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Sensing of microbe-associated molecular patterns or danger signals by innate immune 
receptors drives a complex exchange of information. Innate receptor signaling not only 
triggers transcriptional events but also induces profound changes in metabolic fluxes, 
redox balance, and metabolite abundance thereby influencing immune cell function. 
Mitochondria are at the core of metabolic adaptation to the changing environment. The 
close interaction between mitochondrial metabolism and immune signaling has emerged 
as a central regulator of innate sensing. Metabolic processes generate a constant flow of 
electrons that eventually end up in the mitochondrial electron transport chain (ETC). Two 
electron carriers and four respiratory complexes that can assemble as larger molecular 
supercomplexes compose the ETC in the mitochondrial inner membrane. While the 
meaning and biological relevance of such structural organization is a matter of passion-
ate debates, recent data support that innate stimuli remodel the ETC. We will review the 
function of mitochondrial metabolism and ETC dynamics as innate rheostats that reg-
ulate signaling, transcription, and epigenetics to orchestrate innate immune responses.

Keywords: innate immune response, immunometabolism, electron transport chain, mitochondria, macrophages, 
dendritic cells, cytokines, inflammation

inTRODUCTiOn: MYeLOiD CeLLS RePROGRAM THeiR 
MeTABOLiSM in ReSPOnSe TO enviROnMenTAL CUeS

Ligation of pattern recognition receptors, cytokine receptors, and phagocytosis of dying or dead cells 
provoke key changes in myeloid cell metabolism that are only beginning to be explored (1). As an 
example, tissue damage-derived signals can modulate myeloid cell metabolic reprogramming since 
uptake of apoptotic cells increases the mitochondrial membrane potential to downregulate phago-
cytosis (2). Another relevant example of metabolic consequences induced by innate immune signal 
is the stimulation of mouse macrophages and bone marrow-derived dendritic cells differentiated 
with GM-CSF (GM-DCs) with agonists for toll-like receptors (TLRs) or for the β-glucan receptor 
Dectin-1, which result in aerobic glycolysis (the Warburg effect) (1, 3–8). Many recent reviews have 
already remarkably described the recent advances in our understanding of metabolic reprogram-
ming from a “metabolic flux” point of view (1, 9–13). However, recent works have provided new 
elements on the mechanisms bridging innate immune recognition and mitochondrial metabolic 
functions, suggesting that mitochondria regulate their electron flow as adaptation to innate immune 
signals. Here, we will summarize some of these findings that point toward a key function of the 
mitochondrial respiratory chain in governing innate immune cell fate.
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MiTOCHOnDRiA, A MeTABOLiC 
RHeOSTAT FOR innATe iMMUne 
ReCePTORS

Metabolism As a Flow of electrons
Metabolism is often seen as a complex arrangement of metabolic 
fluxes, redox signaling, and translational or posttranslational 
events that are mutually dependent. However, metabolism can 
also be seen as a flow of electrons through multiple parallel and 
alternative pathways where metabolites act as potential carriers of 
electrons. From this point of view, the main and ultimate acceptor 
of electrons is the mitochondrial electron transport chain (ETC). 
Many catabolic processes indeed supply electrons to the ETC 
in the form of reducing equivalents of nicotinamide adenine 
dinucleotide (NADH) or flavin adenine dinucleotide (FADH2), 
whose relative proportion depends on the nature of the fuel used 
(14). The capacity of the cell to use different fuels efficiently is 
thus critical for its ability to adapt to changing environmental 
cues (15). Mitochondria must therefore regulate their location, 
biogenesis, fusion or fission, structure, and internal metabolite 
fluxes in response to changes in fuel source or signals received 
by cell membrane receptors or intracellular sensors. In turn, 
mitochondria control cell metabolism by governing the bal-
ance of anabolism (lipogenesis and antioxidant defenses from 
citrate, gluconeogenesis, serine, and glycine biosynthesis from 
pyruvate, nucleotide biosynthesis) and catabolism (Krebs cycle, 
β-oxidation, oxidative phosphorylation) (16). Mitochondria are 
central for ATP synthesis, redox balance, reactive oxygen species 
(ROS) production, thermogenesis, and generation of metabolites, 
all of which impact cell function. Since the release of cytochrome 
c to the cytosol is a major trigger for apoptosis, mitochondria also 
regulate cell survival.

The ETC comprises two electron carriers [coenzyme Q (CoQ)/
ubiquinone and cytochrome c] and four respiratory complexes 
[complexes I–IV (CI–CIV)], which, excluding CII, can assemble 
as larger molecular supercomplexes (SCs) in the mitochondrial 
inner membrane (16) (Figure 1). The assembly of SCs is dynamic 
and may adapt the electron flux to the available substrates  
(17, 18). The nature of the fuel conditions the proportion of 
electrons feeding into the ETC from NADH and FADH2, with 
a NADH/FADH2 electron ratio of 5 following full oxidation of 
glucose and a ratio of 2 following oxidation of the fatty acid 
palmitate (14, 17, 18). The H+ gradient generated by the ETC is 
then used by the H+-ATP synthase (CV) to generate ATP. Recent 
results support the notion that innate sensing of microbial features 
leads to adaptations in SC assembly and electron flow through the 
ETC in mouse macrophages (5, 19) suggesting that ETC exerts 
key functions in macrophage activation processes (Figure 1).

Mitochondria As Platforms for innate 
Signaling
Mitochondria can both generate ligands and serve as signaling 
platform for innate sensing receptors (12). First, some mito-
chondrial-derived molecules trigger immune receptors. This is 
the case for mitochondrial N-formyl peptides, which are damage-
associated molecular patterns that activate receptors such as 

formyl peptide receptor-1 to promote cytokine production (20).  
Furthermore, mitochondrial DNA (mtDNA) has hypometh-
ylated CpG that can trigger TLR9 activation (20). mtDNA 
can access the cytosol through an altered permeability of the 
mitochondrial membrane to activate the NLRP3 inflammasome  
(21, 22). Later, it was discovered that glycolytic enzymes can 
directly contribute to innate sensing of microbes. Hexokinase is 
a glycolysis enzyme associated with the voltage-dependent anion 
channel (VDAC) in the outer mitochondrial membrane (23). 
Following degradation of microbe-associated peptidoglycans in 
the phagosomes of mouse macrophages and DCs, peptidoglycan-
derived N-acetylglucosamine binds to hexokinase causing its dis-
sociation from the mitochondria outer membranes and VDAC 
(24). The NLRP3 inflammasome is subsequently activated, 
possibly relying on variations of the mitochondrial membrane 
permeability and the access of mtDNA to the cytosol. Thus, 
hexokinase moonlights as a regulator of NLRP3 activation and 
subsequent maturation of pro-IL-1β to promote an antibacterial 
pro-inflammatory response (24, 25). In addition, cytosolic loca-
tion of mtDNA can also induce antiviral immunity by triggering 
the DNA sensor cGAS and the STING-IRF3-dependent pathway 
to promote IFN-I production (26).

Another example of how the outer mitochondrial membrane 
acts as a scaffold structure involved in innate sensing is the 
mitochondrial antiviral-signaling protein (MAVS) that binds 
to mitochondrial-associated membranes connecting the endo-
plasmic reticulum to the outer mitochondrial membrane (27). 
RIG-I binds to and promotes MAVS aggregates in the outer 
mitochondrial membrane to trigger downstream signaling (28). 
Thus, signaling and adaptor proteins downstream of pattern 
recognition receptor (PRR) sensing pathways can localize to 
mitochondria raising the possibility that PRRs could modulate 
mitochondrial functions. Such a regulatory role has been already 
suggested for tumor necrosis factor receptor-associated factor 6 
(TRAF6), which can interact with evolutionarily conserved sign-
aling intermediate in toll pathways (ECSIT), a protein involved 
in CI assembly (29, 30).

Metabolic Reprogramming in 
Macrophages upon innate immune 
Receptor engagement
The specificities of macrophage metabolism compared to other 
immune cells have been a subject of interest for a long time as 
exemplified by pioneer works from the 80s (31–33). Our current 
appreciation of metabolic reprogramming led us to postulate that 
most inflammatory agonists for PRRs engage similar metabolic 
adaptations, although some specificities on the outcomes for 
host defense may exist. The main characteristic of metabolic 
adaptations upon innate immune receptor engagement is a strong 
induction of glycolysis even in presence of substantial oxygen  
(1, 3–8). Indeed, mouse macrophage stimulation with the TLR4 
agonist lipopolysaccharide (LPS), the main component of Gram-
negative bacterial cell wall, induces the activation of transcription 
factor hypoxia-inducible factor-1α (HIF-1α) (8) that controls the 
expression of several enzymes implicated in glycolysis (34, 35).  
LPS-activated mouse macrophages express a highly active 
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FiGURe 1 | Mitochondrial respiratory chain adaptations following innate immune sensing. Mitochondrial respiratory complexes, except for CII, can 
associate into supercomplexes (SCs) including the respirasome, composed of CI + CIII2 + CIV (left panel). In lipopolysaccharide (LPS)-stimulated mouse 
macrophages, SC assembly is preserved (upper left) but there are functional adaptations such as increase in CII (succinate dehydrogenase) activity, which enhances 
succinate oxidation along with increased mitochondrial membrane potential and decreased mitochondrial ATP synthase-mediated production of ATP (upper right). 
This is accompanied by a decrease in the NAD+/NADH ratio, supporting a possible reverse electron transport (RET) from coenzyme Q to CI thereby inducing the 
production of mitochondrial reactive oxygen species (mROS). Upon detection of live Escherichia coli, increase in phagosomal reactive oxygen species mediates 
Fgr-dependent activation of CII and decrease in CI-containing SCs probably due to CI disassembly. This provokes a change in electron flow in the electron transport 
chain, with a drop in the entry of electron derived from NADH that is compensated by the induction of the activities of FADH2-consuming enzymes CII and 
mitochondrial glycerol-3-phosphate dehydrogenase (mG3PDH). The increase in CII activity generates fumarate that modulates macrophage function.

3

Sancho et al. Innate Immune Function of Mitochondrial Metabolism

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 527

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Sancho et al. Innate Immune Function of Mitochondrial Metabolism

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 527

isoform of phosphofructokinase-2 that promotes glycolysis (36) 
and LPS induces pyruvate kinase M2, which associates with 
and stabilizes HIF-1α to further induce glycolysis and enhance 
proinflammatory cytokines (37, 38). Such induction of glycolytic 
flux was also found in phagocytic cells activated through TLR2  
(4, 39), TLR3 (4, 5), TLR7/8 (4, 5), TLR9 (4, 40), or Dectin-1 
(3, 41), indicating that enhanced glycolysis might be a common 
feature to PRR-activated cells. The detection of a number of 
microbes including Salmonella typhimurium (5, 37), Escherichia 
coli (5), or Mycobacterium tuberculosis (37, 42, 43) strongly 
induce glycolysis in mouse macrophages. However, inflamma-
some activation of caspase-1 mediates the cleavage of glycolytic 
enzymes, e.g., during NLRC4 sensing of S. typhimurium (44) 
highlighting the complex interplay between PRRs and myeloid 
cell metabolism. In fact, induction of glycolysis does not seem 
to solely contribute to metabolic reprogramming but might also 
directly sustain pathogen sensing and host defense.

Although glycolysis is thought to largely contribute to ATP 
production in activated myeloid cells (40, 45), it also provides 
metabolic intermediates that could feed other metabolic pathways 
to serve macromolecule synthesis (45). Along with glycolysis, the 
pentose phosphate pathway (PPP) is induced in LPS-activated 
mouse macrophages (7). The mechanisms engaged are not fully 
understood, but they likely involve the inhibition of the PPP 
inhibitor carbohydrate kinase-like protein (46).

Because the glucose catabolic product pyruvate is diverted 
from entry to mitochondria in activated macrophages and is 
rather metabolized to lactate, it was tempting to speculate that 
engagement of innate immune receptors could globally dampen 
mitochondrial respiration. However, innate stimulation also 
activates pathways such as glutaminolysis to replenish the tri-
carboxylic acid (TCA) cycle and maintain global metabolic flux 
(7, 8, 47) likely avoiding cell death. Thus, a significant activity 
of the mitochondrial respiratory chain and the mitochondrial 
membrane potential must be maintained. This is partially 
achieved by an increase in anaplerosis including glutaminolysis 
(7, 8), which feeds the TCA cycle at α-ketoglutarate, and the 
aspartate–argininosuccinate shunt, which feeds the TCA cycle 
at malate and fumarate (7). Glutaminolysis is also enhanced in 
human monocytes trained with β-glucan, which triggers the 
C-type lectin receptor Dectin-1 (41, 48), suggesting that induc-
tion of such metabolic feature is not limited to TLRs. Therefore, 
an important issue to address is whether different PRRs induce 
specific metabolic reprogramming signatures, which would allow 
specific manipulation of myeloid cell metabolism for therapy.

How innate immune receptors regulate lipid metabolism in 
macrophages is a field of active research. On the one hand, engage-
ment of TLRs upon recognition of various bacteria enhances 
fatty acid uptake and incorporation to triglycerides for storage 
and simultaneously decrease fatty acid oxidation and lipolysis 
suggesting that lipids may serve other needs than energy produc-
tion in activated mouse macrophages (6, 49, 50). In line with 
this, fatty acid catabolism is not induced in LPS-activated mac-
rophages compared to alternatively activated macrophages (7). 
Consistently, mouse macrophage fatty acid synthase is induced 
during sepsis in a mechanism depending on the mitochondrial 
uncoupling protein 2 (UCP2) (51). On the other hand, fatty 

acid oxidation is increased in mouse and human macrophages 
primed in conditions that activate the NLRP3 inflammasome, a 
process that requires mitochondrial NADPH oxidase 4 (NOX4)-
dependent ROS production (52). Therefore, it is clear that needs 
for lipid metabolism in activated macrophages is significantly 
increased but whether this fulfills mitochondrial energy produc-
tion requirements or rather constitutes the primal building blocks 
for anabolism needs to be further investigated.

Mitochondrial Respiratory Chain 
Adaptations in Macrophages upon innate 
immune Receptor engagement
As stated above, most catabolic processes converge on the mito-
chondrial ETC by supplying electrons in the form of the reductive 
equivalents NADH and FADH2. The intramitochondrial NADH/
FADH2 ratio depends on the nature of the fuels that feed the mito-
chondrial metabolism and the respiratory chain adapts to these 
fuel source fluctuations (16), particularly during PRR-mediated 
macrophage activation. Indeed, two recent studies provide 
evidence that changes in the ETC occur in activated mouse 
macrophages (5, 19). The phagocytosis of live Gram-negative 
bacteria by mouse macrophages trigger a profound change in 
ETC structural organization (5) (Figure  1). This is character-
ized by a decreased abundance of ETC SCs that contain CI and 
a relative increase in the free form of CIII and is accompanied 
by a substantial decrease in the activity of CI. By contrast, the 
activity of the glycerol 3-phosphate dehydrogenase and CII, two 
enzymes that use FADH2, are increased in response to live bac-
teria or to TLR-mediated sensing of bacterial RNA. CII activity 
is driven by the production of phagosomal ROS. This activates 
the ROS-dependent tyrosine kinase Fgr, which was previously 
found to phosphorylate CII (53). Consistently, CII was essential 
to mitochondrial respiration in bacteria-activated macrophages. 
This work thus suggests that adjustments of the organization of 
the ETC and of the activity of its components are required for 
metabolic reprogramming in macrophages. A study by O’Neill 
and colleagues has further precised the mechanism by which 
ETC integrates signals emerging from TLRs (19) (Figure  1). 
The combination of enhanced succinate dehydrogenase (SDH) 
activity and increased mitochondrial potential in LPS-activated 
mouse macrophages allows for the induction of mitochondrial 
ROS production at the level of CI thereby reprogramming 
mitochondria from ATP production to ROS production in 
order to establish an inflammatory state. This is consistent with 
a previous study showing that metformin-mediated inhibition 
of CI-dependent ROS production suppresses the inflammatory 
capacity of activated mouse macrophages (54). These data point 
out CI as a major regulator of inflammatory macrophages. This is 
backed up by genetical evidences demonstrating that mouse mac-
rophages deficient for the CI subunit NDUFS4 exhibit an inflam-
matory phenotype (55). Interestingly, the deletion of TLR2/4 in 
NDUFS4-deficient mice attenuated the inflammatory phenotype 
(55), highlighting the close relationship between TLRs and the 
ETC. However, the contributions of mitochondrial respiratory 
chain to innate immune functions seems not limited to TLRs 
since the engagement of Dectin-1 in human monocytes induces 
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accumulation of CII-product fumarate, which can induce an 
epigenetic program accounting for trained immunity by inhibit-
ing KDM5 histone demethylases (41). Whether adaptations of 
the ETC reflect solely the metabolic fluctuations within activated 
macrophages or can be directly regulated by signals emerging 
from innate immune receptors remains to be clarified.

FUnCTiOnAL COnSeQUenCeS OF 
MiTOCHOnDRiAL ADAPTATiOnS in 
MACROPHAGeS

Regulation of Macrophage Polarization 
and Cytokine Response
The finding that IL-4, a well-known inducer of alternatively acti-
vated mouse macrophages (M2), promotes a distinct metabolic 
reprogramming compared to pro-inflammatory (M1) mouse 
macrophage stimulating LPS/IFN-γ indicates that mitochondrial 
metabolism adjusts to the type of immune responses required to 
eliminate the threats encountered (1). M1 mouse macrophages 
produce high amount of pro-inflammatory cytokines and anti-
microbial peptides and excel in phagocytosing and destroying 
microbes. Those macrophages exhibit a high glycolytic rate and 
present two breaks in the TCA cycle, one at isocitrate dehydroge-
nase, the enzyme that converts isocitrate to α-ketoglutarate, and 
another one at SDH that catalyzes the oxidation of succinate to 
fumarate (7). M2 mouse macrophages are essential at fighting 
against helminth infection, exert tissue repair functions, and 
conserve an intact TCA cycle (7). The specificities of metabolic 
fluxes in differentiated macrophages is a subject of intense 
research and has been reviewed elsewhere (1). However, whether 
mitochondrial ETC organization and its functional adjustments 
reflect the metabolic specificities of M1 and M2 macrophages is 
still poorly understood. A recent report nevertheless showed that 
LPS + IFN-γ treatment promotes NO that inhibits mitochondrial 
respiration thereby preventing the repolarization of M1 into M2 
macrophages in mice and humans upon IL-4 treatment (56). 
In line with this, various reports suggest that manipulating the 
ETC modulates the balance between pro- and anti-inflammatory 
cytokine production. The use of the CI inhibitors metformin 
and rotenone decreased mitochondrial ROS production in LPS-
activated mouse macrophages thereby reducing IL-1β produc-
tion and boosting IL-10 production (54). In addition to their 
function as TLR7 agonists, imiquimod and CL097 also inhibited 
the quinone oxidoreductases NQO2 and CI, inducing ROS that 
contributed to NLRP3 activation (57). Conversely, the CII inhibi-
tor dimethyl malonate enhanced the production of IL-1RA and 
IL-10 and promote an anti-inflammatory response by preventing 
mitochondrial ROS generation and succinate oxidation (19).

Mitochondrial metabolites, e.g., those related to α-ketoglu-
tarate, such as succinate and fumarate, regulate transcription and 
influence the pattern of cytokine production that characterizes 
differentiated macrophages. Succinate is accumulated in M1 
mouse macrophages and was originally thought to stabilize 
HIF-1α through inhibition of prolyl hydroxylases (58). However, 
new evidence shows that succinate rather drives CII activity, 
which in turn promotes mitochondrial reactive oxygen species 

(mROS) production to stabilize HIF-1α (19), thereby promot-
ing pro-inflammatory cytokine IL-1β expression (8) (Figure 2). 
Succinate may also contribute to increased reverse electron 
transport and ROS production from CI (59), a process that is 
potentially important for macrophage function (60). Likewise, 
SDH (part of the CII) metabolizes succinate to fumarate in the 
TCA cycle, and fumarate inhibits histone demethylases thus 
regulating epigenetics (41). In this process, CII accepts the 
electrons from FADH2, and this function as electron carrier 
drives modulation of ROS signaling (60). These results establish 
how ROS drives expression of pro-inflammatory cytokines that 
characterize M1 macrophages but the mechanism by which suc-
cinate inhibits anti-inflammatory gene expression is still an open 
question. Taken together, those studies show the great potential 
of mitochondrial metabolism for regulation of transcription, 
cytokine production, and macrophage polarization that can be 
exploited for therapy.

Regulation of Macrophage Bactericidal 
Functions
Although phagosomal ROS are considered to be a main compo-
nent of bacteria killing machinery within macrophages, mitochon-
dria seem to significantly contribute to antibacterial functions by 
generating a substantial amount of ROS (Figure 2). Engagement 
of a cell membrane-associated TLRs (TLR1, TLR2, and TLR4) 
results in the recruitment of mitochondria to macrophage phago-
somes and increases mROS production. This response involves 
translocation of the TLR signaling adaptor TRAF6 to mitochon-
dria where it engages the mitochondrial respiratory complex I 
assembly adaptor ECSIT (30). Consistently, mouse macrophages 
that lack ECSIT or TRAF6 show decreased levels of TLR-induced 
ROS and impaired ability to kill intracellular bacteria. In addition, 
reducing mouse macrophage mROS levels by expressing catalase 
in mitochondria results in defective bacterial killing, confirming 
the role of mROS in bactericidal activity (30). Additional studies 
support the notion that suppressing mROS production regulates 
antibacterial innate immune responses. Mice deficient for UCP2 
and infected with a lethal load of Toxoplasma gondii were sig-
nificantly more resistant compared with wild-type (WT) animals. 
Consistently, UCP2-deficient macrophages generated more ROS 
in response to T. gondii underlying this enhanced parasite-killing 
capacity (61). A subsequent study detailed a similar phenotype, 
demonstrating that Ucp2−/− mice were more resistant to Listeria 
monocytogenes and display higher splenic ROS levels than WT 
mice (62). LPS stimulation also reduces macrophage UCP2 
expression, indicating that the abundance of UCP2 in the cell 
regulates mROS generation following TLR4 engagement (63). 
Additionally, it was demonstrated that IFNγ induces an estrogen-
related receptor-α (ERRα)- and a proliferator-activated receptor-γ 
co-activator (PGC1β)-dependent transcriptional program in 
mouse macrophages that induces mitochondrial function and 
mROS production upon bacterial infection (64). Consequently, 
ERRα- or PGC1β-deficient macrophages produce less ROS upon 
L. monocytogenes challenge and display a reduced bacteria kill-
ing capacity (64). In this context, ETC re-arrangement may also 
regulate mROS production by controlling electron leak within 
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FiGURe 2 | Mitochondrial metabolism contributions to macrophage effector functions. Sensing of live Gram-negative bacteria by toll-like receptors (TLR) 
induces the production of phagosomal reactive oxygen species (ROS) by phagosomal NADPH oxidase. Phagosomal ROS directly contribute to the killing of the 
bacteria inside the phagosome and induce CII activity thereby promoting fumarate accumulation, which exerts bactericidal properties and modulates histone 
posttranslational modifications to control cytokine production. The increase in CII activity is associated with a reduction in CI activity and a subsequent increase in 
mitochondrial ROS (mROS). TLR mediates recruitment of the mitochondria to the phagosome through tumor necrosis factor receptor-associated factor 6 
(TRAF6)–evolutionarily conserved signaling intermediate in toll pathways (ECSIT) interaction and concomitantly increases mROS, which contribute to bacteria killing 
in the phagosome and inhibit prolyl hydroxylase (PHD), thus promoting hypoxia-inducible factor-1α (HIF-1α) stabilization. TLR signaling also induces accumulation of 
succinate, which, together with fumarate, inhibits α-ketoglutarate-dependent DNA hydroxylases and histone demethylases, regulating cytokine expression and 
glycolytic switch. Succinate oxidation, in turn, is required to induce mROS production at the level of CI, thereby inhibiting PHD, stabilizing HIF-1α, and further 
controlling cytokine production. In addition to fumarate, other tricarboxylic acid cycle-related metabolites exhibit antibactericidal properties. Citrate is used to 
produce itaconate through the decarboxylation of cis-aconitate by IRG1. Itaconate was found to have antimicrobial properties and to regulate succinate 
dehydrogenase (CII) activity in lipopolysaccharide-activated macrophages.
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the respiratory complexes (16). Future studies will likely provide 
additional details on the role of ETC architecture and electron 
flow for antimicrobial function of mitochondria.

The notion that mitochondria are important players for the 
microbicidal properties of macrophage has recently gained 
further interest with the finding that mitochondrial metabolites 
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directly contribute to macrophage bactericidal functions. The 
mitochondrial protein immune responsive gene 1 (IRG1) is highly 
expressed in mouse and human macrophages during inflamma-
tion. It metabolizes cis-aconitate into itaconate, which can drive 
the production of β-oxidation-dependent mitochondrial ROS 
(65). Importantly, itaconate inhibits citrate-lyase in different 
bacterial strains and thus shows direct antimicrobial activity 
(66) (Figure 2). IFNs induce IRG1, which in turn accumulates 
in mitochondria that closely associate with Legionella-containing 
vacuoles, as step that may be required for bacteria killing (67). 
In addition, itaconate has been postulated to modulate mouse 
macrophage metabolism and effector functions by inhibiting 
SDH. Indeed, Irg1−/− mice, which cannot produce itaconate, have 
decreased level of succinate and increased mitochondrial respira-
tion and inflammatory cytokine production upon LPS stimula-
tion (68). Reorganization of the ETC may also participate to such 
processes, since the SDH product fumarate can directly inhibit 
bacteria proliferation in response to ETC adjustments upon sens-
ing of viable bacteria (5) (Figure 2). Notably, the substrate of SDH 
succinate did not show antimicrobial properties as compared to 
fumarate, revealing specific immune properties of closely related 
mitochondria-derived metabolites (5).

COnCLUDinG ReMARKS

Since mitochondria have emerged as key conductors of the 
metabolic adaptations to the innate sensing by modulating the 
electron flow in the ETC (5, 19), a key open question is whether 
targeting of mitochondrial metabolism can be used to modu-
late immune cell function with substantial improvement for 
therapeutic strategies. This would be particularly interesting for 
enhanced vaccination and modulation of immunity and toler-
ance when targeting DCs, or for the treatment of inflammatory 

diseases in the case of targeting macrophages. In the later, 
mitochondrial manipulation would constitute an approach of 
choice to facilitate macrophage repolarization (56). Because 
some mitochondrial metabolites and the use of ETC CI or CII 
inhibitors can modulate cytokine production (8, 19, 41, 54, 57), 
such approach seems very promising. Moreover, mitochondrial 
ROS and metabolites, such as fumarate or itaconate, show a 
direct microbicidal effect (5, 30, 66). The exciting findings in this 
rapidly moving field thus emphasize the great potential of target-
ing mitochondrial metabolism for modulation of transcription, 
polarization, cytokine production, and microbicidal capacity of 
macrophages with potential to offer new therapeutic approaches.
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