recent study has shown that population hetero-
geneity is also observed following long-term in vitro culturing 
of MSCs (40). Furthermore, culturing is not standardized cur-
rently for therapeutic application, and the well-characterized  
ex vivo expansion methods can cause culture-induced senes-
cence or result in genetic drift that yields cells significantly dif-
ferent biologically when compared to their in vivo predecessors 
(41). These changes may ultimately lead to the loss of functional 
properties or produce cells with diminished immunosuppres-
sive capacity.

In the commercial development of MSCs for clinical use, time 
and storage are also important considerations. Cryopreservation 
will be required to increase the shelf-life and provide more stand-
ardized use of MSCs, but this research is still in its infancy (42). 
In order for MSCs to be developed as an off-the shelf pharmaco-
logical alternative, more effective preservation will be essential 
to ensure that the cells can be stored long enough for safety 
testing, quality control evaluation, transportation to the site of 
administration, and coordination with the patient care regimens 
(43). Currently, there are no optimized methods or standardized 
protocols used in the development of MSC-based therapies with 
regard to culture and cryopreservation. Until these storage issues 
can be circumvented, MSCs must be isolated and processed indi-
vidually for each therapeutic application, which can delay treat-
ment. Additionally, SLE has a relatively effective standard of care 
and more favorable patient prognosis when compared to other 
diseases where MSCs are being considered therapeutically (44). 
Collectively, these factors may largely attribute to the absence of 
clinical trials using MSCs to treat SLE in the USA despite the 
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FiGURe 1 | Therapeutic strategies for the use of either mesenchymal stem cells (MSCs) or extracellular vesicles from MSCs to treat autoimmune 
diseases, including systemic lupus erythematosus.

positive data obtained from trials outside of the USA with well-
tolerated safety profiles and no adverse consequences.

THeRAPeUTiC POTenTiAL OF  
MSC-DeRiveD evs TO TReAT SLe

Through selective protein and RNA packaging via tightly reg-
ulated cellular processes, EVs are secreted to exert functional 
effects in recipient cells (45). To this accord, previous studies 
have demonstrated potent immunosuppressive capacity with 
EVs derived from MSCs; specifically, EVs isolated from the 
conditioned media of MSCs inhibited T-cell proliferation while 
increasing both Treg and IL-10 levels (46). These EVs also 

suppressed B-cell proliferation and antibody secretion in a dose-
dependent manner (47). Since human MSCs are one of the most 
prolific producers of EVs when compared to other cell types (48), 
they are conducive to industrialized production and isolation of 
EVs for therapy.

While the field of EV therapy to treat inflammatory disease 
is still emerging, some promising studies indicate therapeutic 
potential. EVs isolated from human MSCs have been shown to 
be effective in reducing kidney inflammation and maintaining 
joint integrity, which are both target areas of SLE pathology. In 
a mouse model of acute kidney injury, EV therapy prevented 
chronic tubular inflammation, histopathology, and damage to 
renal function, as determined by blood urea nitrogen and creati-
nine levels (49). In the first work establishing the efficacy of EVs 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Sharma et al. MSC-Derived EVs to Treat Lupus

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 526

in cartilage repair, weekly intra-articular treatment of rats with 
human MSC EVs in an osteochondral defect model resulted in 
significant improvement histologically and complete renewal of 
cartilage and subchondral bone (50).

In addition to preclinical studies, MSC-derived EVs have also 
been used successfully in the clinic to treat inflammatory disease. 
In this case, a patient with treatment-refractory graft-versus-host 
disease (GvHD) was given EV therapy from MSCs derived from 
a single healthy donor. Increasing doses were provided every 
2–3 days without apparent side effects and analysis of patient cells 
incubated in vitro with the EVs demonstrated a 50% reduction 
of IL-1β, TNF-α, and IFN-α. The clinical symptoms of GvHD 
improved significantly within 2  weeks and were stable out to 
4 months following treatment, which allowed steroid medications 
to be reduced significantly (51). However, despite the efficacy and 
clinical potential indicated by these studies, there are currently 
no investigations published using EVs from MSCs in SLE animal 
models or in human patients.

PHARMACOLOGiCAL DeveLOPMenT OF 
evs FROM MSCs OFFeRS SeLeCTive 
ADvAnTAGeS

The use of MSC-derived EVs as a cell-free therapeutic alter-
native offers several distinct advantages to the parent stem 
cells with regard to both regulatory approval and therapeutic 
development. EVs are not subject to FDA rules regulating the 
administration of living cells and have not been shown hitherto 
to possess carcinogenic potential themselves. In addition, EVs 
are highly stable and easily stored for long-term usage by sim-
ple freezing, and research from this group has shown that the 
addition of trehalose, a common pharmacological preservative, 
can enhance stability even further and permit multiple free/
thaw cycles (52). EVs also have no risk of aneuploidy or other 
chromosomal abnormality and there are no data to indicate that 
EVs can have opposing immunomodulatory influences based 
on the amount given. Even though MSCs are well tolerated, 
they have been shown to elicit a detectable humoral and cellular 
immune response in  vivo (53). EVs are also able to cross the 
blood–brain barrier while MSCs cannot, which would be par-
ticularly advantageous in the treatment of patients with central 
nervous system involvement leading to neuropsychiatric SLE, 
which is currently challenging to treat and can afflict more than 
half of SLE patients to some extent (54). Also, while the use of 
genetically manipulated cells would introduce additional regu-
latory review, the application of EVs produced by these cells is 
not subject to this regulation. According to ISEV, all EV-based 
therapies would be considered in accordance with the guidelines 
regulating medicinal products under the pharmaceutical class 
of biologicals (55, 56). To further facilitate standardization, 
MSCs have been successfully immortalized recently with little 
effect on the EVs and RNA/protein content packaged within 
(57), which could translate to industrialized EV therapy in the 
near future. However, this would require additional testing and 
validation to establish the safety of EVs produced by such cell 
lines.

Although the standardization of EV isolation is still lacking in 
the field for either therapeutic application or basic research (21), 
studies have shown viable strategies for development of EV-based 
therapy in a clinical setting. While the conventional method used 
for EV isolation is differential centrifugation and is historically 
associated with high purity compared to other techniques, 
the force involved in this process produces EV products with 
diminished functional/therapeutic capacity (58). Alternatively, 
chromatographic purification using size-exclusion, ion exchange, 
and flow field-flow fractionation techniques have been developed 
that yield similar purity while retaining functionality (59, 60).

COnCLUSiOn

Using MSCs, researchers have demonstrated the feasibility of 
this therapeutic strategy to treat SLE in humans, with clinically 
measurable improvements observed in a significant number of 
patients. However, these clinical trials were non-randomized and 
in an ethnically homogenous cohort; therefore, the applicabil-
ity of these findings in a more diverse patient population in a 
randomized clinical trial is not apparent and larger multicenter, 
double-blind trials will have to be examined before the effective-
ness of MSCs is definitive.

The progress of using MSCs in the USA to treat SLE has lagged 
considerably behind due to the formidable challenges associated 
with drug development and safety concerns. When MSCs have 
been granted approval for clinical trials in the USA for other 
diseases, the products were from a single donor only and sub-
ject to extensive, time-consuming, and costly characterization. 
Since recent work indicates that the immunomodulatory effects 
observed by MSCs can be elicited, at least in part, by secreted 
paracrine factors, EVs have been explored as the mediator of this 
response and have shown promising results. However, as with 
all new therapeutic approaches, there are unknowns that will 
need to be examined and methodologies to be characterized and 
standardized.

In summary, we propose that MSC-derived EVs are a feasible 
and more commercially viable cell-free therapeutic alternative 
to MSC therapy in the treatment of SLE. When compared to 
the conventional MSC therapeutic strategy commonly used 
today, the use of EVs to treat SLE will provide more flexibility as 
an off-the-shelf therapy, which will also permit individualized 
preclinical validation and safety-profile testing prior to patient 
infusion (Figure  1). In our future model of pharmacological 
application, MSCs would be isolated from human sources, 
confirmed by flow cytometry for expression of well-defined 
markers, and expanded ex vivo. EVs would be isolated from the 
conditioned media and screened by both proteomic and RNA 
profiling. These EV isolations can then be frozen until validation 
testing is complete. Additionally, the effects of MSC-derived 
EVs will be examined in  vivo using a chimeric model of SLE 
developed recently in our laboratory (unpublished data) that 
is analogous to the human-mouse chimeric model we have 
previously developed for Sjögren’s syndrome (61). Following 
individualized chimeric model validation to determine treat-
ment efficacy, MSC-derived EVs can be infused into SLE 
patients according to the data obtained in preclinical testing. 
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