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Chronic granulomatous disease (CGD) results from primary defects in phagocytic reactive 
oxygen species (ROS) production. T-cell evaluation is usually neglected during patients’ 
follow-up, although T-cell depletion has been reported in CGD through unknown mecha-
nisms. We describe here a 36-year-old patient with X-linked CGD with severe CD4 T-cell 
depletion <200 CD4 T-cells/μl, providing insights into the mechanisms that underlie T-cell 
loss in the context of oxidative burst defects. In addition to the typical infections, the 
patient featured a progressive T-cell loss associated with persistent lymphocyte activa-
tion, expansion of interleukin (IL)-17-producing CD4 T-cells, and impaired thymic activity, 
leading to a reduced replenishment of the T-cell pool. A relative CD4 depletion was also 
found at the gut mucosal level, although no bias to IL-17-production was documented. 
This immunological pattern of exhaustion of immune resources favors prompt, potentially 
curative, therapeutic interventions in CGD patients, namely, stem-cell transplantation or 
gene therapy. Moreover, this clinical case raises new research questions on the interplay 
of ROS production and T-cell homeostasis and immune senescence.

Keywords: primary immunodeficiency, chronic granulomatous disease, genetic phagocytic defect, reactive 
oxygen species, CD4 t-cell lymphopenia, immune senescence, gut mucosa, interleukin-17

INtRoDUCtIoN

Chronic granulomatous disease (CGD) is the most common primary immunodeficiency affecting 
phagocytes. It is due to genetic defects in nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase (1, 2), leading to impaired reactive oxygen species (ROS) production by monocytes and 
neutrophils, defective microorganism clearance, and chronic inflammation (1–4). Reduced T-cell 
numbers were reported in an American CGD cohort, although the underlying mechanisms remain 
unclear (5). The defective ROS production by myeloid cells indirectly contributes to the T-cell loss 
through the promotion of inflammation (1, 2). On the other hand, T-cells have been shown to harbor 
NADPH (6), and T-cell intrinsic defects in ROS production are associated with disturbances in T-cell 
effector differentiation and regulatory function (6–11). Notably, CGD patients feature expansion 
of the interleukin (IL)-17-producing T helper cell subset, which is thought to contribute to their 
heightened immune activation state (12). T-cell alterations in susceptibility to apoptosis have also 
been described (13), as well as impairments in autophagy (14), which may also impact on T-cell 
development and function.
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FIGURe 1 | Major CD4 t-cell depletion in a chronic granulomatous 
disease (CGD) patient. (a) Longitudinal CD4 T-cell counts. (B) Proportion 
of naïve (CD45RA+CD27+) CD4 T-cells in the CGD patient; open bar 
represents mean ± SEM of healthy subjects (n = 25), and dot plots illustrate 
CCR7/CD45RA expression within CD4 T-cells.
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We report here long-lasting severe CD4 lymphopenia in a 
36-year-old patient with CGD that allowed us to investigate the 
pathways involved in T-cell production and peripheral homeo-
stasis in the context of markedly impaired ROS production. Our 
findings are consistent with an overall scenario of immunological 
exhaustion and are of foremost clinical relevance in the context 
of the increased life expectancy of CGD patients, as well as to the 
ongoing debate regarding aggressive early therapeutic interven-
tion (15–17).

Case RepoRt

X-linked CGD was only diagnosed at the age of 13 (G897A muta-
tion at the extreme end of exon 8 of the CYBB gene), although 
the patient had a clinical history typical of this disorder, namely, 
neonatal Staphylococcus aureus sepsis, Salmonella enteritidis 
sepsis (at 7 years of age), multiple liver abscesses due to S. aureus 
requiring partial hepatectomy (at 10 years of age), and recurrent 
suppurative lymphadenitis (axillary and cervical), as well as 
subcutaneous abscesses. ROS production was undetectable using 
a flow cytometry-based oxidative burst assay (<1% positive 
monocytes or neutrophils; BD Biosciences). Prophylactic antimi-
crobials were started with an effective control of major infections, 
except Pseudomonas aeruginosa keratoconjunctivitis (at age 16).

The patient featured a progressive loss of T-cells with sustained 
CD4 T-cell counts <200 cells/μl (Figure 1A) and an inverse CD4/
CD8 ratio (varying between 0.6 and 0.09).

In parallel with the T-cell depletion, the phenotypic analysis 
revealed marked loss of naïve cells within both CD4 (Figure 1B) 
and CD8 T-cells (6.2% of total CD8 T-cells, 100 cells/μl at 36 years 
of age). This was in agreement with an impaired replenishment 
of the T-cell pool by recently produced cells. Indeed, we found 
evidence of compromised thymopoiesis via the quantification 
of by-products of T-cell receptor (TCR) rearrangement that are 
generated during thymic T-cell development [signal joint (sj) and 
DβJβ TCR rearrangement circles, T-cell receptor rearrangement 
excision circle (TREC)] and progressively decline during age-
associated thymus involution. Both sjTREC frequency and the 
sj/βTREC ratio, which are considered to reflect intra-thymic pre-
cursor T-cell proliferation and directly correlate with thymic out-
put (18, 19), were markedly low for the patient’s age (Figure 2A). 
Of note, reduced thymic activity was observed despite the levels 
of IL-7, an essential homeostatic cytokine, being highly enhanced 
(Figure 2B), even in comparison with those of untreated HIV-
1-infected individuals. Thus, impaired thymopoiesis seemed to 
significantly contribute to naïve T-cell loss. The risks inherent to 
the reduced thymic activity in conjunction with the patient’s age 
contributed to the decision to not undergo hematopoietic stem-
cell transplantation (HSCT).

Naïve CD4 T-cell loss was accompanied by upregulation of 
activation markers and by increased frequency of cycling cells 
(Figure  3A). The analysis of cytokine production by T-cells 
revealed an effector differentiation profile with a significant 
production of pro-inflammatory cytokines, particularly IL-17 
(Figure 3B), as has been previously reported (12, 20). Of note, 
the majority of IL-17-producing T-cells were CD4+ (96%). 
There was also an increased frequency of CD4 T-cells producing 

IL-22 (Figure 3B), of which 42% concomitantly produced IL-17. 
Notably, there was a parallel overrepresentation of regulatory 
T-cells (Treg) expressing high levels of CD25 and CD39, mark-
ers associated with suppressive function (Figures 3A,B). CD8 
T-cells featured an activated and terminally differentiated phe-
notype, as illustrated by their high levels of perforin and IFN-γ 
production (Figure 3C). In agreement with these findings, both 
CD4 and CD8 T-cells, irrespective of their degree of differen-
tiation, featured markedly reduced telomere length, further 
supporting persistent immune stimulation and increased cell 
cycling in parallel with reduced de novo T-cell replenishment 
(Figure 3D).

At 34 years of age, colonoscopy was performed due to an epi-
sode of prolonged diarrhea, with watery stool four to five times a 
day without mucus or blood, with no apparent microbial cause, 
accompanied by hypoalbuminemia without other evidence of 
exudative enteropathy or significant malabsorption. The gastro-
intestinal symptoms subsided spontaneously after 4 weeks. The 
mucosa was macroscopically normal with an overall preserved 
structure, with areas of mild inflammatory infiltrates with 
lymphoid aggregates in the gut biopsies. Cell suspensions from 
sigmoid biopsies were analyzed by flow cytometry, and patient 
data were compared with those of healthy subjects submitted to 
routine colon cancer screening colonoscopy. The CGD patient 
featured a decreased frequency of CD4+ cells within total 
T-lymphocytes in the sigmoid mucosa (Figure 4A) and a very 
low CD4/CD8 ratio (0.14), although we were unable to quantify 
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FIGURe 2 | Impaired t-cell production despite increased circulating 
interleukin (IL)-7 levels in a chronic granulomatous disease (CGD) 
patient. (a) Signal joint T-cell receptor rearrangement excision circle (sjTREC) 
frequency and sj/βTREC ratio in total T-cells in relation to age in the CGD 
patient and healthy subjects. (B) IL-7 levels and CD4 counts in the CGD 
patient (blue), healthy subjects (black, n = 47), and untreated HIV-1-infected 
individuals (green, n = 61); each dot represents one individual/time point. 
P-value and Spearman’s correlation coefficient are shown.
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the absolute counts in the histological material to confirm the 
CD4 loss. Importantly, in contrast to the circulating CD4 subset, 
the relative proportions of cells producing IL-17, IL-22, or IFN-γ, 
as well as FoxP3-expressing Treg, within sigmoid CD4 cells were 
within the range of healthy subjects (Figure 4B). Moreover, there 
were no alterations in the levels of expression of genes implicated 
in the regulation of these populations, namely, IL-17, IL-22, IL-
23, IDO1, and AHR, in the sigmoid biopsies (Figure 4C). To the 
best of our knowledge, this is the first report of T-cell imbalances 
illustrating the occurrence of CD4 depletion at the gut mucosa in 
CGD. The apparent lack of Th17 expansion at the mucosal level 
warrants further investigation, given the known role of IL-17 in 
inflammatory bowel disorders (21, 22) and the importance of gut 
pathology in CGD patients.

MetHoDs

patient and Controls
Longitudinal data obtained from a 36-year-old Caucasian patient 
with X-linked CGD were compared with results obtained from 
healthy donors (23, 24) and a previously described cohort of 

untreated HIV-1-infected individuals (25), which featured a 
wide CD4 T-cell loss range. All individuals gave written informed  
consent. The study was approved by the ethical board of the 
Faculty of Medicine of University of Lisbon.

Cell Isolation
Fresh peripheral blood mononuclear cells (PBMCs) were isolated 
from heparinized venous blood immediately after collection 
by standard Ficoll-Hypaque density gradient centrifugation 
(Amersham Pharmacia Biotech, Uppsala, Sweden). Approximately 
7–10 sigmoid biopsies collected from the patient and from 
individuals performing colonoscopy in the context of routine 
clinical follow-up with macroscopically normal mucosa (24) 
were digested with collagenase B (10  mg/ml; Roche, Penzberg, 
Germany), at 37°C, immediately after collection; mechanically 
macerated; and the lymphocytes separated using a Percoll gradient 
(GE Healthcare, Uppsala, Sweden; 40% over 80%), as previously 
described (24).

Flow Cytometry studies
Lymphocyte phenotypic analysis was performed in whole 
blood after surface staining with monoclonal antibodies 
(mAbs) (26). The following anti-human mAbs were used: 
FITC-conjugated HLA-DR (clone L243) and CD45RA (clone 
HI100); PE-conjugated CD4 (clone RPA-T4), CD27 (clone 
O323), and CD38 (clone HB7); PerCP-conjugated CD4 (clone 
RPA-T4), CD8 (clone RPA-T8), and CD3 (clone OKT3); and 
APC-conjugated CD25 (clone 2A3), purchased from either BD 
Biosciences (San Jose, CA, USA) or eBiosciences (San Diego, 
CA, USA). Intracellular staining for FoxP3 (clone PCH101 
from eBiosciences), Bcl-2 (clone 124 from Dako), Ki-67 (clone 
B56 from BD Biosciences), or perforin (clone 27-37 from BD 
Biosciences) was performed in PBMC using eBiosciences’s kit 
after surface staining, as previously described (26). At least 
100,000 events were acquired on FACSCalibur or LSRFortessa 
cytometers (BD Biosciences), and data were analyzed using 
FlowJo software (Tree Star Inc., Ashland, OR, USA). The absolute 
numbers of lymphocyte subsets were calculated by multiplying 
their representative frequency by the absolute lymphocyte count 
obtained at the clinical laboratory.

Cytokine production
Cytokine production by PBMC or mucosal lymphocytes was 
assessed at the single-cell level after 4-h culture with 50 ng/ml 
phorbol 12-myristate 13-acetate (Sigma-Aldrich, St. Louis, MO, 
USA) plus 500 ng/ml ionomycin (Calbiochem; Merck Millipore) 
in the presence of 10  µg/ml brefeldin A (Sigma-Aldrich), as 
previously described (27). The following anti-human mAbs 
were used for intracellular staining: IFN-γ (clone 4S.B3), IL-17 
(clone eBio64DEC17), TNF-α (clone MAb11), and IL-22 (clone 
22URTI), all from eBiosciences.

tReC analysis
Signal joint and DJ TREC analyses were conducted as described 
(18, 19). Briefly, triplicate multiplex PCR amplification for sjTREC, 
DJβ1TRECs (Dβ1-Jβ1.1 to 1.6), or DJβ2TRECs (Dβ2-Jβ2.1 to 
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FIGURe 3 | t-cell activation and terminal differentiation in a chronic granulomatous disease (CGD) patient. (a) Representative dot plots of the analysis of 
cytokine production and chemokine expression within CD4 T-cells, regulatory T-cell-associated markers within CD4+FoxP3+ cells, as well as activation and cycling 
markers within memory-effector CD4 T-cells from the CGD patient at 36 years of age and a representative age-matched healthy control. (B) Frequency of interleukin 
(IL)-17-, IL-22-, IFN-γ-, or TNF-α-producing cells, as well as the frequency of FoxP3+, HLA-DR+CD38+, or Ki-67+ cells within the CD4 subset, in the peripheral 
blood of the CGD patient and healthy subjects. (C) Representative dot plots showing the co-expression of IFN-γ and perforin within CD8 T-cells in the CGD patient 
and an age-matched control, and a graph showing the frequency of IFN-γ-producing cells within CD8 T-cells of the CGD patient at different ages and of healthy 
adults (bar represents mean ± SEM, n = 24). (D) Telomere length of naïve (CD45RA+) and memory (CD45RA−) CD4 T-cells as well as CD8 T-cells defined 
according to CD27 expression from the CGD patient and controls.
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2.7), together with the CD3γ chain, was performed on lysed 
PBMC. TREC and CD3γ quantifications were then performed 
using a LightCycler™ in independent experiments, with the same 
first-round serial dilution standard curve. This highly sensitive 

nested quantitative PCR assay allowed detection of one copy in 
105 cells for any excision circle. The sj/βTREC ratio was calculated 
[sjTREC/105cells/(DJβ1TRECs/105cells + DJβ2TRECs/105cells)], 
as described (18).
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IL-7 Quantification
Serum IL-7 levels were measured using Quantikine HS ELISA kit 
(R&D Systems, Minneapolis, MN, USA), according to the manu-
facturer’s instructions (25). All samples were assayed in duplicate.

telomere Length Measurement by Flow 
Fluorescent In Situ Hybridization Coupled 
to Flow Cytometry (Flow-FIsH)
Telomere length was assessed by Flow-FISH technique on thawed 
PBMCs, as previously described (23, 28). Briefly, after surface 
staining with CD45RA-FITC, CD27-FITC, and biotin-conjugated 
CD4 or CD8, PBMCs were fixed for 30 min at 4°C with 1 mM 
bis(sulfosuccinimidyl)suberate. The reaction was quenched using 
1 ml of 50 mM Tris pH7.2 for 20 min at room temperature. After 
washing in PBS, followed by hybridization buffer containing 70% 
formamide, 20  mM Tris-HCl, 1% BSA, and 1.5  M NaCl, cells 

were incubated with the protein nucleic acid telomeric probe 
(C3TA2)3 conjugated to Cy5. After heating for 10 min at 82°C, 
samples were left to hybridize for 60–90  min, washed in post-
hybridization buffer followed by PBS, and analyzed immediately 
by flow cytometry. All samples were run in triplicate.

mRNa extraction from the Gut  
and transcripts expression
One sigmoid biopsy was stored in RLT buffer (Qiagen, Valencia, 
CA, USA) immediately post collection. RNA was extracted using 
Allprep RNA/DNA mini kit (Qiagen), and 250 ng was used to 
synthesize cDNA (SuperScript III Reverse Transcriptase; Life 
Technologies), as described (24). Expression levels of IL-17A, 
IL-22, IL-23, indoleamine 2,3-dioxygenase (IDO) 1, and 
aryl hydrocarbon receptor (AHR) were measured after pre-
amplification with TaqMan PreAmp Master Mix, using TaqMan 
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gene expression assays with an Applied Biosystems 7500 Fast  
Real-Time PCR System (all from Life Technologies), as previously 
described (24). Results were expressed as ΔCt normalized to the 
medium Ct levels of glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) and r18S.

DIsCUssIoN

Our finding of sustained severe long-term CD4 T-cell lymphope-
nia in X-linked CGD calls attention to the occurrence of major 
T-cell imbalances in the context of burst oxidative defects and 
raises the possibility of T-cell immunological exhaustion. To our 
knowledge, this is the first report of CD4 depletion at the gut 
mucosal level in CGD, in agreement with peripheral blood data. 
Therefore, increasing effort should be devoted to the understand-
ing of the mechanisms underlying T-cell loss in CGD and their 
clinical implications.

This immune senescent profile has been considered of immu-
nological risk for infections and shown to be an independent 
predictor of death in aged subjects (29). Moreover, it resembles 
the profile of immunosenescence documented in individuals 
thymectomized early in life during corrective cardiac surgery 
(26, 30, 31).

Our case suggests that CGD-associated T-cell depletion may 
worsen with age, which further supports early therapy potentially 
curative interventions such as HSCT and gene therapy (2, 4, 
15–17, 32).

Of note, the persistent immune activation of our patient featured 
an AIDS-like immunological profile (33–35). CGD is typically 
associated with an inflammatory and hyper-activated state (3, 32,  
36, 37). In CGD mouse models, inflammation has been linked 
to a defective production of the immunosuppressive molecule 
l-kynurenine (20), a tryptophan catabolism intermediate gener-
ated by the enzyme IDO, leading to increased IL-17 production. 
However, recent data showed that CGD patients have preserved 
IDO function in circulating leukocytes (38, 39). Nevertheless, 
our patient featured a relative expansion of IL-17-producing CD4 
T-cells as compared to other CD4 T-cell subsets, in agreement 
with previous reports (3, 12, 20), which likely contributed to the 
hyperactivated state. Notably, the Th17 overrepresentation was 
not found at the gut mucosa level, a finding that warrants further 
investigation given the importance of gut pathology in CGD and 
the known role of IL-17 in inflammatory bowel disorders (21, 22).

The observed massive IL-7 levels may also contribute to 
the exaggerated immune stimulation. The increase in IL-7 
levels in lymphopenic settings is thought to be mostly related 
to lack of consumption due to the reduction in available targets  
(25, 40). However, in our case, they were much above those found 
in untreated HIV-infected individuals with comparable T-cell 

depletion (25). This finding raises the possibility of IL-7 being 
partially produced as an acute-phase response in the liver, as 
reported upon toll-like receptors signaling in mouse models (41).

Of note, in spite of the high levels of IL-7, there was marked 
impairment of thymopoiesis and a consequent defective replen-
ishment of the naïve compartment, as attested by the reduced 
sj/βTREC ratio and T-cell telomere length.

Interestingly, it has also been suggested that T-cells have intrin-
sic defects in ROS production in CGD, which may compromise 
their thymic development as well as their peripheral survival and 
function (6–11).

CoNCLUDING ReMaRKs

Long-lasting severe CD4 lymphopenia may occur in CGD, likely 
due to both persistent immune activation and impaired T-cell 
production. This profile of early immune senescence represents a 
further argument in favor of timely curative therapeutic interven-
tions in CGD, namely, stem-cell transplantation or gene therapy. 
Additionally, in a broader perspective, our results open new areas 
of research regarding the interplay of ROS production and T-cell 
homeostasis and immune senescence.
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