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SLC1A5 (solute carrier family 1, member 5) is a small neutral amino acid exchanger 
that is upregulated in rapidly proliferating lymphocytes but also in many primary human 
cancers. Furthermore, cancer cell lines have been shown to require SLC1A5 for their 
survival in vitro. One of SLC1A5’s primary substrates is the immunomodulatory amino 
acid glutamine, which plays an important role in multiple key processes, such as energy 
supply, macromolecular synthesis, nucleotide biosynthesis, redox homeostasis, and 
resistance against oxidative stress. These processes are also essential to immune cells, 
including neutrophils, macrophages, B and T  lymphocytes. We show here that mice 
with a stop codon in Slc1a5 have reduced glutamine uptake in activated lymphocytes 
and primary fibroblasts. B and T cell populations and maturation in resting mice were 
not affected by absence of SLC1A5. Antibody production in resting and immunized 
mice and the germinal center response to immunization were also found to be normal. 
SLC1A5 has been recently described as a novel target for the treatment of a variety of 
cancers, and our results indicate that inhibition of SLC1A5 in cancer therapy may be 
tolerated well by the immune system of cancer patients.
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inTrODUcTiOn

A well-known modification of metabolism in rapidly proliferating cells is the utilization of the amino 
acid glutamine in a linearized version of the tricarboxylic acid (TCA) cycle, termed glutaminolysis. 
As a result, many cancer cells display an oncogene-dependent “addiction to glutamine” in vitro (1–3). 
These metabolic pathways are not unique to tumor cells but are also used by certain normal cell 
populations. Glutamine utilization in proliferating B and T lymphocytes, for instance, can be very 
high and even comparable to that of glucose (4–7). Indeed, both glucose and glutamine are only 
partially oxidized in proliferating lymphocytes, similar to tumor cells.

In glutaminolysis, the amino acid glutamine is first deaminated to glutamate, then glutamate 
is further deaminated to α-ketoglutarate. The latter is converted via malate and oxaloacetate into 
aspartate, alanine, pyruvate, citrate, and acetyl-CoA (8, 9). A major advantage of this linear pathway 
is that it is less sensitive to depletion of its intermediate metabolites, in contrast to the TCA cycle that 
is compromised by removal of intermediates (9).
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To proliferating cells, glutamine is therefore a major anaple-
rotic nutrient, as well as a major source of energy (8, 10–12). 
Indeed, expression of glutaminase (GLS) isozymes, the enzymes 
that catalyze deamination of glutamine to glutamate, correlates 
with growth rate and malignancy of certain cancer cells (13). 
In cancer, glutamine also sustains proliferative signaling via 
mammalian target of rapamycin (mTOR) activation and enables 
replicative immortality by suppressing senescence and resisting 
cell death (12).

While glutamine can be transported by a large number of 
solute carriers (SLC) (14, 15), a limited number of transporters 
dominate in rapidly proliferating cells. Along with SLC1A5, the 
leucine-preferring amino acid transporter 1 (LAT1 or SLC7A5) is 
highly upregulated in multiple cancers (1, 16, 17). One suggestion 
has been that SLC1A5-mediated import of glutamine provides 
an exchange substrate for the uptake of leucine (18) and other 
essential amino acids via LAT1, to meet metabolic demands 
and signal to mTOR (16). Coupled with the discovery that the 
glutaminolytic switch is promoted by oncogenes and inhibited 
by tumor suppressors, this has driven the search for SLC1A5 
inhibitors (19–22). Indeed, blocking of SLC1A5 has been shown 
to diminish or prevent tumor cell proliferation in different cancers 
(23–28). In other cancer cells, SLC1A5 and LAT1 rather play the 
role of “amino acid harmonizers,” rapid hetero-exchangers that 
maintain the optimal mix of all 20 proteinogenic amino acids 
in the cytosol (9), while Na+-amino acid co-transporters of the 
SLC38 family mediate net glutamine uptake to sustain glutami-
nolysis and proliferation (9). For this second group of cancers, 
SLC1A5 antagonists or inactivating mutations of SLC1A5 alone 
are insufficient to stop growth.

A significant concern in using amino acid transport 
inhibitors to treat cancer is the role of glutamine in the immune 
system. For example, B and T  lymphocytes, which underpin 
the adaptive immune system, undergo phases of intense pro-
liferation, both during their development and in order to fulfill 
their effector functions during immune responses. Because of 
the immune-modulatory effects of glutamine, and its require-
ment in strongly proliferating cells, the amino acid is crucial 
to normal development and effector functions of B and T cells 
(29–31).

In the hope of inhibiting SLC1A5 in cancer therapy, and 
because of the similar use of glutamine in cancer cells and the 
immune cells, understanding the role of SLC1A5 in the immune 
system is crucial. SLC1A5 has been shown to be required for 
rapid glutamine uptake during naïve T  cell activation (32) 
because of its role in T cell receptor (TCR)-stimulated activation 
of mTORC1, which promotes cell growth and proliferation (33). 
Nakaya et  al. (32) also found that SLC1A5-deficient mice had 
attenuated inflammatory T cell responses in experimental mod-
els of immunity and autoimmunity. In particular, the frequen-
cies of CD4+ interferon γ-producing Th1 and IL-17-producing 
Th17 cells were significantly reduced. Furthermore, glutamine-
deprived CD4+ T cells activated in the presence of cytokines that 
normally induce Th1 differentiation have been found to instead 
differentiate into Treg cells in vitro (34). Inhibiting SLC1A5 may 
therefore have adverse local and systemic effects on the immune 
system.

Here, we show that a C57BL/6 Slc1a5 mutant mouse strain 
has normal B and T cell development and normal B cell effector 
functions, indicating that SLC1A5 could be targeted with limited 
impact on immune function.

MaTerials anD MeThODs

Mice and Procedures
All experimental mice were housed in specific pathogen-free 
conditions at the Australian Phenomics Facility (APF) located 
at the Australian National University (ANU). All animal proce-
dures for this study were approved by the ANU Animal Ethics 
and Experimentation Committee under protocol A2014/62. For 
all experiments, we used male and female mice between 7 and 
14 weeks old.

The ENU28:008:SLC1A5 mouse strain was generated at the 
APF through ENU mutagenesis on a pure C57BL/6 background,  
as described previously (35). The strain was maintained by  
breeding heterozygous (Slc1a5+/−) mice with wild-type C57BL/ 
6NcrlAnu mice or with heterozygous mice to produce homozy-
gous (Slc1a5−/−) pups. ASD513:C57BL/6NcrlAnu mice are wild-
type C57BL/6 mice originally obtained from Charles River and 
maintained by the ANU APF. Rag1 KO (36) and SWHEL (37) mice 
have been previously described. ENU28:008:SLC1A5:Hc.Lc.Ly5a 
mice were generated by cross of ENU28:008:SLC1A5 mice and 
SWHEL mice. These mice will hereafter be referred to as Slc1a5+/+ 
or Slc1a5−/− SWHEL mice.

Mouse primary immunization was performed as previously 
described (38) by i.p. injection of 50 µg alum-precipitated ARS-
CGG (Biosearch) and 1  ×  108 heat- and formalin-inactivated 
Bordetella pertussis (BP) bacteria (Lee Laboratories) in 300  µL 
sterile PBS. Booster immunizations performed by i.p. injection 
of 50 µg ARS-CGG and 25 µg NP-Ficoll (Biosearch) in 300 µL 
sterile PBS. Antibody titers were measured by enzyme-linked 
immunosorbent assay as described previously (38).

glutamine Uptake
Glutamine uptake was assessed in Slc1a5+/+ and Slc1a5−/− cells as 
described previously (39). Briefly, Slc1a5+/+ and Slc1a5−/− spleno-
cytes were cultured in RPMI 1640 (Sigma) supplemented with 
10 mM HEPES pH 7.4 (Sigma-Aldrich), 0.1 mM non-essential 
amino acid solution (Gibco, Life Technologies), 1 mM sodium-
pyruvate (Sigma-Aldrich), 55 µM 2-Mercaptoethanol (Life Tech-
nologies), 2mM l-glutamine, 100  U/mL penicillin-100  μg/mL  
streptomycin (Life Technologies), and 10% (v/v) heat-inactivated 
fetal calf serum (Life Technologies) (cRPMI) with 10 µg/mL LPS 
for 44–72  h to activate B  cells and induce their proliferation. 
While this treatment also activates T  cells, it mainly induces a 
proliferation of B cells and macrophages (40). Due to the large 
number of cells required for uptake experiments, splenocytes 
were used instead of purified B- and T-cells. The cell density of 
these suspensions was determined using an automated Vi-Cell 
XR counter (Beckman Coulter). Cells were then washed and 
resuspended at equal cellularity in Hanks (Na+) buffer (136.6 mM 
NaCl, 5.4 mM KCl, 0.44 mM KH2PO4, 0.5 mM MgCl2 × 6H2O, 
0.41 mM MgSO4, 2.7 mM Na2HPO4 × 2H2O, 4 mM Hepes buffer, 
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FigUre 1 | abrogated slc1a5 protein expression in slc1a5−/− mice results in reduced glutamine uptake. (a) Glutamine uptake over time in resting  
B cells or after 48 h LPS activation. (B,c) Glutamine uptake in LPS-activated B cells from Slc1a5+/+ and Slc1a5−/− mice normalized to mg protein (B) or cell number 
(c). Data pooled from six independent experiments. To compare data in panels (B,c), each experiment has individual symbols. (D) Glutamine uptake in primary 
mouse fibroblasts isolated from Slc1a5+/+, Slc1a5+/−, and Slc1a5−/− mice. Data from two experiments with six technical replicates (Slc1a5+/+) or one experiment with 
six technical replicates. All data normalized to the average of Slc1a5+/+ cells analyzed in the same experiment. For data in panels (B,c), statistical analysis was done 
using an unpaired t-test (*p < 0.05). Error bars show SD.
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100 mM CaCl2, 2 mM glucose, adjusted to pH 7.5 with NaOH), 
followed by different incubation times at 37°C with Hanks 
(Na+) buffer containing 0.1  mM glutamine and 0.1% v/v [14C] 
glutamine (1.85  Mbq/mL). Transport was terminated after the 
indicated times by centrifugation of the 100 µL cell suspension 
in an 0.4 mL polyethylene tube (Sigma) containing 65 µL silicone 
oil (density 1.03 g/mL to strip the cells from their extracellular 
medium) on top of 30 µL 20% perchloric acid. Cells were then 
pelleted and resuspended in 750 µL ddH2O, followed by transfer 
of 500  µL homogenate into scintillation vials, and addition of 
2.5 mL scintillation fluid. Radioactivity was measured by liquid 
scintillation counting. An aliquot of each B cell suspension was 
used to determine the protein content of each sample by Bradford 
assay (Sigma).

Flow cytometry and Facs analysis
Flow cytometric analyses were performed as previously described 
(41). Briefly, mice were euthanized using cervical dislocation and 
the organs collected in PBS  +  2% heat-inactivated FBS (FACS 
buffer). The spleen and thymus were forced through a 70-µm 
cell strainer to create a homogenous single-cell suspension in 
FACS buffer. Bone marrow cells were isolated from mouse hind 
limbs by flushing the femur and tibia with FACS buffer followed 
by passing through a 70-µm cell strainer. Peritoneal cavity 
cells were collected by injection of 3  mL FACS buffer into the 
peritoneal cavity followed by redrawing. Cell numbers in the 
resulting cell suspensions were determined using an automated  
Vi-Cell XR counter (Beckman Coulter). Equal cell numbers—
depending on organ and experiment between 1 and 2 × 106 cells 
per sample—were stained with antibodies at predetermined opti-
mal dilutions in FACS buffer at 4°C, followed by analysis on an 
LSRII or an LSRFortessa (BD). Hen egg lysozyme (HEL)-binding 
B cells were detected by incubating the cells with HEL (Sigma) 
followed by staining with fluorescently labeled HyHEL9 antibody, 

which recognize a different epitope on HEL than the transgenic 
BCR. The HyHEL9 antibody was a kind gift of Professor Robert 
Brink from the Garvan Institute, Sydney. Conjugation to 
Alexa Fluor 647 was done in house using the Alexa Fluor 647 
Antibody labeling kit (Thermo Fisher Scientific) according to the 
manufacturer’s instructions. All other antibodies were purchased 
from Biolegend, eBioscience, or BD Pharmingen and titrated in 
house for their optimal dilution. Compensation for multicolor 
stains and data acquisition were performed using the FACSDiva 
software (BD), and data analysis was performed using the FlowJo 
software (Tree Star).

B cell Proliferation assays
B cells were purified using a Pan B cell Isolation Kit (Miltenyi 
Biotec) followed by negative sorting using the DepleteS protocol 
of the autoMACS Pro Separator (Miltenyi Biotec). 10 × 106 to 
30 × 106 B cells were resuspended in 1 mL cRPMI l. The B cells 
were labeled with Cell Trace Violet (CTV, Invitrogen) by addi-
tion of CTV to obtain a final concentration of 12.5 µM followed 
by immediate vortexing to ensure rapid and homogeneous 
labeling of cells. Cells were incubated for 20 min at 37°C in the 
dark, and the CTV labeling reaction was terminated by addition 
of 12 mL cRPMI and two successive washes with cRPMI. Finally, 
cells were added to individual wells of a 96-well round-bottom 
plate at a concentration of 2 × 106 cells/mL and incubated for 
10 min at 37°C to allow the CTV to undergo acetate hydrolysis. 
Finally, 100 µL of cRPMI or cRPMI containing different stimuli 
were added to each well resulting in a final cell concentration 
of 1  ×  106  cells/mL. The following stimulus conditions were  
used: unstimulated (cRPMI only); anti-IgM (1 or 10  µg/mL) 
combined with anti-CD40 (10  µg/mL) or lipopolysaccha-
ride (LPS; 10  µg/mL). Cells were incubated for 36–72  h in a 
humidified incubator at 37°C in 5% carbon dioxide (CO2) before 
staining.
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FigUre 2 | a transient delay in B cell proliferation in response to strong stimulation. Lymphocytes in single cell suspension were cultured in cRPMI 
supplemented with 10 μg/mL anti-CD40 and anti-IgM LPS (a,B) or LPS (c,D) for 48 h (a,c) or 72 h (B,D). Proliferation was measured by halving in Cell Trace Violet 
(CTV) signal intensity upon each cell division. The Y-axis shows the percentage of B cells that have undergone the number of cell divisions shown on the X-axis. 
n = 3 biological replicates. Data are representative of results obtained for n = 6 biological replicates. Statistical analysis was done using ANOVA with a pairwise 
comparison between WT and Slc1a5 mutant cells that have undergone the same number of cell divisions. Except where indicated, no significant difference was 
found (*p < 0.05).

FigUre 3 | B cell development is unchanged in the bone marrow of Slc1a5−/− mice. (a) Representative gating strategy, (B) total number of viable cells,  
and (c) percentages of B cells at different developmental stages in the bone marrow. Data were pooled from three different experiments with 2–6 mice per group  
and experiment. Each experiment is shown by a different symbol. For panels (B,c), statistical analysis between Slc1a5+/+ and Slc1a5−/− mice was done using  
a Student’s t-test, no significant differences were found. Error bars show SD.
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isolation and culture of Primary  
Mouse Fibroblasts
Preparation of fibroblasts from mouse tail-tips was carried out 
as described by Takahashi et  al. (42) without modification. 
Glutamine uptake in primary cultures was measured as described 
by Heckel et al. (43).

generation of Bone Marrow chimeras
Bone marrow chimeras were generated as described previously 
(38). In short, C57BL/6 Rag1 knockout mice were sublethally 
irradiated with 4.5  Gy followed by intravenous injection of 2 

million bone marrow cells from either wild-type or Slc1a5−/− 
mutant mice or with a mix consisting of 50% wild-type and  
50% Slc1a5−/− bone marrow cells (100 and 50–50% bone marrow 
chimeras, respectively). In the case of mixed bone marrow cells, 
the co-transferred wild-type cells were CD45.1 allotype marked 
to allow differentiation from the CD45.2 allotype Slc1a5−/−  
cells.

statistical analysis
All data were statistically analyzed using Graph Pad Prism 5.0f 
for Mac OS X. Comparison between two groups was done using 
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FigUre 4 | normal T cell development in the thymus of Slc1a5−/− mice. (a) Representative gating strategy, (B) number of viable cells, and (c) percentages  
of T cells at different developmental stages in the thymus. Data were pooled from two separate experiments with 4–5 mice per group and experiment with each 
experimental group shown by a different symbol. For panels (B,c), statistical analysis between Slc1a5+/+ and Slc1a5−/− mice was done using an unpaired t-test,  
no significant differences were found. Error bars show SD.
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an unpaired t-test. For the proliferation data shown in Figure 2, 
we used ANOVA with Sidak analysis for multiple comparisons.

resUlTs

Sequencing of Slc1a5 mutant mice revealed a 1225T>A substitu-
tion mutation in Slc1a5 resulting in a premature stop codon at 
amino acid 224 of the 555 amino acid SLC1A5 protein.

To determine the impact of a Slc1a5 null allele, glutamine 
uptake assays were performed. Glutamine uptake in resting wild-
type B cells was hardly detectable, but was found to increase dras-
tically upon activation by LPS (Figure 1A). Thus, lack of SLC1A5 
expression was assessed in LPS-activated B cells, where the rate 
of glutamine uptake was reduced to 62 and 77% of glutamine 
uptake in wild-type B  cells, depending on whether transport 
was normalized to protein content or cell number, respectively 
(Figures  1B,C). This result is consistent with a significant, but 
not exclusive role of SLC1A5 in glutamine uptake in activated 
B-cells. To confirm functional SLC1A5 inactivation in a well-
characterized cell type, we cultivated primary fibroblasts from 
tails of wild-type, SLC1A5+/− and SLC1A5−/− mice. As shown 
in Figure 1D, glutamine uptake was significantly reduced upon 
partial and complete inactivation of SLC1A5.

Given the strong increase in consumption of glutamine upon 
lymphocyte activation (4, 5), and the well-established importance 
of glutamine in metabolic pathways necessary for B and T cell 
proliferation (8, 30, 31), the proliferative capacity of wild-type and 
Slc1a5−/− B cells was assessed in vitro. Following TLR4-mediated 
or BCR- and CD40-mediated stimulation of purified B  cells, 
cell proliferation was assessed based on dilution in fluorescence 
intensity of the intracellular dye CTV. While no difference was 
observed following treatment with soluble F(ab′)2 fragments 
of anti-IgM (hereafter referred to as anti-IgM) and anti-CD40 
agonists after 44 or 72 h (Figures 2A,B), Slc1a5−/− B cells were 
found to have slower division kinetics in response to 44 h LPS 
stimulation (Figure 2C). The lack of any difference in prolifera-
tion after stimulation with anti-IgM and anti-CD40 agonists was 
likely due to weaker B cell proliferation in response to this stimu-
lus relative to that in response to LPS stimulation. Thus, SLC1A5 
deficiency decreases glutamine uptake rate in lymphocytes, but 
it only becomes limiting for B  cell proliferation in response to 
strong stimulation.

Furthermore, the difference in proliferation of Slc1a5−/− and 
wild-type B  cells was no longer observed after 72  h stimula-
tion (Figure  2D), indicating that the delay in proliferation in 
response to LPS stimulation is only transient. This may be due to 
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FigUre 5 | no differences in T cell populations in the spleen of slc1a5−/− mice. Representative gating strategy for T cell populations in the spleen (a), total 
number of live splenocytes (B), relative percentages of the main splenocyte populations (c), relative percentages of CD4 and CD8 T cells (D), of naïve, central 
memory, and effector memory CD4 (e) and CD8 (F) T cells, and of T regulatory cells (g). Data were pooled from two separate experiments with two and five mice 
per group, different experiments are shown by the use of different symbols (squares or circles). Error bars show SD.
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a rescue in glutamine uptake in Slc1a5−/− B cells by upregulation 
of redundant transporters—e.g., SLC38A2, which is known to be 
upregulated by stress such as amino acid depletion—or by the use 
of alternative metabolic pathways over time.

Stimulation of immune cell populations in vitro replicates the 
in vivo situation only partially. Therefore, we examined the effect 
of SLC1A5 deficiency on development and maturation of both 
B and T cells in vivo. Both cell types undergo several phases of 
strong proliferation during maturation, which may be affected by 
SLC1A5 deficiency. Flow cytometric analysis (Figure 3A) revealed 
that the total cell number in the bone marrow (Figure 3B) was 
not affected by SLC1A5 deficiency. Similarly, the frequencies 
of B  cell subpopulations in the bone marrow (Figure  3C) and 
developing T  cells in the thymus (Figure  4) were not affected 
by the lack of SLC1A5. Similarly, the B2 cell populations in the 
spleen (Figure 5) and the B1 cell populations in the peritoneal 
cavity (not shown) of wild-type and Slc1a5−/− mice were not 
significantly different, nor were the T  cell populations in the 
spleen (Figure 6). Thus, global loss of SLC1A5 expression had no 
significant effect on the maintenance of cell populations of the 
adaptive immune system.

To detect subtle competitive disadvantages of Slc1a5−/− cells,  
B and T cell development and maturation was further investigated 

in the competitive in  vivo environment of 100% and mixed 
bone marrow chimeras. Peripheral blood of 100% wild-type or 
Slc1a5−/− hematopoietic stem cell (HSC) recipients was collected 
4 and 6 weeks post-irradiation, and the cell subsets present were 
found in equal proportions (data not shown). Moreover, lymphoid 
organs of both 100 and 50–50% bone marrow chimeras were 
harvested 7 weeks post-irradiation. No significant differences in 
B and T cell development and maturation were detected (Figure 
S1 in Supplementary Material).

To analyze immune cell function, Slc1a5−/− and Slc1a5+/+ mice 
were immunized with inactivated BP and alum-precipitated 
chicken gamma globulin (CGG), coupled to the hapten  
azo-benzene-arsonate (ABA). Both treatments resulted in similar 
primary and secondary antibody responses in wild-type and 
Slc1a5−/− mice (Figure 7). This indicates that antibody responses 
were unaffected by SLC1A5 deficiency. Finally, to further 
characterize Slc1a5−/− B  cell effector function, we transferred 
approximately 6.5  ×  104 SWHEL wild-type (expressing CD45.1) 
and 6.5 × 104 Slc1a5−/− B cells (expressing CD45.1 and CD45.2; 
1:1 ratio) into C57BL/6 mice and at the same time immunized 
them with sheep red blood cells conjugated to HEL. Analysis 
of B  cell populations in the spleen 7  days post-immunization 
and adoptive transfer showed that Slc1a5−/− B cells were able to 
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FigUre 6 | normal B cell development in the spleen of slc1a5−/− mice. Representative gating strategy (a), and percentages of B cells at different developmental 
stages (B) in the spleen. Data were pooled from two separate experiments with 4–5 mice per group and experiment. Each experiment is shown by a separate symbol. 
Statistical analysis between Slc1a5+/+ and Slc1a5−/− mice was done using an unpaired t-test, no significant differences were found. Error bars show SD.
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generate a functional germinal center (GC) response even when 
competing with WT cells (Figure 8). Thus, not only were B and 
T cell development unaffected in Slc1a5−/− mice, their B cell effec-
tor function was also normal.

DiscUssiOn

Metabolic rewiring is now recognized as a hallmark of cancer 
(44). More specifically, glutamine addiction has been identified 
as a potential target to treat cancer metabolism either through 
inhibition of enzymes in the glutaminolysis pathway or its associ-
ated glutamine transporters (12, 45, 46). Due to the upregulation 
of SLC1A5 and LAT1 in a wide spectrum of human cancers (16), 
both transporters are currently being investigated as therapeutic 
targets (20, 24, 28, 47, 48).

However, glutamine is also crucial to the immune system, 
both to terminally differentiated immune cells such as neutro-
phils (49) and macrophages (49–51), and to activated lympho-
cytes (30, 31). Despite this, studies on the role of SLC1A5 in 
immune cells, which are themselves crucial to combating cancer, 
have only recently begun. In C57BL/6 ×  129/sv mice, Nakaya 
et al. recently showed that SLC1A5 plays a role in CD4 helper 
T cell differentiation, via integration of TCR signaling through 
mTOR (32), possibly by providing an exchange substrate for 
leucine import by LAT1. Furthermore, SLC1A5 played a role in 
experimental allergic encephalomyelitis (EAE), a murine model 
of T  cell-mediated autoimmunity (32). The study showed an 
effect of SLC1A5 deficiency on T cell development in 5-month-
old C57BL/6  ×  129/sv mice, but only mild effects in mice 
6–7 weeks old, with reduced B cell numbers in the spleen (32). 

http://www.frontiersin.org/Immunology/
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FigUre 8 | Slc1a5−/− B cells generate a functional germinal center (gc) response. (a) Representative gating strategy for hen egg lysozyme (HEL)-binding 
GC B cells in the spleen and representative flow cytometry dot plots for mice immunized with sheep red blood cells (SRBCs) that were either unconjugated (B) or 
conjugated to HEL (c). n = 8 mice injected with Slc1a5+/+ CD45.1+ and Slc1a5−/− CD45.1+/CD45.2+ SWHEL B cells and SRBC-HEL. n = 2 Mock-SRBC control mice 
injected with Slc1a5+/+ CD45.1+ and Slc1a5−/− CD45.1+/CD45.2+ SWHEL B cells and unconjugated SRBCs.

FigUre 7 | no differences in antibody responses to immunization between Slc1a5+/+ and Slc1a5−/− mice. Serum IgM concentration in un-immunized mice 
(a), relative concentration of IgG1 antibodies to CGG 2 weeks (B) and 4 weeks (c) post-primary immunization, of IgG2a antibodies to Bordetella pertussis (D) and 
IgG1 antibodies to ABA BSA (e) 4 weeks post-primary immunization. Statistical analysis between Slc1a5+/+ and Slc1a5−/− mice was done using an unpaired t-test, 
no significant differences were found. Error bars show SD.
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In line with these results, our investigation in mice on a pure 
C57BL/6 background showed no effect of SLC1A5 deficiency 
on T cell development in the spleen and thymus of 7–14-week-
old mice (Figures 4 and 6). However, we also found no effect 
of SLC1A5 deficiency on B cell numbers in the spleen of these 
mice (Figure  5). This difference may be due to the different 
background of mice used in the two studies.

Moreover, our in depth characterization of B cell development 
in the bone marrow and spleen showed no differences in B cell 

progenitors and effector subsets between Slc1a5+/+ and Slc1a5−/− 
mice. Even in the sensitive and competitive in vivo environment 
of mixed bone marrow chimeras, Slc1a5−/− and wild-type HSCs 
demonstrated the same capacity to reconstitute the B and T cell 
compartments. The lack of effect of SLC1A5 deficiency on 
HSC development in the bone marrow is in line with reports 
demonstrating that long-term (LT) HSCs survive in a highly 
hypoxic environment and are characterized by strong glycolytic 
metabolism and upregulation of Hif-1α (52). These results indicate 
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either that the function of SLC1A5 is redundant in developing 
lymphocytes, and/or that SLC1A5 deficiency can be compensated 
for by upregulation of other transporters. This is similar to the 
scenario described by Broer et al. (9) in 143B human osteosar-
coma cells where net glutamine import is mediated in large part 
not by SLC1A5, but by the sodium neutral amino acid transport-
ers SNAT1 and SNAT2 (9). Moreover, MCF-7 breast cancer cells 
are also resistant to silencing of SLC1A5 (28). In these cell lines, 
SLC1A5 is not required for net uptake of glutamine, but rather 
for avoiding an amino acid starvation response. This is in line 
with the earlier finding by Bode et al. (1) that competitive inhibi-
tion of SLC1A5-mediated glutamine uptake in human hepatoma 
cell lines blocked their proliferation only in cells lacking expres-
sion of SNAT1 and SNAT2, and exhibiting low mRNA levels of 
glutamine synthetase (1). Indeed, we showed here that despite the 
dramatic increase in glutamine flux across the plasma membrane 
observed in LPS-activated relative to resting lymphocytes, B and 
T cell proliferation was only transiently affected by SLC1A5 defi-
ciency, and only under strong stimulus conditions. This finding, 
together with the findings of Bode et al. (1) and Broer et al. (9), 
indicates that as in 143B cells, MCF-7 cells, and the hepatoma 
cell lines HepG2 and Hep3B, SLC1A5 may act as an “amino acid 
harmonizer” in lymphocytes, while other transporters such as 
SNAT1 (SLC38A1) and SNAT2 (SLC38A2) mediate net import 
of glutamine. This is supported by gene expression data in the 
Immgen database (53) showing high expression, particularly 
of SLC38A2 across the immune system. B cells undergo phases 
of intense proliferation, but most likely under nutrient-replete 
conditions. Under these conditions, lack of SLC1A5 may not 
have a strong impact.

Nakaya et al. (32) demonstrated an effect of SLC1A5 deficiency 
on T cell effector function, with impaired differentiation of helper 
T cells toward the Th1 and Th17 subsets. The strong utilization 
of glutamine by activated lymphocytes is well documented (4–6, 
30, 54, 55), as is the importance of glutamine to T cell differentia-
tion and effector function (30, 31, 56, 57). However, the role of 
glutamine is relatively uncharacterized in B  cells, and the role 
of SLC1A5 in B cell development and function is even less well 
known. Our findings that Slc1a5−/− mice elicit normal primary 
and secondary antibody responses to immunization and that 
Slc1a5−/− B cells are capable of generating a normal GC response 
(even when competing with wild-type B  cells) indicate that 
B  cell effector function is not significantly affected by SLC1A5 
deficiency. We also did not find a reduction in the number of 
B cells in the spleen previously reported by Nakaya et  al. (32). 
A likely explanation for this difference is the use of mice from a 
mixed 129/C57BL/6 background by Nakaya et al. and mice on a 
pure C57BL/6N background in our study.

In summary, our data indicate a significant but not exclusive 
role for SLC1A5 in glutamine uptake by activated lymphocytes, 

but a role that is neither indispensable to proliferation in response 
to mitogen stimulation, nor crucial to B and T cell development 
and B  cell effector responses, in C57BL/6 mice. These results  
suggest that treatment of cancers with SLC1A5 inhibitors may 
only have a limited impact on the adaptive immune system.
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FigUre s1 | normal B cell reconstitution in mixed BM chimeras. We 
generated mixed BM chimeras by injecting a mix of CD45.1+ WT BM and 
CD45.2+ Slc1a5−/− bone marrow into sublethally irradiated CD45.2+ 
Rag1−/− recipients. As controls, we also used a mix of CD45.1+ WT with 
CD45.2+ WT BM cells. To test the efficiency of B cell reconstitution, we 
normalized the percentage of CD45.2+ B cells to the percentage of CD45.2+ 
T cells in the same mouse. Statistical analysis was done using a Student’s 
t-test. No statistical significant difference was found between the two sets  
of chimeras.
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