
May 2017 | Volume 8 | Article 6131

Review
published: 26 May 2017

doi: 10.3389/fimmu.2017.00613

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Serge M. Candéias,  

CEA, France

Reviewed by: 
Sandra Demaria,  

New York University, United States  
Abhishek D. Garg,  

University of Leuven, Belgium

*Correspondence:
Jean-Luc Perfettini 

perfettini@orange.fr

Specialty section: 
This article was submitted  

to Cancer Immunity and 
Immunotherapy,  

a section of the journal  
Frontiers in Immunology

Received: 26 December 2016
Accepted: 09 May 2017
Published: 26 May 2017

Citation: 
Wu Q, Allouch A, Martins I, 

Brenner C, Modjtahedi N, Deutsch E 
and Perfettini JL (2017) Modulating 
Both Tumor Cell Death and Innate 

Immunity Is Essential for Improving 
Radiation Therapy Effectiveness. 

Front. Immunol. 8:613. 
doi: 10.3389/fimmu.2017.00613

Modulating Both Tumor Cell Death 
and innate immunity is essential for 
improving Radiation Therapy 
effectiveness
Qiuji Wu1,2,3,4,5,6, Awatef Allouch1,2,3,4, Isabelle Martins1,2,3,4, Catherine Brenner7,  
Nazanine Modjtahedi 2,3,4, Eric Deutsch 2,3,4 and Jean-Luc Perfettini1,2,3,4*

1 Cell Death and Aging Team, Gustave Roussy Cancer Campus, Villejuif, France, 2 Laboratory of Molecular Radiotherapy, 
INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France, 3 Gustave Roussy Cancer Campus, Villejuif, France, 
4 Université Paris Saclay, Villejuif, France, 5 Department of Radiation and Medical Oncology, Zhongnan Hospital,  
Wuhan University, Wuhan, China, 6 Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan 
University, Wuhan, China, 7 Laboratory of Signaling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, Université 
Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France

Radiation therapy is one of the cornerstones of cancer treatment. In tumor cells, expo-
sure to ionizing radiation (IR) provokes DNA damages that trigger various forms of cell 
death such as apoptosis, necrosis, autophagic cell death, and mitotic catastrophe. IR 
can also induce cellular senescence that could serve as an additional antitumor barrier in 
a context-dependent manner. Moreover, accumulating evidence has demonstrated that 
IR interacts profoundly with tumor-infiltrating immune cells, which cooperatively drive 
treatment outcomes. Recent preclinical and clinical successes due to the combination 
of radiation therapy and immune checkpoint blockade have underscored the need 
for a better understanding of the interplay between radiation therapy and the immune 
system. In this review, we will present an overview of cell death modalities induced by 
IR, summarize the immunogenic properties of irradiated cancer cells, and discuss the 
biological consequences of IR on innate immune cell functions, with a particular attention 
on dendritic cells, macrophages, and NK cells. Finally, we will discuss their potential 
applications in cancer treatment.
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iNTRODUCTiON

Radiation therapy has been used in cancer treatment for over a century and represents one of the 
most efficient treatment modalities in the oncology field. Over 50% of all cancer patients receive 
radiation therapy during the course of their disease. Radiation therapy is widely used in many local-
ized solid tumors, ranging from brain tumors, head and neck cancer, lung cancer, esophageal cancer, 
breast cancer, rectal cancer, and cervical cancer to prostate cancer among others. Radiation therapy 
is also used for the management of metastatic diseases such as brain or bone metastasis (1). Despite 
the fact that radiation therapy contributes to approximately 40% of all cancer cures (2), treatment 
failure is frequently observed due to local recurrence and distal metastasis (3).

Antitumor effects of radiation therapy are mainly due to the induction of an important cellular stress 
that triggers cell cycle arrest and leads eventually to either cellular senescence or cell death depending 
on the doses and the irradiation schedules used. Today it is also established that these local biological 
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effects stimulate both innate and adaptive immune cells present 
in the tumor microenvironment and elicit an antitumor response 
at distance of the irradiated tumor sites. This biological process is 
also known as “abscopal” effect. The antitumor response elicited 
by radiation therapy can be enhanced by unleashing immune 
resistance mechanisms through the use of immune checkpoint 
blockers [such as anti-cytotoxic T-lymphocyte-associated  
protein-4 (anti-CTLA-4) or anti-PD-L1 antibodies], revealing 
that the modulation of the cross-talk between the biological 
effects of radiation therapy and the immune system is central for 
optimal tumor growth inhibition (4). The identification of rational 
approaches to design therapeutic strategies for the combination 
of radiation therapy with immunotherapy is still an unmet need. 
A better understanding of the molecular and cellular components 
of the emerging field of radio-oncoimmunology is central for the 
development of novel therapeutic approaches aiming at improv-
ing the effectiveness of radiotherapy.

In this review, we first highlight the diversity of cell death 
modalities elicited by ionizing radiation (IR) and focus on their 
immunogenic potentials. Next, we will briefly describe the roles 
of main innate immune cells in tumor microenvironment and 
then discuss the impacts of IR on various innate cells functions. 
We will also discuss how the modulation of innate immune cell 
functions by IR impacts on cancer treatment. A particular atten-
tion will be paid to dendritic cells (DCs), macrophages, natural 
killer (NK) cells, and myeloid-derived suppressor cells (MDSCs), 
since currently much more is known about these specific cell 
types.

iONiZiNG RADiATiON DiCTATeS THe 
DeATH AND THe iMMUNOGeNiCiTY  
OF CANCeR CeLLS

Despite the fact that radiation therapy plays a central role in 
cancer treatment, the biological processes that are involved in the 
effectiveness of radiotherapy are poorly understood. Even though 
various forms of cell death, including apoptosis, autophagic cell 
death, mitotic catastrophe, and cellular senescence, have been 
detected after IR (5, 6), the precise contribution of these lethal 
events to the biological effects of IR remains elusive.

ionizing Radiation Can eliminate Cancer 
Cells through Distinct Cell Death 
Modalities
After exposure to IR, cancer cells may die through distinct 
modalities (Figure 1). Apoptosis, autophagic cell death, necrosis, 
and necroptosis are cell death modalities that have been exten-
sively studied and characterized. A nomenclature mainly based 
on morphological, biochemical, and enzymatic criteria has been 
proposed and ordered lethal processes in three types, with apop-
tosis as the type I cell death modality, the autophagic cell death as 
the type II cell death, and necrosis or necroptosis as type III cell 
modalities (7).

Apoptosis, which is the principal death modality detected after 
IR, is described as a programmed cell death (PCD) with specific 
morphological alterations such as the chromatin condensation 

(also known as pyknosis), the nuclear fragmentation (also known 
as karyorhexis), the plasma membrane blebbing, and the forma-
tion of apoptotic bodies that could be engulfed by phagocytes (7). 
Apoptosis can be triggered by two distinct interlinked signaling 
pathways, namely the intrinsic pathway driven by intracellular 
cues (such as DNA damage or metabolic alterations) and the 
extrinsic pathway driven by extracellular signals such as death 
ligands. In both pathways, apoptotic signals lead to the activation 
of initiator caspases (CASP) (such as CASP-9 for the intrinsic 
pathway and CASP-8 and -10 for the extrinsic pathway), through 
proteolytic cleavages. Once activated, these initiator proteases 
trigger a cascade of CASP activation by cleaving and activating 
downstream effector CASP (including CASP-3, -6, and -7). Con-
sequently, the proteolytic processing of numerous cytoplasmic 
or nuclear substrates of CASP triggers the typical morphology 
of apoptotic cells. Initially associated with the induction of 
apoptosis, the biological activities of CASP may also participate 
to cellular processes that are independent of cell death modali-
ties (such as macrophage activation or differentiation of skeletal 
myoblasts and keratinocytes) (8), indicating that the detection 
of the enzymatic activity of caspases in response to IR may not 
always be indicative of the execution of an apoptotic death.

Irradiated cells may also die through type a II cell death 
modality that is known as autophagic cell death (9). Initially, 
misnamed as autophagy (10), the autophagic cell death is a 
biological process distinct from autophagy. Autophagy is an 
evolutionarily conserved lysosomal pathway that participates 
in the maintenance of the cellular homeostasis by preventing 
the accumulation of misfolded and aggregated proteins as well 
as damaged organelles (11). This process, which starts with the 
nucleation of phagophore forms, produces, through lipid incor-
poration, the autophagosomes that will fuse with lysosomes to 
become autolysosomes that orchestrate the degradation of the 
sequestered content. This autophagic flux that is tightly regulated 
by autophagy-related (ATG) proteins (12) may either favor tumor 
growth by favoring the survival of cancer cells under unfavorable 
conditions (such as hypoxia and nutriment deprivation) or con-
tribute to tumor suppression by triggering the death of cancer 
cells when they are resistant to apoptosis (13). The autophagic 
cell death is defined as a cell death process that occurs after the 
induction of autophagy and is blocked by inhibitors of autophagy 
function and/or genetic inactivation of autophagic modulators 
(14). The autophagic protein ATG5 was recently implicated in the 
induction of IR-induced autophagic cell death (15). This process 
is distinct from the induction of autophagy after IR where the 
inhibition of the mammalian target of Rapamycin (mTOR) or 
the kinase AKT increases cytotoxicity of IR (13), confirming that 
autophagy may also contribute to the resistance of cancer cells 
to IR. We recently revealed that autophagy may also be involved 
in the enhancement of radiation therapy effects in immune-
competent mice (16), highlighting the fact that the autophagic 
machinery can contribute to the regulation of cancer cell fate 
during cancer treatment.

Necrosis and necroptosis are stereotypical forms of type III 
cell death modalities that are also detected after IR. Necrosis was 
initially described as an unordered cell death mode associated 
with an organelle swelling, the rupture of their plasma membrane 
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FiGURe 1 | The intracellular signaling pathways associated with iR-induced cell death modalities. IR induces cellular apoptosis by activating both the 
intrinsic apoptotic pathway (through proapoptotic proteins-mitochondrial outer membrane permeabilization (MOMP)-Cytochrome c/SMAC/DIABLO release-caspase 
activation) and the extrinsic apoptotic pathway (through the upregulation of death receptors and the activation of downstream caspases). p53 also induces the 
expression of p53-inducible death domain (PIDD) protein in response to ionizing radiation, which acts as an effector of p53-dependent apoptosis. In addition, 
activated ATM following IR may activate the NF-κB pathway that in turn induces apoptosis. IR also leads to persistent DNA damages, which induce to p53 
activation and p21 upregulation. p21 mediates cell cycle arrest and cellular senescence. Following IR, both activated ATM and p53 may trigger autophagic cell 
death to cells. ATM can activate AMPK and PTEN that suppress mTOR complex and induce autophagy. In addition, p53 upregulates the expression of autophagy-
initiating kinase ULK1 and ULK2 and the damage-regulated autophagy modulator (DRAM) that subsequently induce autophagy. Note that it is still not certain 
whether this IR-induced autophagy would systematically lead to autophagic cell death. How IR induces necroptosis is still not fully understood. Some studies 
suggest that, in absence of caspase 8 activation, activated ATM following DNA damages (such as those induced by alkylating agent treatment) might mediate 
necroptosis by activating RIPK1 and RIPK3. See the main text for details. Abbreviations: AMPK, adenosine 5′-monophosphate (AMP)-activated protein kinase; ATM, 
ataxia-telangiectasia mutated; BAK, BCL-2 homologous antagonist/killer; BAX, BCL-2-associated X protein; IR, ionizing radiation; mTOR, mammalian target of 
rapamycin; NEMO, NF-kappa-B essential modulator; NF-κB, nuclear factor kappa B; PTEN, phosphatase and tensin homolog; PUMA, p53 upregulated modulator 
of apoptosis; RIPK, receptor-interacting protein kinase; TRAIL, TNF-related apoptosis-inducing ligand; TSC, tuberous sclerosis complex; ULK, UNC-51-like kinase.
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and the cell lysis. This “accidental” death leads to the passive 
release of intracellular components such as adenosine triphos-
phate (ATP) or high mobility group box 1 (HMGB1) protein 
and causes an intense inflammatory response. Low doses of IR 
generally eliminate cancer cells through apoptosis, whereas high 
doses of IR can lead to necrosis (17). The characterization of the 
molecular mechanisms of necroptosis (18) revealed the ability of 

IR to induce a programmed necrosis in anaplastic thyroid and 
adrenocortical cancer cells (19). Necroptosis and necrosis share 
morphological characteristics (such as plasma membrane rupture, 
cell swelling, and the release of intracellular components to extra-
cellular milieu), but in contrast to necrotic process, necroptosis 
is a regulated process that can be induced in response to death 
receptor activation or after apoptosis inhibition and regulated by 
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receptor-interacting protein kinases 1 and 3 (RIPK-1 and -3) or 
mixed lineage kinase domain-like (18).

Ionizing radiation has also been associated with cell death 
modalities that do not or partially exhibit the morphological 
features, the biochemical alterations and the enzymatic activities 
above described. These less studied cell death processes have been 
defined as atypical cell death modalities. The mitotic catastrophe 
is one of these processes that can be induced after radiotherapy. 
In response to IR, tumor cells carrying mutated or inactivated 
p53 cannot efficiently activate cell cycle checkpoints (in particular 
G2/M checkpoint) to initiate cell cycle arrest and carry out DNA 
repair. Consequently, cancer cells containing unrepaired DNA 
enter prematurely into mitosis and undergo mitotic catastrophe 
(5). In addition, the irradiation of human keratinocytes with 
doses ranging from 0.005 to 0.5 Gy induces early apoptosis and 
necrosis with a substantial population of cells that undergo G2/M 
arrest and ultimately die through mitotic cell death (20), indi-
cating that non-tumoral cells may also undergo a mitotic death 
after IR. Alternatively, mitotic catastrophe may result from the 
hyper-amplification of centrosomes as a result of failure to repair 
the DNA damages induced by IR, and lead to multipolar mitotic 
spindles and abnormal chromosomal segregation (21).

In addition to canonical cell death modalities, cellular senes-
cence can also be induced in dose-dependent and cell type-
dependent manners and contribute to the elimination of cancer 
cells after IR (22, 23). Cellular senescence is a state during which 
cells undergo irreversible growth arrest in response to various 
stimuli including oncogene or tumor suppressor gene activation, 
epigenetic disruption, oxidative stress, as well as DNA damage 
elicited by IR or several chemotherapeutic agents (24). This 
cellular process, which is activated and maintained by p53/p21-  
or p16INK4a/RB-dependent pathways, is considered as an antitu-
mor barrier that halts the proliferation of cancer cells (24, 25). 
Senescent cells remain metabolically active and can secrete 
numerous proinflammatory cytokines, chemokines, growth 
factors, and proteases that collectively are known as senescence-
associated secretory phenotype (SASP). Once released, SASP 
can act in an autocrine and/or paracrine manner to induce 
numerous either beneficial or noxious activities including induc-
tion of angiogenesis, modulation of cell proliferation and stem 
cell activity, stimulation of epithelial–mesenchymal transition, 
promotion of chronic inflammation, depending on the specific 
pathophysiological context (24). Thus, while cellular senescence 
represents a cell-autonomous tumor suppressor mechanism, 
radiation-induced senescence could impact on the neighboring 
cancer cells and favor tumor survival and growth.

The Central Role of the Kinase  
Ataxia-Telangiectasia Mutated and  
the Tumor Suppressive Protein p53  
in iR-Mediated Cell Killing
The kinase ataxia-telangiectasia mutated (ATM) and the tumor 
suppressive protein p53 play critical roles in coordinating DNA 
repair and cell fate determination when DNA damages are not 
repaired. Following sublethal doses of IR, DNA double-strand 
breaks are sensed by the MRE11-RAD50-NSB1 (MRN) complex, 

which in turn recruits and activates the apical kinases ATM 
mainly by favoring its autophosphorylation at serine 1981. ATM 
phosphorylates MRN complex, and other substrates including 
checkpoint kinase 2 (CHK2), p53-binding protein 1, and breast 
cancer gene 1 protein, which participate in sustaining DNA dam-
age response signaling and in inducing S and G2/M arrest. ATM 
and CHK2 further phosphorylate p53, leading to its stabilization 
and activation of its transcription factor function. P53 upregulates 
the expression of p21 that induces the cell cycle arrest in G1. The 
initiation of DNA damage response by ATM and the induction 
of cell cycle arrest by p53 allow an efficient DNA repair process 
to restore genome integrity (26). However, when damages are not 
repaired efficiently, cell death programs are initiated.

The Kinase ATM Regulates Cell Death Modalities 
Elicited by IR
Upon IR-induced DNA DSBs, the kinase ATM and its down-
stream effector CHK2 kinase are phosphorylated and activate the 
tumor suppressive protein p53. The tumor suppressive protein 
p53 regulates through transcription-dependent or independ-
ent mechanisms the activation of both intrinsic and extrinsic 
apoptotic signaling pathways (27). Furthermore, the kinase ATM 
may also phosphorylate the NF-κB essential modulator (NEMO/
IKK-γ) thus, leading to NF-κB activation and subsequent proa-
poptotic CASP-8 activation (28). The kinase ATM may also 
regulate autophagy and control the induction of cell death.

Although in some cases, the induction of autophagy via 
ATM-adenosine monophosphate-activated protein kinase 
(AMPK)-UNC-51-like kinase (ULK1) pathways was described 
to confer cytoprotective effect in Temozolomide-treated glioma 
cells (29), the regulation of autophagy through ATM-AMPK- 
tuberous sclerosis complex 2 (TSC2)–mediated suppression 
of mTORC1 by reactive nitrogen species lead to the loss of cell 
viability in breast cancer cells (30). In response to DNA dam-
age induced by Topotecan, ATM phosphorylates phosphatase 
and tensin homolog and promotes its nuclear translocation and 
induces autophagy (31). Whether IR induces autophagy via 
similar signaling pathways should be further clarified. Instead, 
it is shown that ATM mediated IR-induced autophagy through 
activation of p38 mitogen-activated protein kinase (MAPK) and 
inhibition of mTOR pathway in human cervical cancer Hela 
cells. Pharmacological and genetic inactivation of ATM lead to 
decreased autophagy and hypersensitivity of Hela cells to IR (32). 
The role of ATM in IR-induced necroptosis has not been clearly 
demonstrated. ATM regulates alkylating DNA-damage agent-
induced necroptosis through phosphorylation of histone protein 
H2AX (33). It is suggested that in response to DNA DSBs and in 
absence of CASP-8 activation, ATM might activate RIPK1 and 
RIPK3, which form necrosome and trigger necroptosis. However, 
this remains yet to be verified and clarified (28).

The Tumor Suppressive Protein p53 Contributes  
to IR-Induced Cell Death
The tumor suppressor p53 plays a center role in the regulation of 
numerous IR-induced cell death pathways. Following IR and DNA 
damages, the tumor suppressive protein 53 is phosphorylated at 
serine 15 and serine 20 by the kinases ATM and ATR and their 
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downstream mediators CHK2 and CHK1. Once phosphorylated, 
p53 is dissociated from its negative regulator, the E3 ubiquitin 
ligase MDM2 and stabilized (34). Radiation can induce cell apop-
tosis via both intrinsic and extrinsic pathways. In the IR-induced 
intrinsic pathway, p53 induces the transcription of a number of 
proapoptotic proteins, including members of B-cell leukemia 2 
(BCL-2) family such as the proapoptotic BCL-2-associated X pro-
tein (BAX) (35). Apart from its prominent role as a transcription 
factor, p53 also functions in the cytoplasm to induce apoptosis 
by directly activating the proapoptotic BAX and BAK (36). BH3-
only proteins including p53 upregulated modulator of apoptosis 
(PUMA), NOXA and Bcl-2 interacting mediator of cell death 
(BIM) are also key initiators of apoptosis induced by IR (37–40). 
The protein p53 also induces the expression of p53-inducible 
death domain protein in response to IR, which acts as an effec-
tor of p53-dependent apoptosis (41). In addition, a number of 
antiapoptotic proteins are repressed, which further enhances 
IR-induced apoptosis. For instance, p53 negatively regulates Bcl-
2 gene expression (42). P53 also transcriptionally represses the 
expression of antiapoptotic survivin gene (43). Both activation of 
proapoptotic proteins and repression of ant-apoptotic proteins by 
IR subsequently lead to the formation of BAX-BAK pores in the 
mitochondrial outer membrane, triggering mitochondrial outer 
membrane permeabilization (MOMP). MOMP facilitates the 
release of toxic proteins such as cytochrome c and the proapop-
totic SMAC/DIABLO into the cytosol, leading to the activation of 
the intrinsic apoptotic pathway by activating the initiator CASP-9 
(28). IR triggers also extrinsic apoptotic pathways by upregulat-
ing death receptors. IR upregulates Fas expression in tumor cells 
in a wild type p53-dependent manner (44, 45). IR also induces 
the expression of the TNF-related apoptosis-inducing ligand 
(TRAIL) receptors Killer/DR5 (46, 47). Other TRAIL receptors 
including DCR1, DCR2 and DR4 can also be induced by IR 
and are regulated by the wild-type p53 (48). The upregulation 
of these death receptors by IR may facilitate extrinsic apoptosis. 
The death receptors assemble into a multiprotein complex called 
death-inducing signaling complex (DISC) which in turn serves 
as a scaffold for the recruitment and activation of the initiator 
CASP-8 and CASP-10, leading to the activation of extrinsic apop-
tosis pathway. In addition to the upregulation of death receptors, 
IR also generated ceramides via acid sphingomyelinase, which 
in turn acts on the mitochondrion or activates the proapoptotic 
stress-activated protein kinase/c-Jun N-terminal kinase pathway 
and initiates apoptosis (49, 50).

Like its pleiotropic roles in regulating IR-induced apoptosis, 
p53 also modulates autophagy at multiple levels in IR-exposed 
cells. The transcription factor p53 upregulates the expression of 
human autophagy-initiating kinase ULK1 and ULK2 and induces 
autophagy in response to DNA damage. This p53-regulated 
autophagy ultimately leads to DNA-damage-induced cell death. 
Interestingly, p53 also induces the expression of the damage-
regulated autophagy modulator (DRAM), a lysosomal protein 
that induces autophagy, leading to p53-dependent apoptosis, 
linking autophagy to p53 and damage-induced apoptosis (51).

The cellular senescence induced by IR is mainly mediated 
by p53. Persistent DNA damage activates p53 that induces p21 
expression and cell cycle arrest (24). It is also shown that reactive 

oxygen species (ROS) are essential for P53-mediated cellular 
senescence after IR (52). Alteration of p53-dependent activity 
affects IR-induced cellular senescence. For example, activation 
of P53 with Nutlin-3a sensitized lung cancer cells to IR through 
induction of premature senescence (53). The nerve injury-
induced protein 1 (Ninjurin1, Ninj1) is a P53 target following 
IR that in turn suppresses the expression of P53. Accordingly, 
inactivation of Ninj1 suppresses cell proliferation but enhances 
P53-mediated apoptosis and cellular senescence (54).

iONiZiNG RADiATiON OF TUMOR CeLLS 
ALSO FAvORS THe DeveLOPMeNT OF 
ANTiCANCeR iMMUNe ReSPONSe

Apart from its direct genotoxic activity and tumor cell killing 
capacity, IR also enhances immune response via immunogenic 
properties of IR-induced cell death, upregulation of major his-
tocompatibility complex (MHC) class I molecules and de novo 
tumor antigen production that collectively and coordinately 
prime and activate innate and adaptive immune systems to gener-
ate tumor-specific immune response.

ionizing Radiation induces immunogenic 
Cell Death
Immunogenic cell death (ICD) consists of a functionally peculiar 
type of apoptotic demise triggered by various specific stimuli 
that is able to activate an adaptive immune response against 
dead cell-associated antigens. ICD involves the emission of a 
series of immunostimulatory damage-associated molecular pat-
terns (DAMPs) including cell surface exposure of endoplasmic 
reticulum chaperone calreticulin (CRT), secretion of ATP, and 
release of HMGB1 protein, occurring in a defined spatiotem-
poral sequence. These ICD-associated DAMPs bind to specific 
receptors, recruits antigen-presenting cells (APCs) that process 
and present the dead cell-associated antigens to CD8+ cytotoxic 
T  cells. Activated adaptive immune responses mediate direct 
antitumor effects and may acquire a memory phenotype that 
contributes to long-term tumor control (55).

Ionizing radiation is shown to effectively promote tumor ICD 
(56). For example, in a mouse B16F10 melanoma model, irradia-
tion of cutaneous tumor prior to resection is shown to induce 
a specific antitumor immune response and significantly reduces 
lung metastasis after systemic challenge with untreated mela-
noma cells. Radiation induces CRT exposure on melanoma cell 
surface leading to increased DC phagocytosis of tumor cells (57). 
Radiation also induces the secretion of ATP and HMBG1 in both 
dying and live tumor cells, leading to increased antigen-specific 
cytotoxic T  lymphocytes (CTL)-mediated tumor cell lysis (58). 
The combination of IR and hyperthermia treatment on colorectal 
cells induces cell surface expression as well as extracellular release 
of the chaperon molecule heat shock protein 70 (HSP70). HSP70 
is able to promote DC maturation as revealed by an upregula-
tion of the co-stimulatory molecule CD80 and the chemokine 
receptor CCR7. In addition, this combined treatment enhances 
phagocytic activities of macrophages and DCs along with an 
augmentation of proinflammatory cytokines [such as interleukin 
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(IL)-8 and IL-12] secretion (59). Importantly, radiation-induced 
ICD has also been observed in clinical settings. In patients with 
esophageal squamous cell carcinoma receiving chemo-radiation 
therapy, tumor antigen-specific T  cell response and elevated 
serum HMGB1 are detected in 38% of patients. HMGB1, which is 
significantly upregulated in the chemoradiation-treated tumors, 
is associated with better survival (60).

ionizing Radiation induces Tumor Antigen 
expression
In addition, IR upregulates tumor associated-antigens and 
MHC class I complex that increase the recruitment of tumor 
antigen-specific T  cells and activate T  cell-mediated tumor 
killing (61–63). Early studies indicate that high-dose (from 25 
to 100  Gy) gamma-irradiation induces the upregulation of the 
tumor rejection antigen (HSP gp96) on human cervical cancer 
cells that may increase immunogenicity of tumor cells (64). Other 
tumor-associated antigens such as carcinoembryonic antigen, 
colon-specific antigen, mucin-1 and MHC class I are upregulated 
by irradiation, which enhances antigen-specific T cell response 
(62, 65). Moreover, irradiation may also enhance FAS expres-
sion in tumor cells and sensitizes tumor cells to antigen-specific 
CTL killing via FAS/FAS ligand pathway. The combination of 
irradiation and CTL yields enhanced antitumor response (66). 
Therefore, irradiation may induce an “in  situ vaccination” to 
improve antitumor immune response and also immunotherapy 
efficacy (61). These properties of IR are important as they con-
tribute to the increased immunotherapy effects even in poorly 
immunogenic tumors (67).

ionizing Radiation Modulates Mutational 
Burden during Anticancer Treatment
In tumor cells, IR provokes massive DNA damages. However, 
a small part of tumor cells eventually develop resistance to 
IR-mediated killing and accumulate incorrectly repaired/unre-
paired DNA damages. This adds to tumor mutational burden 
and might enhance tumor aggressiveness. On the other hand, 
IR-induced mutations might provide a pool of tumor neoantigens 
that can be recognized and targeted by immune system (68). 
Indeed, it is shown that IR induces novel peptide synthesis in 
tumor cells and enhances antigen presentation by MHC class I 
molecules (63). Consequently, the specific expression of tumor 
neoantigens driven by tumor-specific mutations could be used as 
biomarkers of radiation therapy efficacy and could contribute to 
the development of novel therapeutic approaches (69).

THe TUMOR MiCROeNviRONMeNT 
iRRADiATiON DiCTATeS ANTiTUMOR 
iNNATe iMMUNe ReSPONSe

Tumors are composed of tumor cells and tumor stroma. Tumor 
stroma contains cellular components (such as fibroblasts, 
endothelial cells, myeloid-derived cells, and lymphocytes), vas-
cular and lymphatic vessels, non-cellular supporting structures, 
cytokine, and chemokine milieu. Innate immune cells such as 

DCs (DCs), macrophages, natural killer (NK) cells, neutrophils, 
and other myeloid-derived cells such as MDSCs have been found 
in various tumors (70).

Tumor-infiltrating DCs are found in many different types  
of cancers and are reported to be associated with both good 
and poor prognosis depending on the types of studied tumor. 
Although DCs represent the most important APCs to cross-
present tumor antigens to effector T  cells and to activate anti-
tumor T  cell response, these essential capacities are paralyzed 
by tumor-derived inhibitory factors including IL-10, TGF-β, 
vascular endothelial growth factor A (VEGF-A), and arginase 
(71). In many cases, tumor-infiltrating DCs gradually develop an 
immunosuppressive phenotype characterized by lower expres-
sion of co-stimulatory molecules, decreased antigen-presenting 
activity and upregulation of regulatory molecules and receptors 
such as PD-1 and TIM-3 within tumor-microenvironment, as the 
tumor grow from early stages to advanced diseases (71, 72). Thus, 
restoring immunostimulatory capacities of tumor-infiltrating 
DCs and administration of antigen-loaded autologous DC vac-
cines may have important implications in the development of 
more efficient antitumor therapies (73, 74).

Tumor-infiltrating macrophages or tumor-associated mac-
rophages (TAMs) are the major myeloid cells found in the tumor 
area. TAMs are derived from peripheral blood monocytes and are 
recruited to the tumor area by various tumor-derived chemokines 
and cytokines such as colony stimulating factor-1 (CSF-1), C-C 
motif chemokine ligand 2 (CCL2), stromal cell-derived factor-1 
(SDF-1), and VEGF-A. Other factors such as hypoxia and tumor 
cell metabolites also contribute to TAMs infiltration. TAMs are 
differentiated and skewed toward protumorigenic phenotype 
within distinct tumor microenvironment such as hypoxia, acidity, 
and immunosuppressive cytokine milieu (75). TAMs contribute 
to tumor growth, angiogenesis, invasiveness, and metastasis. 
TAMs also express high level of ligands for PD-1 and CTLA-4 
that exert immunosuppressive functions on T cells. In addition 
TAMs interfere with T  cells activation by depleting L-arginine 
in the milieu that is important for T cell receptor ζ chain expres-
sion. Other inhibitory mechanisms include induction of T  cell 
apoptosis and production of anti-inflammatory cytokines such 
as IL-10 and TGF-β. In addition, TAMs induce the recruitment 
of immunosuppressive regulatory T cells through the expression 
of chemokines such CCL5, CCL20, and CCL22 (76). Thus, TAMs 
infiltration was associated with poor clinical outcomes in the 
majority of cancers (77). Reversing these adversary roles of TAMs 
will be important in improving anticancer therapy efficacies.

NK  cells also play important roles in antitumor immunity. 
This is not only due to their direct tumor cell-killing function 
via granzyme B/perforin pathway and other death-receptor path-
ways, but also due to their ability to secrete a plethora of proin-
flammatory cytokines and chemokines that regulate and promote 
innate and adaptive immune response (78). However, as in the 
cases of DCs and macrophages, cytotoxic functions of NK cells 
are often impaired within tumor microenvironment. Various 
factors including cytokines and tumor metabolites directly 
inhibit maturation, proliferation, and functions of NK cells. In 
addition, other tumor-infiltrating cells such as MDSCs, TAMs, 
and regulatory T cells also inhibit the functions of NK cells (78). 
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Accordingly, several NK cell-based in vivo approaches including 
the activation of NK cells with stimulatory cytokines, the induc-
tion of antibody-dependent cell-mediated cytotoxicity and IFN-γ 
production with tumor antigen-specific monoclonal antibodies, 
and the enhancement of the cytolytic activity of NK cells with 
blocking antibodies against inhibitory signals, may increase the 
chances for successful cancer treatment (79).

Myeloid-derived suppressor cells are a group of heterogeneous 
immature myeloid cells with suppressive activities on both innate 
and adaptive immunity. MDSCs differentiate from common 
myeloid progenitors and are often composed of cells at varied 
differentiation stages. MDSCs may be grouped into monocytic 
MDSCs and granulocytic MDSCs. Tumor-derived cytokines and 
growth factors such as VEGF, IL-6, granulocyte CSF, granulocyte-
macrophage CSF, and other proinflammatory mediators such as 
IL-1β, IL-17, HMGB1, cyclooxygenase 2 (COX2), and prosta-
glandin E2 (PGE2) induce MDSCs accumulation, differentiation, 
proliferation, and acquisition of immunosuppressive functions 
(80, 81). MDSCs exert their immunosuppressive roles on T cells 
through multiple mechanisms, including secretion of anti-
inflammatory IL-10 and transforming growth factor-β (TGF-β) 
that inhibit functions of T cells and NK cells, generation of ROS 
and nitric oxide (NO) that interfere with T cell proliferation and 
activation, and interaction with other immune cells such as TAMs 
that together create a protumorigenic microenvironment (80). 
Like TAMs, MDSCs express high levels of PD-L1 that induces 
T cell exhaustion and arginase I that depletes l-arginine that is 
essential for T cell activation. MDSCs induce also regulatory T cell 
accumulation and impair NK  cell cytotoxicity (80). Therefore, 
MDSCs are prominent players that can support tumor growth 
and inhibit antitumor immunity and thus represent another 
major obstacle to overcome for effective antitumor therapies.

Other tumor-infiltrating innate immune cell such as neutro-
phils, Langerhans cells, and eosinophils that have emerged as 
potential players in tumor development are also promising targets 
to improve the efficacy of cancer treatment (82–85). For example, 
tumor-associated eosinophils have been revealed to play essential 
roles in orchestrating effective antitumor response. Eosinophils 
were shown to produce chemo-attractants that recruit effector 
T cells into the tumor. Eosinophils induce also macrophage acti-
vation and tumor vascular normalization that together contribute 
to tumor suppression (85). Currently, the role of eosinophils in 
tumor immunity is under more in depth investigation and the 
impact of radiation therapy on the functions of tumor-associated 
eosinophils remains largely unknown.

ionizing Radiation Modifies innate 
immune Cell Migration and Homing
Tumor irradiation facilitates tumor antigen capturing and 
enhances tumor antigen presentation by DCs (86). Irradiation 
down regulates DC chemoattractant CCL21 expression in tumor 
tissue, which reduces the retention of DCs in tumor area after 
irradiation (86). On the other hand, irradiation also upregulates 
the expression of CCL21 on lymphatic vessels (87). These together 
may facilitate DCs homing to lymph nodes. These effects promote 
the ability of DCs to cross-prime and activate T  cells (86). In 

contrast, another study demonstrated that gamma-irradiation 
(2Gy-8Gy) inhibited the migration murine DCs both in vitro and 
in vivo, in part due to a decreased expression of CCR7 and an 
increased apoptosis induced by irradiation in DCs (88).

Similarly, IR impacts profoundly on macrophage migration. 
A total of 10 Gy cranial γ-irradiation induces the expression of 
inflammatory mediators that serve as chemoattractant to promote 
the influx of peripheral blood-derived CCR2+ macrophages into 
the mouse brain (89). In the context of tumors, IR also induces 
macrophage recruitment. Tumor hypoxia due to a radiation-
induced disruption of tumor vessels creates a transient hypoxic 
microenvironment and increases the expression of tumor-
derived CSF-1, SDF-1 that together induces recruitment as well 
as anti-inflammatory activation of TAMs after radiation therapy 
(90–92). In addition, IR upregulates M-CSF expression by pan-
creatic ductal adenocarcinoma cells, which induces macrophage 
recruitment and differentiation toward M2-like phenotype (93). 
Of note, clinical studies also revealed that radiation therapy 
induced CSF-1 augmentation as well as the protumoral activation 
of macrophages, which were both associated with an impaired 
radiation therapy efficacy in prostate cancer (94). Combined 
radiation therapy with a anti-CSF-1 antibody or CSF-1R inhibi-
tor treatment showed an improved antitumor effect (95) and will 
be significant to be further evaluated in clinical trials. Another 
important monocyte-chemoattractant CCL2 is also upregulated 
by IR and mediates macrophage recruitment into non-small cell 
lung cancer (96).

Irradiation-induced apoptosis increased neutrophils infiltra-
tion to the thymus (97). These recruited neutrophils were impor-
tant in thymus regeneration after whole-body X-irradiation 
through their expression of SDF-1 (98, 99). Further characteriza-
tion of the neutrophil infiltrating the tumors and the functional 
impact of irradiation on tumor-associated neutrophils should 
help for the development of novel therapeutic strategies.

Single high-dose (30  Gy) irradiation of the skin induced 
significant accumulation of eosinophils and the production of 
eosinophil-related cytokines such as IL4, IL-5, IL-13, IL-33, and 
CCL11 (100). A recent study showed that although synchroton 
microbean radiation treatment did not induce a significant dif-
ference in eosinophils infiltration pattern in murine mammary 
tumors as compared to synchroton broad-beam treatment, 
they did differentially regulate a subset of genes (Ear11, Ccl24,  
Ccl6, Ccl9) that were related to eosinophil functions and recruit-
ment (101).

Phagocytosis and Antigen Presentation 
Are Altered after iR
The effect of in  vitro direct irradiation on DCs depends on 
irradiation doses and DCs maturation states. For example, 
5  Gy gamma-irradiation downregulated the expression of 
costimulatory receptors CD80/CD86 on immature monocyte-
derived DCs but did not affect these receptors on mature DCs 
or their ability to stimulate autologous T cells (102). Another 
study showed that when irradiated at 30 Gy, CD86 expression 
was increased on immature DCs and decreased on mature 
DCs, while other markers remained unaffected by irradiation. 
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However, in this study, irradiation impaired the stimulatory 
effects of both immature and mature DCs on the proliferation of 
allogenic T cells (103). Irradiation also affected DCs functions 
differentially in that it inhibited DCs response to endogenous 
antigens but enhanced DCs response to exogenous antigens 
(104). The divergent effects of irradiation on DCs were not due 
to defect in maturation or in presenting endogenous antigens, 
but were rather a result of the inhibition of proteasome func-
tion by irradiation. This in part accounted for the decreased 
endogenous antigen processing and possibly enhanced MHC 
class I molecules recycling and exogenous antigen presentation. 
Accordingly, irradiation abrogated DCs-induced endogenous 
antigen-specific T cell response and tumor suppression. On the 
contrary, irradiation enhanced the ability of DCs to activate 
T cell response to exogenous antigens and inhibited the growth 
of exogenous antigen-expressing tumors (104). Therefore, dif-
ferent irradiation doses, DCs maturation states and different 
types of antigens influence the outcomes of DCs activation 
following direct irradiation.

Like DCs, Langerhans cells residing in the skin and mucosa 
are endowed with potent antigen-presenting capacities at the 
first line of immune defense (105). An early study examining 
the prognostic role of Langerhans cell infiltration in uterine 
cervical squamous cell carcinoma patients treated with radiation 
therapy, showed that Langerhans cell infiltration was signifi-
cantly associated with higher 5-year overall survival, suggesting 
that Langerhans cell infiltration after radiation therapy might 
mediate the immune response through their antigen presenting 
capacity and enhance the antitumor effect (106). Indeed, it was 
demonstrated that Langerhans cell infiltration after radiation 
therapy was associated with increased T  cell infiltration and 
with improved local tumor control in cervical cancer (107, 108). 
However, in other settings, Langerhans cells may also limit the 
effect of radiation therapy. Epidermal Langerhans cells are more 
radioresistant than dermal DCs due to an overexpression of p21 
and the capacity of the rapid repair of DNA damages induced 
by irradiation. Following radiation, Langerhans cells migrate to 
skin-draining lymph nodes in a CCR7-dependent manner. It is 
shown that Langerhans cell induced immunosuppressive regula-
tory T cell accumulation in the tumor is in part due to an upregu-
lation of MHC class II expression on migratory Langerhans cells 
after irradiation. Consequently, Treg cells accumulation mediates 
immune suppression and tumor resistance to radiation therapy 
(105). Therefore, it appears that the in  vivo impacts of IR on 
Langerhans cells might depend on the tumor types as well as the 
induction of different types of T cell infiltration (effector T cells 
or regulatory T cells).

The Differentiation and the Activation of 
innate immune Cells is Modulated by iR
Radiation induces tumor cells death that leads to the release of 
tumor antigens, HSPs and other danger signals. These products 
then stimulate DC maturation. Although some in vitro studies 
arguing that IR compromises the stimulatory activities of DCs, 
in vivo models demonstrate that IR enhances the ability of DCs 
to capture tumor antigens (86) and promotes DC migration to 

draining lymph nodes in a way that is dependent on toll-like 
receptor signaling pathway, where they present tumor antigens 
to T cells and induce antigen-specific T cell response (109).

Various factors determine the impacts of IR on macrophage 
functions. One prominent factor is irradiation doses. For 
example, it was reported in many studies that low-dose (≤1 Gy) 
irradiation inhibited the proinflammatory activation of mac-
rophages (110). Low-dose irradiation also inhibited oxidative 
burst in activated macrophages (111). On the contrary, high-dose 
(≥1 Gy) irradiation tends to induce a proinflammatory pheno-
type on macrophages with increased production of proinflam-
matory cytokines such as IL-1β and expression of induced nitric 
oxide synthase (iNOS) (112–114). Another important factor 
lies in macrophages. Macrophages from different mouse strains 
show variant intrinsic radiosensitivity. For example, irradiation 
enhanced anti-inflammatory characteristics of macrophages 
from C57BL/6 mice that are supposed to be more radioresistant, 
whereas macrophages from CBA/Ca mice that are more radio-
sensitive retain a proinflammatory feature after irradiation (115). 
Irradiation also differentially affected functions of macrophages 
from BALB/c and C57BL/6 mice (116).

In the tumor context, to date IR has been shown to either 
enhance the protumorigenic properties of TAMs or reprogram 
them toward antitumoral phenotypes in different experimental 
settings. For examples, IR induces M2-like protumorigenic 
TAMs that contribute to tumor recurrence and treatment failure. 
This is due to CSF-1 expression in murine prostate tumor cells 
that induced the recruitment of TAMs and MDSCs. Combined 
treatment with irradiation and CSF-1R inhibitor markedly 
improved antitumor efficacy (94). Macrophages from irradiated 
tumors show increased expression of arginase 1 (Arg1), COX2, 
and iNOS that promote tumor growth (117, 118). Macrophages 
also increased the expression of VEGF that led to tumor neo-
vasculogenesis (119). However, there were also studies showing 
that radiation therapy could redirect TAMs from protumorigenic 
to antitumoral cells. For example, low-dose (2 Gy) whole-body 
irradiation induced iNOS expression and the production of 
proinflammatory cytokines such as tumor necrosis factor-alpha 
(TNF-α), IL-12 (p70), and IFN-γ in peritoneal macrophages 
and TAMs (120). A recent study on murine insulinoma 
demonstrated that low-dose (2  Gy) irradiation induced iNOS 
expression in macrophages both in vitro and in vivo. This repro-
graming of proinflammatory macrophages by irradiation led to 
tumor vascular normalization and increased the effect of T cell 
immunotherapy (121). Furthermore, irradiation combined with 
2-deoxy-d-glucose or hyperthermia also activated macrophages 
toward proinflammatory phenotype (122). These results suggest 
that depending on studied tumor models and the specificity of the 
used treatment regimen, irradiation may have different effects on 
TAMs functions that can in turn impact on tumor response and 
treatment outcomes.

The roles of neutrophils in tumor immunobiology are just 
emerging and little is known at the moment about the impact 
of IR on tumor-associated neutrophils. For instance, low-dose 
(0.512 Gy) irradiation suppressed myeloperoxidase activity and 
reactive nitrogen species generation in neutrophils from guinea 
pig (123). On the other hand, high-dose (20  Gy) irradiation 
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induced oxygen free radicals in rat neutrophils (124). However, 
the effects of irradiation on human neutrophils are less known.

ionizing Radiation Changes Cytokine 
Secretion Profiles
Different doses of irradiation yield different functional modula-
tions to DCs. Low-dose irradiation seems to have divergent effects 
on DCs in many reports, possibly due to different experiment 
designs. For instance, low-dose at 0.05 Gy of gamma-irradiation 
of murine DCs significantly induced IL-2, IL-12, and interferon-γ 
(IFN-γ) production in DCs that promote T  cells proliferation 
(125). At a dose of 0.2 Gy, gamma irradiation increases the sur-
face expression of CD80, CD86, MHC class I and II molecules 
in murine DCs but inhibits their capacity of antigen uptake. In 
addition, this low-dose irradiation suppresses IL-12 produc-
tion in DCs, but increases IL-10 production, implying a shift to 
immune tolerance (126). However, low-dose irradiation (from 
0.05 to 1.0 Gy) did not affect surface markers or cytokine produc-
tion in neither immature nor mature human DCs, and had no 
influence on the capacity of DCs to stimulate T cell proliferation 
(127), suggesting that the impact of low-dose irradiation on DCs 
function might be different from mouse to human.

High dose of irradiation also impacts on DCs differently. 
Irradiation at 30 Gy did not impact on DCs endocytic, phagocytic 
and migratory capacity but significantly inhibited IL-12 produc-
tion by mature DCs while IL-10 production was unaffected 
(103). Inhibition of IL-12 expression in DCs by irradiation was 
in part mediated by an increase of IL-6 and activation of down 
stream signal transducer and activator of transcription 3, which 
led to inhibition of c-REL transcription factor (128). In addition, 
irradiated peptide-pulsed mature DCs showed impaired ability 
to prime naïve CTL (103). Likewise, gamma-irradiated (30 Gy) 
DCs derived from peripheral blood mononuclear cell of multiple 
sclerosis patients showed significantly reduced surface expression 
of costimulatory CD86 and had lower capacity to promote T cell 
proliferation as compared to non-irradiated DCs. These irradi-
ated DCs also upregulated IL-2 and IL-4 secretion by T cells (129). 
Although high-dose irradiation might directly inhibit functions 
of DCs, another study showed that irradiation (3 × 5 Gy) induced 
tumor cell death that triggers DC maturation and production of 
proinflammatory cytokines such as IL-6, IL-8, IL-12p70, and 
TNF-α (130). Irradiation from 10 to 60 Gy also upregulates CD70 
expression on mature DCs, an event that is correlated with the 
ability of these cells to stimulate T cell proliferation and IFN-γ 
production (131).

Although, in many in  vitro studies, irradiation was shown 
to inhibit the antigen presentation capacity and the production 
of proinflammatory cytokines in DCs, in vivo studies seems to 
reflect opposite effects, possibly due to the complexity of the 
microenvironment that cooperatively influences the maturation 
and the activation of DCs. It might also be possible that combined 
direct and indirect effects of in vivo irradiation promote distinct 
DC functions in a context that significantly differed from in vitro 
irradiations. For example, although X-ray irradiation at 6  Gy 
significantly suppressed IL-23 secretion and slightly inhibited 
IL-12p70 production in DCs, irradiated fibroblast still interacted 

with and stimulated DCs to maintain IL-23/Th17 response (132). 
Thus, direct and indirect impacts of high-dose irradiation on 
DC activation could be quite different even opposite. This may 
explain why in many preclinical models, additive or synergic 
effects of DCs administration and radiation therapy were often 
documented.

As mentioned above, IR can directly modulate macrophage 
activation phenotype and their cytokine expression profiles. In 
addition, IR impacts on macrophage functions indirectly through 
the interaction of IR-induced cell death with macrophages. 
Irradiation-induced tumor cell death, in particular apoptosis, has 
previously been regarded as non-immunogenic (133). Apoptotic 
cells induced the secretion of anti-inflammatory cytokine IL-10 
in macrophages (134). However, accumulating studies have also 
pointed out that apoptosis triggered by a subset of antitumor 
treatments may have immunogenic effects (133, 135). In addi-
tion, while the engulfment of apoptotic cells by non-stimulated 
or M2 macrophages induced the expression of anti-inflammatory 
macrophage markers such as TGF-β, such engulfment by M1 
macrophages enhanced proinflammatory properties as indicated 
by an increased production of iNOS, superoxide, IL-6, and TNF-α 
(136). ICD induced by irradiation leads to the release of HMGB1 
and the secretion of ATP (56). Upon ligation with TLR4, HMGB1 
triggers NF-κB activation (137). ATP binds to P2X7 purinergic 
receptor and activates the NLRP3 inflammasome (138). NF-κB 
and NLRP3 inflammasome activation are both involved in the 
expression and maturation of proinflammatory cytokines such 
as IL-1β (139).

innate immune Cell-Mediated Cytotoxicity 
is Affected by iR
Interestingly, apart from the enhancement of antigen-presenting 
capacity of DCs, irradiated tumor cells can induce the expression 
of granzyme B and perforin in DCs and directly stimulate DCs 
cytotoxicity to kill tumor cells (140). Although gamma-irradiation 
induces DCs accumulation in the tumor area that further acti-
vates tumor-specific T cell (141), it is noteworthy that radiation 
therapy induced upregulation of tumor antigens may also confer 
suppressive effects on DCs. For example, radiation-induced 
breast tumor-derived gamma-synuclein was shown to inhibit 
the expression of costimulatory molecules CD40 and CD86, and 
decrease the expression of proinflammatory cytokines in DCs. 
Gamma-synuclein-treated DCs also inhibit T  cell proliferation 
but induce TGF-β production in T cells and increase the popula-
tion of immunosuppressive regulatory T cells (142).

It was also demonstrated that in irradiated tumors, while 
the expression of costimulatory molecules is upregulated, the 
expression of PD-L1 and PD-L2 on DCs (140), which are known 
to inhibit antitumor immunity (143), are significantly reduced. 
Contradictorily, some other studies show that IR upregulate the 
expression of PD-L1 on tumor cells, DCs and TAMs that limit 
the antitumor effect of radiotherapy. The combined therapy of 
irradiation and anti-PD-L1 treatment resulted in activation of 
cytotoxic T cells and synergistic elimination of MDSCs by T cell-
generated TNF, which is associated with delayed tumor growth 
(4, 144).
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Irradiation can directly affect NK  cell functions. In vitro 
studies showed that X-ray irradiation at 5 to 15 Gy could tran-
siently increase human NK cell activity to lyse tumor cells that 
could be maintained in the presence of interferon (145). It was 
reported that the cytotoxic activity of human peripheral blood 
NK cells augmented following an irradiation dose at 1 Gy that 
peaked at 6 Gy and then decreased gradually when irradiation 
dose reached 16 Gy. Similarly other studies showed that human 
NK cells activity was enhanced following irradiation at 5–20 Gy 
(146, 147). In addition, low-dose gamma irradiation at ≤0.2 Gy 
induced expansion of NK cells, augmented NK cell cytotoxicity 
(148) and the expression of Fas ligands and perforin, and signifi-
cantly increased the expression of IFN-γ and TNF-α in NK cells 
in a p38MAPK-dependent manner (149). Irradiation can also 
affect NK cell functions through the modulation of interaction 
between tumor cells and NK  cells. For example, irradiation 
upregulated the expression of natural-killer group 2, member D 
(NKG2D) ligand and HSP70 in tumor cells that may increase 
susceptibilities of tumor cells to NK cell-mediated cytolytic attack 

(150, 151). Combined treatment of radiation therapy and histone 
deacetylase inhibitor was shown to increase the expression of 
NKG2D ligand expression and enhance the susceptibilities of 
lung cancer cells to NK  cell cytotoxic activities (152). IR also 
triggers the release of second mitochondria-derived activator of 
caspase (Smac) from mitochondria that competes with X-linked 
inhibitor of apoptosis protein and enhances NK  cell-mediated 
apoptosis of tumor cells (153).

ionizing Radiation May Also Trigger the 
elimination of innate immune Cells
Radiation therapy is a prominent source of myelosuppression 
during cancer treatment, especially when combined with chemo-
therapy. This is in particular the case when radiation therapy is 
delivered to pelvis such as for cervical cancer, rectal cancer and 
prostate cancer, during which a large proportion of bone marrow 
is affected (154). Neutrophils are the major innate immune cells 
that are decreased by radiation therapy. Up to 90 and 80% of 
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cervical cancer patients underwent a grade II or worse neutro-
penia during 3D conformal radiotherapy and intense-modulated 
radiation therapy, respectively (155).

Myeloid-derived suppressor cells have been shown to accu-
mulate in many cancer patients. In hepatocellular carcinoma, 
the basal level of CD14+HLA−DR−/low MDSCs is higher than 
that in healthy controls. Radiotherapy significantly reduced the 
frequency of CD14+HLA−DR−/low MDSCs that was negatively 
correlated to patient overall survival, indicating that a reduction 
of MDSCs after radiotherapy could be used as a prognostic factor 
in hepatocellular carcinoma patients (156). Radiation therapy of 
tumors also leads to a decrease of peripheral MDSCs that re-
expand upon tumor recurrence. Declined MDSCs population 
was associated with increased T  cells proliferation and T  cells 
response to tumor-associated antigens (157). In patients with oli-
gometastases, stereotactic body radiotherapy (SBRT) when com-
bined with the multitargeted tyrosine kinase inhibitor Sunitinib, 
induced a decrease of peripheral blood CD33+CD14+CD16+ 
monocytic MDSCs as well as Tregs and B  cells, along with an 
increase of Tbet expression in primary CD4+ and CD8+ T cells, 
which was associated with improved progression-free survival. A 
reduction of monocytic MDSC in this setting thus may be consid-
ered a valuable biomarker for predicting clinical outcomes (158).

Early studies have shown that gamma-ray or X-ray irra-
diation also decreases the number of epidermal Langerhans 
cell in human skin (159, 160). Similarly, in a dose-dependent 
manner, irradiation depleted mouse epidermal Langerhans 
cells population that was recovered after the stop of irradiation 
(161–163).

Effective DNA damage sensing followed by efficient and 
faithful DNA repair to restore genome integrity is vital for cell 
functions and cell survival, as reflected by the fact that germline 
mutation of ATM and TP53 caused hereditary defects in DNA 
damage signaling and repair pathway lead to predisposition 
of cancer and many other diseases such as immune deficiency 
(164).

Dysfunction in ATM (murine analog of human ATM) results 
in the accumulation of unrepaired DNA in the cytoplasm upon 
DNA damage. These free DNA fragments are sensed by STING 
(stimulator of interferon genes)-mediated pathway, which 
activates the expression of Toll-like receptors (TLRs), RIG-I-like 
receptors and promotes induction of type I interferons, leading 
to enhanced antiviral and antibacterial response in Atm−/− mice 
(165). DNA DSBs also activate the transcription factor interferon 
regulatory factor 3 (IRF-3) in a manner dependent on ATM-
IKKα/β, leading to cell-autonomous production of interferon 
β (166). Further, persistent ROS are shown to induce chronic 
activation of ATM that triggers a continuous activation of NF-κB 

pathways, contributing to aggressive phenotype of cancer cells 
(167). Indeed, ATM has been shown to regulate NF-κB activity by 
mediating nuclear NEMO SUMOylation and subsequent ubiqui-
tination, an event that leads to NEMO relocation to the cytoplasm 
and NF-κB activation through the canonical pathway (168).

P53 was recently demonstrated to participate in the regulation 
of macrophages functions. P53 is involved in the proinflamma-
tory macrophage activation and in addition, P53 suppresses the 
anti-inflammation phenotype of macrophages (15). P53 cooper-
ates with NF-κB to induce proinflammatory genes expression 
in macrophages (169). P53 may directly activate IRF-5 (170), a 
dominant transcription factor in proinflammatory macrophage 
activation (171).

CONCLUDiNG ReMARKS

While interventions aiming at improving the efficacy of IR by 
the combination T cell directed approaches (such as PD-1/PD-L1 
blockades) and IR are growing in the clinic, there is mounting evi-
dence that IR also primes and induces the activation of an adaptive 
antitumor immunity through the induction of ICD, the release of 
tumor antigen, the stimulation of inflammatory response, and 
the modulation of immune cell functions, which can facilitate 
and enhance immunotherapy effects and potentially reduce 
immunotherapy-related adverse events (Figure 2). However, the 
impact of radiation on innate immune cells may be tumor type 
dependent and vary in relation with the specificity of the used 
treatment protocol. On the other hand, many reports indicate 
that in certain cases radiation therapy creates a more immuno-
suppressive microenvironment due to the upregulation of PD-L1, 
a transient potentiation of tumor hypoxia, or an alternative acti-
vation of TAMs, indicating that the addition of immunotherapy 
to the treatment protocol can overcome these obstacles, increase 
radiosensitivity and may lead to an enhanced systemic effect of 
radiation therapy. For these reasons, there is a strong rationality 
for combining radiation with immunotherapy for cancer treat-
ment. A deeper understanding of the molecular mechanisms that 
are involved in the modulation of innate immune cell functions, 
particularly in the context of tumor microenvironment, is thus 
fundamental for the development of new therapeutic strategies 
targeting the inhibitory effects of tumor-infiltrating cells and for 
the restoration of their antitumor activities.
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