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Preeclampsia (PE) is a common vascular disease of pregnancy with genetic predisposition. 
Dysregulation of the complement system has been implicated, but molecular mechanisms 
are incompletely understood. In this study, we determined the potential linkage of severe PE to 
the most central complement gene, C3. Three cohorts of Finnish patients and controls were 
recruited for a genetic case-control study. Participants were genotyped using Sequenom 
genotyping and Sanger sequencing. Initially, we studied 259 Finnish patients with severe 
PE and 426 controls from the Southern Finland PE and the Finnish population-based PE 
cohorts. We used a custom-made single nucleotide polymorphism (SNP) genotyping assay 
consisting of 98 SNPs in 18 genes that encode components of the complement system. 
Following the primary screening, C3 was selected as the candidate gene and consequently 
Sanger sequenced. Fourteen SNPs from C3 were also genotyped by a Sequenom panel 
in 960 patients with severe PE and 705 controls, including already sequenced individuals. 
Three of the 43 SNPs observed within C3 were associated with severe PE: rs2287845 
(p = 0.038, OR = 1.158), rs366510 (p = 0.039, OR = 1.158), and rs2287848 (p = 0.041, 
OR = 1.155). We also discovered 16 SNP haplotypes with extreme linkage disequilibrium 
in the middle of the gene with a protective (p = 0.044, OR = 0.628) or a predisposing 
(p = 0.011, OR = 2.110) effect to severe PE depending on the allele combination. Genetic 
variants associated with PE are located in key domains of C3 and could thereby influence 
the function of C3. This is, as far as we are aware, the first candidate gene in the comple-
ment system with an association to a clinically relevant PE subphenotype, severe PE. The 
result highlights a potential role for the complement system in the pathogenesis of PE and 
may help in defining prognostic and therapeutic subgroups of preeclamptic women.

Keywords: preeclampsia, complement, C3, association study, gene regulation, genetic risk, pregnancy 
complication, innate immunity
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inTrODUcTiOn

Preeclampsia (PE) is a serious vascular complication of pregnancy, 
which may lead to a life-threatening multi-organ dysfunction 
and a convulsive condition, eclampsia (1). PE affects 3–5% of 
pregnancies in all ethnic groups. The development and progres-
sion of the disease are unpredictable with delivery being the only 
effective cure.

Preeclampsia has been the subject of numerous genetic studies 
and several associating single nucleotide polymorphisms (SNPs) 
have been identified. Among the genes where associating SNPs 
have been described are genes linked to hypertension and vascular 
and metabolic disease (2–4), all diseases whose risk is increased 
in the later life of PE patients (5). Furthermore, genes encoding 
for proteins involved in the immunological processes have also 
been found to harbor SNPs that predispose patients to PE (6, 7).

Pregnancy is the ultimate immunological paradox, where 
the maternal immune system must accommodate to protect the 
mother and growing fetus from pathogens while allowing the 
semiallograft fetus to persist and thrive. PE is a vascular disease 
that involves poor placentation (8), especially in the severe and/or 
early onset (diagnosis or delivery <34 weeks of gestation) forms 
of the disease, where immunological mechanisms have been 
implicated (9, 10). Among the immunological effector mecha-
nisms, inadequate control of the maternal complement system 
has been suggested to contribute to the etiology of PE (11, 12).

The complement system is a part of the immune system that is 
involved in generating inflammation and mediating the clearance 
of microbes and injured tissue materials. It can be activated by 
the classical, the lectin, or the alternative pathway, which proceed 
stepwise in a controlled cascade of interactions between surface-
bound and soluble proteins in the serum. Complement C3 is the 
central component of all activation pathways. It is among the 
most ancient components of innate immunity that has evolved 
over 1,000 million years ago (13). Indeed, the functional domains 
of the human C3 are conserved in corals and Cnidarians (14, 15). 
The ancient evolutionary attribute of C3 and its abundance in the 
human serum indicate its important role as the key component 
of immunity against infection and in the discrimination between 
self and non-self (16).

C3 is a large protein formed by pair of disulfide-linked α- and 
β-chains and 13 individual domains. In shape, it is a “robot”-like 
molecule that has eight macroglobulin domains “the body,” 
a linker (LNK), the C3a anaphylatoxin, an arm-like region 
with the “C1r/s, UEGF, BMP1” (CUB), a thioester-containing 
domain (TED), an N-terminal domain (αʹNT), and the “head” 
(C345C) linked to the body with an anchor (17). The domains 
are encoded by 41 exons of the C3 gene. When C3 is activated 
to C3b, an internal thioester bond is disrupted allowing covalent 
attachment of C3b to target surfaces. Subsequently, factor B binds 
to the MG2 and CUB domains of C3b (18). A C3 convertase, 
C3bBb, is formed when factor D activates C3b-bound factor B to 
breakdown product. Thereafter, C3bBb cleaves new C3 molecules 
to C3b to release anaphylatoxic C3a fragments to the circula-
tion (19). The main inhibitors of C3 activation, factor H, decay 
accelerating factor (CD55), and CR1 bind partially to the factor 
B-binding site to prevent or disrupt C3bBb formation (17, 20).

Mao et  al. showed that alternative pathway complement  
activation is the key mechanism for reproductive failure in 
complement inhibitor deficient (Crry−/−) mice (21). Recently, 
it was shown that alternative complement pathway becomes 
activated also in human pregnancies, where severe PE develops 
(11). Successful treatment of a patient suffering from HELLP 
syndrome (hemolysis, elevated liver enzymes, low platelet count), 
a life-threatening complication of PE, by eculizumab, a targeted 
inhibitor of complement protein C5, demonstrated that the 
complement system could provide a promising target for drug 
development in severe PE (22). C5 is the initiator of the final 
stages of complement activation, i.e., the lytic terminal pathway.

We have looked for SNP association with severe PE among 18 
genes coding for the complement system. The most promising 
associations were found in C3, where linkage both to individual 
SNPs and to a distinct haplotype, was observed. C3 was thus 
subsequently chosen for detailed capillary sequencing of its exons 
and promoter regions (PROMs) in women with severe PE and 
controls with non-PE pregnancies.

MaTerials anD MeThODs

This case-control study was conducted at the Department of 
Medical and Clinical Genetics and Institute for Molecular Medicine 
Finland in the University of Helsinki. The number of women and 
methods of genotyping in each stage of the study are described 
in detail in the work flow chart (Figure 1). All subjects provided 
a written informed consent in accordance with the Declaration 
of Helsinki. Study protocols were approved by the local Ethical 
Committees, specifically, for the FINNPEC study, ethical approval 
has been obtained from the Coordinating Ethics Committee, 
Hospital District of Helsinki, and Uusimaa, for the Finnish 
population-based PE cohort was approved by the ethics commit-
tee of the Finnish Red Cross Blood Service and by the Ministry of 
Social Affairs and Health and for Southern Finland PE study was 
approved by the Ethics Committee of the Department of Obstetrics 
and Gynaecology at Helsinki University Central Hospital.

selection of study subjects and 
Diagnostic criteria
Study subjects were selected from three Finnish PE cohorts; The 
Finnish population-based PE cohort (23), The Southern Finland 
PE cohort (23), and the Finnish Genetics of PE Consortium 
(FINNPEC) cohort (24) (Table S1 in Supplementary Material). 
Only women with a singleton pregnancy were included in the 
study. Except for three women from the Southern Finland PE 
cohort, where data on subjective symptoms were not available, all 
women with PE met the criteria of severe PE (23). Severe PE was 
defined as having repeatedly maximum systolic blood pressure 
(BP) ≥ 160 mmHg and/or maximum diastolic BP ≥ 110 mmHg 
or proteinuria ≥5 g/day or significant subjective symptoms in a 
woman diagnosed with PE according to the American College of 
Obstetricians and Gynecologists (25).

The clinical characteristics of all women whose samples were 
used for sequencing and Sequenom genotyping are described 
in Table 1. Body mass index was defined as the pre-pregnancy 
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FigUre 1 | The workflow of c3 project with the analysis process and appropriate method in parallel. The single nucleotide polymorphisms (SNPs) that 
were assessed in each stage are identified by the respective color in the method panel in Figure 2. SPE, severe preeclampsia.

TaBle 1 | clinical characteristics of the southern Finland cohort (N = 32, data missing for five individuals) and the Finnish genetics of Preeclampsia 
(FinnPec) cohort participants in C3 sequencing and genotyping.

controls (N = 702) severe preeclampsia 
(Pe) (N = 991)

p-Value* 
(compared 
to controls)

severe Pe p-Value* 
(compared 
to controls)The sanger sequencing 

stage (N = 27) median 
(25th, 75th percentile)

Age, years 29.5 (26, 33) 31 (27, 35) N = 986 <0.001 31 (25, 33) 0.742
Pre-pregnancy body mass index, kg/m2 23 (20.8, 25.9) 24 (21.3, 28) N = 988 <0.001 22.5 (20.7, 24) 0.132
Highest systolic blood pressure (BP), mmHg 125 (118, 133) 171 (161, 184) <0.001 170 (160, 180) <0.001
Highest diastolic BP, mmHg 82 (78, 87) 112 (107, 118) <0.001 105 (100, 110) <0.001
Proteinuria (DU-prot, diurnal collection sample), g/d 4.2 (1.8, 7.1) N = 927 NA 5 (1.7, 15.2) 0.002
Proteinuria (U-prot, single sample), g/l, median (max, min)a 1.3 (0.7, 3.2), N = 13 0.189 NA NA
Proteinuria measured by dipstix N (% positive:  
+, ++, +++)b

23 (3) 54 (5.4) 0.03 NA NA

Primipara N (%) 377 (54) 733 (73) <0.001 31 (100) 0.017
Birth weight SD score 0 (−0.6, 0.7) N = 700 −1.3 (−2.0, −0.5) N = 990 <0.001 −1.7 (−2.3, −0.7) <0.001
Gestational age at birth, weeks 40 (39, 41) 37 (34, 38) <0.001 36 (31, 38) <0.001

*Mann–Whitney U (continuous) or χ2 (categorical), Fisher’s exact for small groups N < 5.
aAmong those with no diurnal protein available.
bAmong those with no quantitative (diurnal or single sample) protein measurement.
Values for continuous variables are median (25, 75 percentiles) unless otherwise indicated, the number of subjects is indicated where data are not available for all participants.
Proteinuria was also observed in 11 controls, who did not meet the diagnostic criteria of PE.
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weight in kilograms divided by height in meters squared (kg/m2). 
Pregnancy weight and height measures were obtained from the 
antenatal charts. Relative birth weight SD units (Z-score) were 
calculated according to Finnish standards (26).

Subjects in Complement Genotyping
The SNP genotyping was performed in 259 PE women and 426 
non-PE controls. The PE women and controls were selected 

from the Finnish population-based PE cohort and the Southern 
Finland PE cohort with preference on severity of the disease.

Subjects in C3 Sequencing and Microsatellite 
Analysis
We performed C3 sequencing and the microsatellite analysis of 
the upstream regulatory motif in 32 severe PE women from the 
Southern Finland PE cohort (Table 1) and 95 non-PE controls 
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FigUre 2 | The haploblock structure within C3 determined by sanger sequencing and replication studies. The intensifying gradient of red represents the 
increasing relative linkage disequilibrium between two variants. The associating Block 2 is identified by the black triangle in the middle of the gene and had a 
multiallelic Dʹ score of 0.623. The single nucleotide polymorphisms (SNPs) that were assessed in each replication stage are identified by the respective color square 
that correspond to colors in the material panel in Figure 1. The independently associating SNPs are indicated by stars. All SNPs in this image are listed in Table S4 
in Supplementary Material.
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from the FINNPEC cohort. These data were also used in the  
relative extended haplotype homozygosity (REHH) statistics.

Subjects in C3 Replication by Sequencing
Ninety-five women with severe PE from the FINNPEC cohort 
were selected for the second stage of sequencing, which involved 
re-sequencing the middle part of the gene indicated by blue in 
Figure 2. The replication sequencing data were used in the REHH 
statistics.

Subjects in Replication by Sequenom Genotyping
Fourteen SNPs were validated in 960 women with severe PE and 
705 non-PE controls from the FINNPEC cohort (including all 
of the FINNPEC participants included in the initial explora-
tory Sequenom genotyping). These data were combined with 
sequenced genotypes of C3 in the initial phase and replication 
phase for the single SNP association analysis. The study subjects 
are described in Table 1.

complement genotyping
A custom SNP genotyping was performed using Sequenom’s 
MassARRAY MALDI-TOF Mass Spectrometry Compact platform 
and iPLEX Gold chemistry (Sequenom Inc., San Diego, CA, USA) 
with standard protocols as described elsewhere (27). Briefly, 18 

genes coding for components of the complement system were cho-
sen for genotyping and for each gene, SNPs with assumed relevance 
were selected based on published data on protein function, activ-
ity, or disease association (Table S2 in Supplementary Material). 
Furthermore, we included potentially functional nonsense and mis-
sense SNPs, and finally, we also included some intronic, promoter 
or 3ʹ end SNPs as markers of association. A total of 98 SNPs were 
assayed in four multiplexes of 15–34 markers each. We focused on 
SNPs with minor allele frequencies >0.05 in European populations 
based on the HapMap data (28). Genotypes were analyzed using 
Sequenom’s MassARRAY Typer version 4.0 software.

Microsatellite analysis
The size of the (CA)n repeat polymorphism GF100472 in the 
promoter area of the C3 gene was determined by fragment 
analysis. The repeat area was amplified by PCR using FAM-
labeled forward primer and non-labeled reverse primer (Table S3  
in Supplementary Material) in PCR conditions of an initial dena-
turation at 95°C for 10 min, followed by 32 amplification cycles of 
95°C for 30 s, 67°C for 30 s, and 72°C for 50 s and final extension 
at 72°C for 7 min. The sizes of the amplified fragments were deter-
mined using an automated capillary sequencer ABI3730xl DNA 
Analyzer (Applied Biosystems). GeneScan 500 LIZ Size Standard 
(Applied Biosystems) was used to size the fragment data. The 
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number of CA repeats was determined with Gene Mapper v4.0 
software (Applied Biosystems) and the repeat alleles were clas-
sified as short length (CA8–10), medium length (CA11–12), or long 
(CA15) for the purpose of analysis.

C3 sequencing
The exonic areas of the C3 gene including flanking intronic 
regions and potential splice sites and 650  kb PROM were 
sequenced using standard Sanger sequencing with primers 
detailed in S3. Amplitaq Gold (Applied Biosystems) enzyme 
was used in the reactions. Samples were purified from 
excess primers by digestion using 2.5  U of Shrimp Alkaline 
Phosphatase USB and 5  U of Exonuclease I (New England 
Biolabs) at 37°C for 60 min, followed by inactivation of 15 min 
at 80°C. Purified samples were prepared for sequencing using 
the BigDye 3.1 terminator (Applied Biosystems) as instructed 
by the manufacturer. The sequencing reaction was as follows: 
initiating step of 96°C for 1  min, 25 cycles of 96°C for 10  s, 
53°C for 5 s, 60°C for 4 min. Sequence samples were purified 
with the Millipore Multiscreen plates (Millipore, USA) with 
Sephadex G-50 Superfine Sepharose (Amersham Biosciences, 
Sweden). Electrophoresis was performed with an ABI 3730 
DNA Analyzer (Applied Biosystems) and base calling using 
the Sequence Analysis 5.2 software (Applied Biosystems). 
Initial analysis was carried out in Variant Reporter 1.0 software 
(Applied Biosystems) and the reported results were checked by 
Sequencher 4.1.4 software (Gene Codes, USA).

replication by sequenom genotyping
Fourteen SNPs covering the length of the gene (indicated by 
red rectangles in Figure 2) were included in a single Sequenom 
iPLEX. The purpose of the Sequenom replication was to increase 
the sample size to gain reliability of analyses. The assay design 
and the genotyping were performed with Sequenom MassArray 
system at the FIMM Technology Centre, University of Helsinki. 
The Technology Centre performed routine quality control steps 
to ensure high quality of the genotyping.

Quality control
Genotyping results from all methods were tested for deviations 
from the Hardy–Weinberg equilibrium (p  <  0.05), and none 
were discovered in the controls. Data on three individuals were 
removed due to unresolved discrepancy between the sequenced 
and the genotyped results and data from 11 individuals were 
removed due to >10% failed genotyping by the Sequenom (Table 
S1 in Supplementary Material).

In Silico analysis of Functionality
Ensemble Variant Effect Predictor and Human Splicing Finder 
3.0 online softwares were used to assess the consequences of the 
five intronic SNPs of interest (29). RNAsnp by Center for non-
coding RNA in Technology and Health (RTH) was the final online 
software that was applied to detect possible local RNA secondary 
structure changes, which might be introduced by exonic SNPs 
and could lead to changes in posttranscriptional processes of an 
otherwise functional gene (30, 31). Mode 2 of the program was 
used, as it is applicable for large mRNAs (>1,000 nucleotides). 

Following the suggested limits, a p-value <0.2 was considered 
indicative of an SNP induced change in secondary structure.

The relative extended haplotype 
homozygosity
To predict selection pressure toward the discovered haplotype 
and pinpoint its structure, we completed a REHH analysis 
using the associating rs2287845 as a focal SNP (32). REHH was 
conducted in R following the developer’s instructions to reveal 
the evolutionary selection pressures underlying the haplotype 
structure. All Sanger sequenced individuals (initial cohort and 
replication cohort N =  213) were used for REHH and missing 
genotypes were imputed using fastPHASE software (33, 34).

statistical analyses
The results of the complement SNP genotyping were analyzed in 
PLINK (35). The C3 sequencing results were analyzed for associa-
tion in gPLINK and PLINK. Single SNP association to disease 
was evaluated by Fisher’s Exact test and results were confirmed 
in Haploview (36). Haplotype analysis was conducted with the 
Haploview software (36). Association analysis of individual SNPs 
and the discovered haplotype blocks was done using χ2 test in the 
Haploview program.

resUlTs

snP genotypes of complement genes
To analyze potential associations between PE and complement 
genes, we genotyped selected SNPs in 17 genes coding compo-
nents of the complement system. No differences were observed 
in 64/72 SNPs between 259 PE women and 426 non-PE controls 
(data not shown). Out of the remaining eight SNPs, three associ-
ated to C3 in genotypic model analysis and in C3, rs2230204, and 
rs2230205 were associated after permutation. rs2230204 in the 
proximity of C3 exon 14 was most likely to have an independent 
effect (likelihood ratio test: χ2 = 5.1, df = 1, p = 0.024).

C3 sequences
In the C3 promoter, exons, and flanking introns, a total of 43 SNPs 
were identified in severe PE women, non-PE controls, or both 
(Figure  2). rs200046246 is located in a predicted transcription 
factor-binding site. It is a missense SNP that causes an amino acid 
change K779R. It was predicted by SIFT and POLYPHEN2 to be 
well tolerated and benign, apparently, because there is no change 
in the charge of the amino acid (both lysine/K and arginine/R 
are basic residues). Other variants were either synonymous 
or intronic. Six SNPs were independently associated to severe 
PE. rs190390034 (−39 from exon 2) had the strongest asso-
ciation with a predisposing effect with minor allele T [χ2 = 7.72, 
p-value = 0.005; OR = 7.627 (95% CI 1.442, 40.350)] (Figure 2). 
While we had appropriate power to assess three of six SNPs 
with single SNP association: rs2287845 [minor allele frequency 
(MAF) = 0.426, p = 0.038, OR = 1.158, 95% CI = 1.009, 1.331], 
rs366510 (MAF = 0.426, p = 0.039, OR = 1.158, 95% CI = 1.008, 
1.330), and rs2287848 (MAF = 0.426, p = 0.041, OR = 1.155, 95% 
CI = 1.006, 1.327), the associations of the remaining three SNPs 
are only suggestive (Table 2).
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FigUre 3 | C3 is located in chromosome 19 in the reverse strand. The discovered single nucleotide polymorphism (SNP) associations, their positions, and 
associating haploblocks are depicted in (a). The associating SNPs and their locations in the domains of the functional C3 are shown in the schematic structure in 
(B). All associating SNPs are located in introns with the exception of rs183805948, which is located in the PROM. The domains are TED—thioester-containing 
domain (C3d); CUB—complement C1r/C1s, Uegf, Bmp1; MG1–7—macroglobulin domains 1–7; αʹNT—N-terminal region of the cleaved α-chain in the linker 
domain; Ana—anaphylatoxic region (C3a); LNK—β-strand of the linker domain; PROM—promoter region.

TaBle 3 | The region covered by haploblock 2 had two haplotypes of 16 snPs with suggestive association to preeclampsia.

haploblock 2 Frequency cases/controls Proposed effect χ2 p-Value Odds ratio (t, Wald test)

CCCCCCCGCTCGACGC 0.274/0.366 Protective 4.047 0.044 0.628 (6.08)
CTTTTCTGGcCGCGAC 0.182/0.094 Predisposing 6.511 0.011 2.110 (4.72)

The focal SNP rs2287845 in relative extended haplotype homozygosity analysis (Figure 4) is indicated in bold.

TaBle 2 | six non-coding single nucleotide polymorphism (snP) have independent allelic association to severe preeclampsia.

genomic position (Build 38) snP Minor allele frequency in cases/controls N χ2 p-Value Odds ratio (ci95)

19:6686493 rs2241391 0.023/0.014 1,694 4.071 0.044 1.73 (1.009, 2.966)
19:6696331 rs2287848 0.441/0.405 1,693 4.163 0.041 1.155 (1.006, 1.327)
19:6696586 rs2287845 0.441/0.405 1,693 4.328 0.038 1.158 (1.009, 1.331)
19:6697818 rs366510 0.441/0.405 1,693 4.283 0.039 1.158 (1.008, 1.330)
19:6719442 rs190390034 0.078/0.011 123 7.72 0.005 7.627 (1.442, 40.35)
19:6720961 rs183805948 0.031/0 123 5.734 0.017 NA

CI95, 95% confidence intervals; NA, not available (the variant was not observed in controls).
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A set of alleles spanning from 5ʹ intron proximal to exon 18 to 
the 5ʹ intron proximal to exon 25 and consisting of 16 SNPs was 
found to be associated with severe PE. One haplotype showed an 
association in a protective (frequency in severe PE women and 
non-PE controls 0.275 and 0.366, respectively, p =  0.044), and 
another one in a predisposing manner (frequency in severe PE 

women and non-PE controls  =  0.182 and 0.094, respectively, 
p  =  0.011) (Table  3). Mapping the 16 SNPs contributing to 
the haplotype along the C3 gene showed that the tagging SNP 
rs2287845 is located 7bp in 3ʹ direction of exon 22, which cor-
responds to the alpha-chain of the gene product at the edge of 
MG7 and directly before (5ʹ) the CUB domain (Figure 3). The 
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proposed haplotype spans across the middle of the gene from the 
3ʹ intron of exon 18 situated at the 5ʹ end of the ANA domain right 
before the αʹNT domain and at 5ʹ direction reaching past the CUB 
and into the TED domain. Three of the SNPs in the haplotype 
(rs406514, rs11569450, and rs432823) are located in the introns 
flanking exon 18, which codes for the αʹNT domain. The regula-
tory microsatellite region was not associated with severe PE.

In Silico Functional analysis
Human Splicing Finder 3.0 found splicing motives to be influ-
enced by four of the associating C3 SNPs: rs190390034, rs2287848, 
rs366510, and rs2241391. rs366510, rs2241391, and rs190390034 
were predicted to create an exonic splicing enhancer (ESE) site 
within an intron, whereas rs2287848 was found to create a novel 
ESE site as well as to cause an alteration of an existing ESE site. In 
RNAsnp, rs190390034 had a p-value of 0.029 indicating a disrup-
tion in local RNA folding and rs2241391 had a p-value of 0.169 
indicating a likely disruption in local RNA folding. The associat-
ing SNPs within the haploblock region (rs2287845, rs366510, and 
rs2287848) had RNAsnp p-values >0.2 indicating no significant 
structural change caused by these variants.

The relative extended haplotype 
homozygosity
The tagging SNP rs2287845 was associated with an extended 
haplotype to the 5ʹ direction on the C3 gene suggesting that this 
structure with tight linkage disequilibrium in the middle of the 
gene results from a positive selection pressure (Figure 4).

DiscUssiOn

In this study, we have described genetic variants of the key com-
plement component C3 in women with severe PE and control 
women with non-PE pregnancies. We identified a 16-nucleotide 
haplotype signature in the highly conserved middle region of 
the maternal C3 gene with three associating SNPs (rs2287845, 
rs366510, and rs2287848) that could influence susceptibility to 
severe PE.

The three C3 SNPs that associate with severe PE are located in 
the area of most intense linkage disequilibrium in the middle of 
the associating haploblock. The discovery of predisposing SNPs 
within the haploblock structure supports a possible functional 
role for the haploblock-encoded gene product. Furthermore, 
rs190390034 is an intronic variant 38 bp 5ʹ downstream of exon 
2 that is in tight linkage disequilibrium with the haploblock 
structure in the middle of the gene. rs190390034 has a perfect Dʹ 
score of 100 for the tagging SNP rs2287845 (Figure 2). Among 
43 observed SNPs, rs190390034 had the best allelic association 
with severe PE. While suggestive due to insufficient sample 
size, the independent association of rs190390034 with severe 
PE supports the role of the haploblock in severe PE. With the 
available genotypes for the remaining two of the six associating 
SNPs within C3 we were underpowered due to insufficient sample 
size (rs190390034) and rarity of the variants (rs183805948 and 
rs2241391). Therefore, the latter results should be interpreted 
with caution.

In support of the causality of changes in the haploblock 2 
area of the C3 gene, two of the three associating SNPs within 
the haploblock described in our study have been implicated in 
prior studies in other phenotypes. rs2287845*C has been shown 
to be significantly associated with overall survival and prognosis 
in patients with early stage non-small cell lung cancer after 
surgical resection (37). rs366510 is a probable splicing variant 
that has been linked to asthma and related phenotypes in two 
independent studies (38, 39). None of these studies looked for 
a haplotype association within C3. Intronic variants causing 
C3 splicing mutations have been described in patients with C3 
deficiency due to exon deletion from the C3 mRNA (40, 41). The 
current study is according to our knowledge the first one to show 
a disease association in C3 with a haplotype-based mechanism 
instead of the conventional single SNP association. Indeed, it 
has become apparent that while mutations leading to changes in 
amino acid sequences are readily detected, more subtle changes 
in gene regulatory elements are most likely accountable for much 
of the phenotypic variation we observe in complex diseases  
(42, 43). Such regulatory features remain cryptic in analyses at the 
translational and posttranslational level.
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In other genes, intronic disease associations with causative 
splicing defects have been described (44, 45). In the field of 
reproductive immunology in a set-up similar to our study, 
an intronic haplotype was found to result in IL-10 secretion 
changes in women with idiopathic recurrent miscarriage (46). 
Furthermore, it was recently shown that mechanical nucleosome 
binding occurs even on top of genes (47). Therefore, it is possible 
that non-coding SNPs may have an important regulatory role, 
e.g., by influencing DNA folding.

Complement C3 plays a central role in a successful pregnancy. 
Inappropriate complement activation may play a role in the initial 
stages of PE pregnancies contributing to inadequate placentation 
or placental dysfunction. The anecdotal reports of success of 
eculizumab in the treatment of a full-blown disease indicate that 
the complement system is also involved in the later stages of the 
disease possibly by generating inflammation or tissue damage 
(22, 48). Problems may emerge if disturbances in the removal of 
ischemic or injured placental components by complement and 
phagocytes occur (49). Lack of functioning C3 in mice led to 
fewer pregnancies and to a higher fetal reabsorption rate, while 
fetal and placental weights were lower (50). On the other hand, 
C3-mediated over-activation of the complement system was 
shown to induce hypertension following placental ischemia in rats 
(51). Furthermore, complement activation at the feto-maternal 
interface of Crry−/− mice that lack a key complement regulator 
was shown to cause fetal loss. The embryos were rescued when 
Crry−/− mice were bred to C3−/− mice (52). These observations 
underline the importance of balanced activation and regulation 
of the complement system for a healthy pregnancy.

Because C3 activation by the C3 convertases requires extensive 
conformational changes and translocation of the CUB/TED and 
αʹNT domains (17), protein changes caused by variants in the 
middle of the C3 gene may hinder binding of factor B to C3b 
causing the C3 convertase to function inefficiently (Figure  3). 
If the haplotype described here has an effect on C3 function as 
suggested by its critical location, it is possible that C3 activation 
in the individuals with the protective haplotype is properly regu-
lated. Thereby, the extravillous trophoblasts (EVTs) invading the 
maternal tissue during placentation would not encounter a vigor-
ous complement attack. Thus, they could successfully remodel 
the uterine spiral arteries resulting in a non-PE pregnancy with a 
healthy blood flow and placental development (9). Concurrently, 
the predisposing haplotype may result in an increased level of 
complement activation as indicated by increased factor B (Bb) 
levels early in the pregnancy. Complement attack could compro-
mise the EVT invasion and consequently the placental function 
resulting in an increased occurrence of severe PE (11, 53).

C3 promoter activity is dependent on the dinucleotide repeat 
polymorphism GF100472 such that the longer the CA repeat 
region, the lower the transcriptional activity of C3 (54). A shorter 
repeat has shown protective effect against mesial temporal lobe 
epilepsies and febrile seizures. However, in the present study, we 
did not find any indication of association of the CA-repeat to 
severe PE in a small patient cohort.

The functional polymorphism rs2230199 in C3 is known as 
the slow/fast mutation that influences C3 protein mobility in 
electrophoresis gels. C3F has been described as predisposing to 

PE (55), but we did not find any association of C3F with severe 
PE. Our result concurs with an early study of C3 allotypes that did 
not find association of C3F with PE (56).

The REHH analysis shows that the haploblock structure in the 
middle of C3 is tightest for the ancestral rs2287845 allele in non-
PE controls suggesting that the structure results from a positive 
evolutionary selection pressure (Figure  4B). A similar pattern 
is observed for the ancestral allele of rs2287845 in PE women. 
However, in severe PE, the haploblock structure disintegrates 
noticeably sooner than in controls, indicating a loosened force 
of active selection (Figure 4A). It would follow that due to a pos-
sible regulatory feature caused by seemingly benign variants that 
have been introduced into the middle of C3, the risk for severe 
PE increases, while haplotypes with the ancestral genotype are 
protective from severe PE and, accordingly, under stronger posi-
tive natural selection.

The heterogeneity of PE is reflected in the comparison of our 
results to another recent study. Wu et al. found that rs698090 
in MASP1 is associated to late-onset but not to early-onset 
PE, and nominally to severe PE in a Chinese population (57). 
In our initial genotyping, we did not find allelic or genotypic 
association of rs608090 to severe PE. It is possible that differ-
ent complement pathways contribute to early-onset PE and 
late-onset PE and the mechanism of these varying associations 
merit more studies.

Targeting gene regulatory effects may provide new opportuni-
ties for PE risk assessment and diagnosis, maybe even future drug 
development (58). The reported results reveal significant differ-
ences between PE and healthy pregnant women but the roles of 
individual SNPs should be considered suggestive and treated with 
caution. With further studies to confirm our findings, assessing 
C3 genetic polymorphisms may be developed as a tool to find 
patients with the highest risk of severe PE.
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