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IFN-lambda (IFNλ) is a member of the type III IFN family and is reported to possess 
anti-pathogen, anti-cancer, and immunomodulatory properties; however, there are 
limited data regarding its impact on host immune responses in  vivo. We performed 
longitudinal and comprehensive immunosurveillance to assess the ability of pegylated 
(peg)-IFNλ to augment antiviral host immunity as part of a clinical trial assessing the effi-
cacy of peg-IFNλ in chronic hepatitis B (CHB) patients. These patients were pretreated 
with directly acting antiviral therapy (entecavir) for 12 weeks with subsequent addition of 
peg-IFNλ for up to 32 weeks. In a subgroup of patients, the addition of peg-IFNλ pro-
voked high serum levels of antiviral cytokine IL-18. We also observed the enhancement 
of natural killer cell polyfunctionality and the recovery of a pan-genotypic HBV-specific 
CD4+ T cells producing IFN-γ with maintenance of HBV-specific CD8+ T cell antiviral 
and cytotoxic activities. It was only in these patients that we observed strong virological 
control with reductions in both viral replication and HBV antigen levels. Here, we show 
for the first time that in vivo peg-IFNλ displays significant immunostimulatory properties 
with improvements in the main effectors mediating anti-HBV immunity. Interestingly, the 
maintenance in HBV-specific CD8+ T cells in the presence of peg-IFNλ is in contrast to 
previous studies showing that peg-IFNα treatment for CHB results in a detrimental effect 
on the functionality of this important antiviral T cell compartment.

Clinical Trial Registration: ClinicalTrials.gov NCT01204762.

Keywords: peg-interferon lambda, direct antiviral, hepatitis B, immunity, in vivo

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00621&domain=pdf&date_stamp=2017-05-29
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00621
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:s.chokshi@researchinliver.org.uk
https://doi.org/10.3389/fimmu.2017.00621
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00621/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00621/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00621/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00621/abstract
http://loop.frontiersin.org/people/398934
http://loop.frontiersin.org/people/415530
http://loop.frontiersin.org/people/433279
http://loop.frontiersin.org/people/353291
http://loop.frontiersin.org/people/424175
http://ClinicalTrials.gov


TaBle 1 | Patients characteristics at baseline.

characteristics entecavir and iFn-λ

Age (years)a 31.2 (21, 41)
Gender (male/female ratio) 10:3

racial group (no. of patients)
White 1
Asian* 12
Asian Indian 1
Chinese 4
Korean 4
Other 3
Alanine aminotransferase (IU/ml)a 88.2 (38, 297)
HBV-DNA (Log10 copies/ml)a 8.3 (6.4, 9.7)

hBV genotype (no. of patients)
B 7
C 5
D 1
qHBeAg (Log10 copies/ml)a 2.4 (0.1, 2.8)
qHBsAg (Log10 copies/ml)a 4.6 (3.9, 5.4)

il-28B (no. of patients)
CC 9
CT 4
Non-cirrhotic 13

aThe data are shown as mean (range). *Asian subgroups are detailed below.
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inTrODUcTiOn

Type I and type III interferons are the primary mediators of anti-
viral protection and the main therapeutic protagonists include 
IFN-alpha (IFN-α) and IFN-lambda (IFNλ; IL-29), respectively. 
The immune-mediating properties of IFN-α have been extensively 
described both in vivo and in vitro in the context of many diseases 
(1–5). However, little is understood about the immunomodula-
tory properties of IFNλ in different disease states.

Both type I and III interferons have been shown to play an 
important role in control of HBV replication (6). Indeed, IFN-
α has been used as a treatment strategy for chronic hepatitis B 
(CHB) for over 40 years; however, its efficacy is suboptimal with 
resolution of infection being achieved in <7% patients (7, 8). 
This is marginally improved during combination treatment with 
potent directly acting antiviral agents, such as entecavir (ETV) or 
tenofovir, but still remains inadequate with functional cure being 
achieved in only 15% of patients (9–11). The root cause of this 
may be immunological in nature. IFN-α has a dual mechanism 
of action in CHB, first, a direct antiviral effect achieved through 
inhibiting the synthesis of viral DNA, virus particles, and acti-
vation of antiviral enzymes, and second, an augmentation of 
antiviral host immunity (8). In CHB, IFN-α treatment induces 
narrowly focused immune responses restricted to activation of 
the innate immunity with little impact on reactivating stagnant 
HBV-specific adaptive immune responses which are central to 
long-term control of infection (12–15).

The precise role and activity of IFNλ as an immunomodulator 
is unknown in vivo in humans and remains unclear in in vitro 
experiments. Indeed, the immune potentiating functions of IFNλ 
are slowly starting to emerge (16–20). Early data suggests that 
although IFNλ activates the same signaling pathway as IFN-α, their 
temporal activation of ISGs as well as the induction of an antiviral 
response is different (6, 21, 22). There is also some discrepancy 
regarding the direct impact of IFNλ on immunocytes. Some stud-
ies find little or no expression of IFNλR on immune cells, while 
others show IFNλR expression on both natural killer (NK) and 
T cells (16, 18, 19, 23, 24). Further to this, IFNλ is also reported 
to be unable to directly activate NK cell function, influence T cell 
differentiation, or induce cytokine production by T cells (25–27). 
In other studies, however, IFNλ stimulates a significant antitumor 
immunity in murine models (28) and directly modulates T cell 
activity with promotion of Th1 and inhibition of Th2 responses 
(16, 29, 30). These discrepancies are likely to be due to differ-
ences in the cellular, tissue, and animal models utilized and are 
compounded by a paucity of studies investigating the relationship 
between IFNλ and the host immune response in  vivo (17, 18,  
25, 27). Defining whether IFNλ acts as a broad or narrow immu-
nostimulant in vivo in the context of a chronic disease will allow 
its appropriate therapeutic application in infection and disease.

In this study, we have comprehensively analyzed the impact of 
IFNλ treatment on antiviral immunity in CHB patients. This is an 
ideal model infection to study the immunostimulatory effects of 
a therapeutic agent, as persistence of this virus is fundamentally 
associated with a weak antiviral immune response, characterized 
by defective NK cells and impaired virus-specific T cell responses 
(31–38). Moreover, there is strong evidence demonstrating that 

the development and re-establishment of innate and adaptive 
host immunity in CHB is associated with control of infection 
(39–43). Therefore, using CHB infection as a model, we have for 
the first time utilized the structured platform of a clinical trial 
to dissect the relationship between the innate and adaptive host 
immune response and IFNλ.

MaTerials anD MeThODs

study Design and Patients
We performed longitudinal immuno-surveillance of a subgroup 
of patients participating in a phase 2b clinical study to evaluate 
the safety, efficacy and tolerability of pegylated IFNλ (PegIFNλ) 
in combination with ETV in Hepatitis B e Antigen positive 
(HBeAg+) CHB patients [sponsored by Bristol-Myers Squibb, 
Wallingford (BMS), CT, USA]. Treatment naïve, HBeAg+ CHB 
patients were recruited in 12 centers world-wide (Portland, 
California, Frankfurt, Hamburg, Hannover, Rotterdam, Taipei, 
Tainan, Seoul, and Taichung). The 13 patients (patient charac-
teristics described in Table 1) received 12 weeks of ETV mono-
therapy (0.5 mg/day) followed by up to 32 weeks of combination 
therapy ETV (0.5 mg/day)/PegIFNλ (180 μg/weekly) (Figure 1). 
Clinical parameters [HBV-DNA, HBeAg, hepatitis surface 
antigen (HBsAg), and alanine aminotransferase (ALT)] were 
measured in the serum at central laboratories. This study was 
approved by the Ethics Committee at each recruitment site and 
informed consent was obtained from all patients before enroll-
ment. The isolation and cryopreservation of peripheral blood 
mononuclear cells (PBMC) was standardized by supplying each 
site with a written and video protocol. Prior to patient enrollment, 
each site performed PBMC isolation dry run which were shipped 
to the Institute of Hepatology for testing and once PBMCs met 
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FigUre 1 | study design. All 13 patients were treated with entecavir (ETV) for 12 weeks and subsequently received ETV + pegIFN-λ. The weeks of treatment 
reached by the patients are shown. Peripheral blood mononuclear cells (PBMC) collection are also indicated.
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standardized criteria of >95% viability and >80% recovery did 
the sites initiate recruitment and collection of PBMC locally.

PBMc isolation
Peripheral blood mononuclear cells were isolated from heparin-
ized blood by lymphoprep gradient centrifugation as described 
previously (33, 34, 37). The cryopreserved PBMC were stored at 
−80°C at each site and subsequently batch shipped to the Institute 
of Hepatology for immunological analysis.

antigens
Commercially available recombinant HBV nucleocapsid protein 
(HBcAg) and purified HBsAg were purchased from American 
Research products, Belmont, MA. HBV genotype A, B, C, and 
D 15-mers overlapping peptides covering the entire HBcAg and 
HBsAg region (Proimmune, Oxford, UK) were mixed in pools of 
five adjacent peptides. The pools were reconstituted at 8 mg/ml 
in dimethyl sulfoxide (DMSO). Recall antigen, tuberculin puri-
fied protein derivate (PPD) (Statens Seruminstitut, Copenhagen, 
Denmark), PMA, inomycin, and phytohemagglutinin (PHA) 
(Sigma, Poole, UK) were used as positive controls.

Flow cytometry
All antibodies used for flow cytometry were purchased from 
BD Biosciences except when mentioned differently. Cells were 
acquired after staining on FACSCanto II flow cytometer (BD) and 
analyzed using FACS DIVA software.

nK analysis
Peripheral blood mononuclear cells were surface stained with 
CD3-BV510, CD16-FITC, CD56-V450, NKG2D-PerCP-
eFluor710 (eBioscience), and TRAIL-PE (R&D systems) as 
previously described (44, 45). To measure the frequency of 
IFN-γ-producing NK  cells and NK  cell degranulation, PBMC 
were incubated for 6 h with rhIL-12 and rhIL-18 (R&D systems) 
and CFSE-stained K562 (E:T 5:1), respectively. CD107a-APC 
was added 2 h after the start of the culture to the PBMC: K562 
cultures. A protein inhibitor cocktail (eBioscience) was added to 
all cultures 3 h from the start of the culture. PBMC were then 
surface stained as described above with CD3, CD16, and CD56 
antibodies. The rhIL-12- and rhIL-18-stimulated wells were 

stained intracellularly with IFN-γ-PE-Cy7 as previously described  
(44, 45). PBMC were also stimulated with PMA/ionomycin 
as a positive control. The gating strategy to assess the ex vivo 
frequency of cytokine-producing (CD56bright, CD16−) and cyto-
toxic (CD56dim, CD16+) NK subsets is described in Figure S1 in 
Supplementary Material.

Frequency of hBV-specific Producing  
T cells iFn-γ
The frequency was assessed by ELISpot assays. PBMC from 
patients and from a quality control PBMC batch (inter-
assay control) were thawed, washed, and resuspended in 
RPMI1640/10% AB serum. The cell viability was assessed with 
propidium iodide using an automated cell counter. ELISPOT 
assays were performed as previously described (34). PBMC 
were incubated in the presence of HBcAg (1  µg/ml), HBsAg 
(2 µg/ml), peptide pools (4 µg/ml), PPD (10 µg/ml), and PHA 
(2 µg/ml).

Functions of hBV-specific T cells
Peripheral blood mononuclear cells were stimulated with HBV 
antigens and genotype-specific peptide pools for 7  days. On 
day 6, PBMC were subjected to a second round of stimula-
tion with the HBV antigens and the overlapping HBV pep-
tides and stained overnight with CD107a-APC and protein 
inhibitor cocktail. On day 7, PBMC were surface stained with 
CD3-BV510, CD4-V450, and CD8-APC-eFluor780 antibod-
ies and stained intracellularly for IFN-γ as described above. 
PBMC stimulated with PMA/ionomycin were used as a posi-
tive control.

For T-regulatory cell staining, PBMC were surface stained with 
CD3, CD4, and CD25-FITC, fixed and permeabilized with FoxP3 
buffer (eBioscience) and stained intracellularly with FoxP3-
PerCPCy5.5 antibody as per the manufacturer’s instructions.

Determination of serum cytokine Profiles
The serum levels of IL-2, IL-6, IL-8, IL-10, IL-12p70, IL-18, IP-10, 
IFN-γ, TNF-α, Granzyme B, and MIP-1α were quantitated using 
cytometric bead array (BD Biosciences) in accordance with 
manufacturer’s instructions. The levels of IL-15, IL-17, IFN-α, 
and IFN-β were determined by ELISA (R&D systems).
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statistics analysis
Statistical significance was assessed during course of the treatment 
before and after segregation of patients into groups using repeated 
measure one-way ANOVA and two-way ANOVA, respectively. 
Multiple comparisons tests were performed only when the null 
hypothesis was rejected with the ANOVA test. Pearson’s correla-
tion was used for correlation analyses. Analyses were conducted 
with the GraphPad Prism software version 6.05 for Windows (La 
Jolla, CA, USA). p < 0.05 was considered statistically significant.

resUlTs

clinical responses and group 
stratification
This clinical study was terminated early for commercial reasons 
based on results from a parallel trial showing that non-inferiority 
of IFNλ to IFNα was not met at week 24. This early curtailment 
was not related to any safety concerns (46). The 13 patients initially 
received the full 12 weeks of ETV alone. Due to the truncated 
nature of this study, four patients received ETV plus Peg-IFNλ for 
8 weeks, three for 16 weeks, three for 24 weeks, two for 28 weeks, 
and one for 32 weeks. Patients’ responses were not significantly 
different between consecutive time points and were therefore 
grouped during ETV and ETV plus Peg-IFNλ treatments.

Treatment with ETV alone led to a mean drop of −3.72 
Log10 copies/ml in HBV-DNA levels during the first 12 weeks of 
therapy (Table 2) in line with previous studies (47, 48). A further 
reduction in viral replication was observed with the addition of 
Peg-IFNλ (−1.8 Log10 copies/ml) (Table  2). A significant drop 
in HBsAg levels (−0.63Log10 IU/ml) and in the% HBsAg decline 
(ETV: 7.8% vs ETV + Peg-IFNλ: 13.2%) was also greater when 
Peg-IFNλ was administered. HBeAg levels did not fall during 
ETV alone but the addition of Peg-IFNλ did induce a significant 
reduction (−0.73Log10 IU/ml) and a drop in the % HBeAg decline 
(ETV + Peg-IFNλ: 31.5%) (Table 2). No HBsAg or HBeAg loss 
or seroconversion occurred during the course of this truncated 
study, and no significant changes overall were observed in serum 
ALT (Table  2). Two patients experienced an ALT flare (ALT 
greater than 2× baseline and 5× the upper limit of normal) during 
add-on Peg-IFNλ.

Analysis of the clinical data revealed two distinct groups of 
patients based on the rates of decline of the viral antigen levels 
(HBeAg and HBsAg) when Peg-IFNλ was introduced. Nine 
patients (Group 1) had a greater and significant reduction in 
HBsAg and HBeAg compared to the remaining four patients 
(Group 2) who showed no change in viral antigen levels during the 
addition of Peg-IFNλ (Table 3). In Group 1, HBsAg and HBeAg 
declined by −0.73 and −0.95 Log10 IU/ml, respectively (Table 3). 
Furthermore, the difference in HBsAg and HBeAg levels between 
Group 1 and Group 2 was greater than 1 Log (Group 1 − Group 2: 
HBsAg: −1.07 Log10; HBeAg: −1.08 Log10) (Table 3).

Reductions in viremia were also different between these two 
groups. Significant reductions were observed in Group 1 between 
ETV alone and ETV plus Peg-IFNλ (−3.84 Log10; −1.9 Log10, 
respectively), whereas HBV-DNA decline was less pronounced in 
Group 2 (ETV alone: −3.45 Log10; ETV + Peg-IFNλ: −1.57 Log10). 
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TaBle 3 | changes in patients’ virological parameters after segregation in two groups during treatment.

hBV-Dna (log10 copies/ml) hepatitis surface antigen (hBsag)  
(log10 iU/ml) 

hBeag (log10 iU/ml) alanine aminotransferase (alT) (U/l) 

Baseline entecavir 
(eTV)

eTV + pegiFn-λ Baseline eTV eTV + pegiFn-λ Baseline eTV eTV + pegiFn-λ Baseline eTV eTV + pegiFn-λ

Patient 
Group 
1 
(n = 9)

M 8.14 ± 0.30 4.30 ± 0.30 2.40 ± 0.26 4.39 ± 0.17 4.08 ± 0.19 3.35 ± 0.35 2.21 ± 0.37 2.19 ± 0.24 1.23 ± 0.37 118.5 ± 41.35 70 ± 10.85 112.5 ± 30.87
Δ −3.84 ± 0.17 

(p < 0.0001)
−0.31 ± 0.10 

(p = ns)
−0.013 ± 0.22 

(p = ns)
−48.53 ± 35.47 

(p = ns)

Δ1 −5.74 ± 0.24 
(p < 0.0001)

−1.04 ± 0.32 
(p = 0.005)

−0.97 ± 0.38 
(p = 0.019)

−6.07 ± 26.02 
(p = ns)

Δ2 − 1.9 ± 0.23 
(p = 0.0002)

−0.73 ± 0.28 
(p = 0.042)

−0.95 ± 0.28 
(p = 0.020)

40.47 ± 27.41 
(p = ns)

Patient 
Group 
2 
(n = 4)

M 8.88 ± 0.34 5.43 ± 0.21 3.86 ± 0.21 5.05 ± 0.18 4.81 ± 0.40 4.42 ± 0.28 2.75 ± 0.00 2.65 ± 0.10 2.31 ± 0.32 82.75 ± 26.09 88.25 ± 41.49 117.8 ± 54.54
Δ −3.45 ± 0.41 

(p < 0.0001)
−0.24 ± 0.23 

(p = ns)
−0.10 ± 0.10 

(p = ns)
5.5 ± 16.03 

(p = ns)

Δ1 −5.02 ± 0.46 
(p < 0.0001)

−0.63 ± 0.11 
(p = ns)

−0.44 ± 0.16 
(p = ns)

35.03 ± 73.78 
(p = ns)

Δ2 −1.57 ± 0.40 
(p = ns)

−0.39 ± 0.13 
(p = ns)

−0.33 ± 0.16 
(p = ns)

29.53 ± 84.19 
(p = ns)

M 
Group 
1 − M 
Group 
2

Δ3 −0.74 ± 0.47 
(p = ns)

−1.13 ± 0.47 
(p = 0.023)

−1.46 ± 0.47 
(p = 0.041)

−0.65 ± 0.44 
(p = ns)

−0.73 ± 0.44 
(p = ns)

−1.07 ± 0.44 
(p = 0.022)

−0.54 ± 0.46 
(p = ns)

−0.45 ± 0.46 
(p = ns)

−1.08 ± 0.46 
(p = 0.026)

35.77 ± 47.83 
(p = ns)

−18.26 ± 47.83 
(p = ns)

−7.21 ± 47.83 
(p = ns)

The data are shown as mean ± SEM at BL, ETV, and ETV + pegIFN-λ. (M) Mean change in HBV-DNA, HBsAg, HBeAg, and ALT from (Δ) BL to ETV, (Δ1) BL to ETV + pegIFN-λ, (Δ2) ETV to ETV + pegIFN-λ. (Δ3) Mean difference in 
HBV-DNA and viral antigens levels between group 1 and group 2 at BL, ETV, and ETV + pegIFN-λ. Repeated measures two-way ANOVA was performed.
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There was a difference in HBV-DNA levels greater than 1 Log 
between the two groups (ETV alone: −1.13 Log10; ETV + Peg-
IFNλ: −1.46 Log10) (Table 3). Serum ALT levels were not different 
between Group 1 and 2.

As it has been previously shown that declining HBsAg levels 
denote activation of the host immunity and control of infection 
(49–52), the impact of IFNλ on the host immunity was analyzed 
in the two groups identified: those who did (Group 1) or did not 
(Group 2) experience changes in antigen levels during combina-
tion treatment.

addition of Peg-iFnλ induces  
a Poly-Functional nK response
During CHB, NK  cells exhibit profound impairments in their 
ability to eliminate HBV by non-cytolytic and cytolytic mecha-
nisms. They notably also lose the ability to orchestrate key players 
of the adaptive immune response (36, 53–55). Using standard-
ized protocols (44), we analyzed the impact of Peg-IFNλ on the 
phenotype and functionality of NK  cells. In Group 1 patients  
(i.e., those with the greatest reduction in antigenaemia), we found 
an expansion in the frequency of these cells expressing the cyto-
toxic marker tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL) during combination Peg-IFNλ (Figure  2A). 
Importantly, this pattern was not observed in Group 2 patients. 
We also assessed the relationships between the NK cell population 
and viral parameters and found the increase in TRAIL-positive 
NK cells to correlate positively with serum ALT levels in Group 1 
patients (r = 0.848; p < 0.0001). This was reflected in two patients 
who showed the greatest increase in these NK cells and had the 
greatest elevation in serum ALT, denoting a cytolytic clearance 
of infected hepatocytes during the Peg-IFNλ phase of treatment. 
This observation was in line with previously described findings 
that in CHB, TRAIL expression increases together with ALT 
levels in patients treated with Peg-IFNα and denotes the elimina-
tion of infected hepatocytes (53). Interestingly, TRAIL-positive 
cytokine-producing NK cells of Group 1 patients were found to 
correlate negatively with HBsAg levels (r = −0.699; p = 0.0025).

The data also clearly demonstrate that NK functionality is 
modulated by the addition of Peg-IFNλ in vivo and is different 
between the “responding” and “non-responding” groups. The 
cytotoxic potential of NK cells increased significantly in Group 1 
but remained unchanged in Group 2 during the presence of Peg-
IFNλ (Figure 2B). The frequency of IFN-γ-producing NK cells 
also changed during treatment and increased with Peg-IFNλ 
in Group 1, although the difference between ETV alone and 
ETV  +  Peg-IFNλ was not statistically significant (Figure  2C). 
Nevertheless, the increase in the frequency of IFN-γ-producing 
NK  cells was found to correlate negatively with HBV viral 
load (r = −0.545; p = 0.030). In contrast, the expression of the 
inhibitory marker, NKG2D did not change on any of the NK cells 
subsets during treatment (Figures 2D,E).

Peg-iFnλ augments hBV-specific  
T cells responses
We comprehensively assessed the HBV-specific T cell response 
to recombinant HBV core, HBV surface antigen proteins, and 

overlapping genotype-specific core and surface peptides pools. 
Significant expansion was observed in the frequency of HBV-
specific T  cells producing IFN-γ during the add-on Peg-IFNλ 
phase of treatment in Group 1 but not in Group 2 (Figure 3A). We 
observed an increase in the percentage of patients who responded 
to HBV antigens and peptides pools initiated by treatment with 
ETV alone and this was augmented further when Peg-IFNλ was 
added (Figure 3B). Further characterization of this reactive T cell 
population revealed that the increased virus-specific response 
observed in Group 1 was predominantly driven by the CD4+ 
T cell population (Figure 3C). We also assessed the relationships 
between CD4+ T cell population and viral parameters and found 
this cell population to be negatively correlated with HBV-DNA 
(r = −0.752; p = 0.019) and HBsAg (r = −0.795; p = 0.010) and 
positively correlated with ALT (r = 0.824; p = 0.006). A small but 
significant increase in the IFN-γ-producing HBV-specific CD8+ 
T cell population was also detected in 40% of patients in Group 1,  
during ETV and maintained during the addition of Peg-IFNλ 
(Figure  3D). The change in this cell population was found to 
correlate negatively with HBsAg (r  =  −0.676; p  =  0.045) and 
positively with serum ALT (r = 0.770; p = 0.015). We also evalu-
ated the cytotoxic potential of HBV-specific CD8+ T cells during 
the study by assessing their ability to degranulate and found that 
CD107a-positive HBV-specific CD8+ T  cells were maintained 
through the treatment period, reflecting the steady levels of ALT 
observed in most of these patients (Figure 3E). There were, how-
ever, higher frequencies of this subset in Group 1 than Group 2. 
Indeed, during add-on PegIFNλ, 50% of subjects in Group 1 had 
more than 10% of HBV-specific CD8+ T cells expressing CD107a 
in contrast to none of the patients in Group 2. The frequency of 
T-regulatory cells was assessed and found to be low in all patients 
at baseline and did not change during treatment or between the 
groups (Figure 3F).

Peg-iFnλ alters serum il-18 levels
Finally, we examined the impact of Peg-IFNλ add-on on a 
panel of antiviral and pro/anti-inflammatory serum cytokines. 
Notably, we found that IL-18 levels significantly increased dur-
ing treatment in Group 1 (Figure  4A). Although this increase 
is statistically significant, we recognize that it is quite small and 
the biological relevance needs to be further studied. This change 
in IL-18 was found to correlate positively with serum ALT 
(r = 0.432; p = 0.024). The levels of IL-8, IL-15 IL-17, and IP-10 
did not change during the course of treatment in the two groups 
(Figures 4B–E). Type I IFNs, IFN-β, and IFN-α could be detected 
but only in Group 1; however, their levels did not change during 
treatment (Figures 4F,G). The other cytokines measured, IL-2, 
IL-6, IL-10, IL-12p70, IFN-γ, TNF-α, Granzyme B, and MIP-1α 
were undetectable in both groups at all time points assessed.

DiscUssiOn

The present data show for the first time that in vivo, IFNλ displays 
immunostimulatory properties and provokes anti-HBV immu-
nity in both the innate and adaptive compartments but only in 
patients that achieve the greatest decline in viral replication rates. 
This is of much relevance in CHB, as reductions in, or loss of 

http://www.frontiersin.org/Immunology/
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FigUre 2 | effect of treatment on natural killer (nK) cells response in group 1 and group 2 patients (n = 13). Percentage of (a) tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL)-positive CD56bright NK cells (B) CD107a-producing cytotoxic CD56dim NK cells, (c) IFN-γ producing CD56bright,  
(D) NKG2D-positive CD56bright, and (e) NKG2D-positive CD56dim were measured by flow cytometry. A total of 100,000 events were collected during FACS 
acquisition and the subsequent analysis was performed using FACS DIVA software. Data are shown as mean ± SEM. Two-way ANOVA followed by multiple 
comparison tests were performed for statistical analysis.
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viremia in the serum does not equate to cure or viral eradication 
as the HBV genome persists as an integrated genome and/or as 
episomal covalently closed circular DNA for life (56). Long-term 
off-treatment control is only likely to be achieved via the acti-
vation strong antiviral host immunity, as seen in patients who 
resolve the infection spontaneously (56).

The findings from this study supports our previous reports 
demonstrating that overcoming immune hyporesponsiveness 
and development of immune-modulating therapies for CHB can 
only be achieved in patients who have low viral replication rates 
(33, 37). This observation is also supported by previous findings 

from Webster et al. showing that a HBV-DNA load less than 107 
copies/ml is the threshold below which circulating multi-specific 
HBV-specific T cells can be consistently detected (57).

Natural killer cell and virus-specific T cell responses represent 
the main effectors of a favorable antiviral immune response and 
are critical in the long-term control of HBV infection (58, 59); 
functional impairments in their response to HBV have been 
widely shown to be correlated with an inability of the host to 
control replication and the persistence of infection (37, 38). In 
this study, we show that therapeutic administration of IFNλ can 
induce a functional restoration of NK  cells and virus-specific 
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FigUre 3 | effect of treatment on hBV-specific T cells and T regs response in group 1 and group 2 patients (n = 13). The frequency of IFN-γ-producing 
HBV-specific T cells was evaluated by ELISPOT following peripheral blood mononuclear cells (PBMC) stimulation with HBV antigens and HBV-specific overlapping 
peptides. PBMC stimulation with recall antigen purified protein derivate and mitogen phytohemagglutinin elicited a measurable strong response which did not 
change significantly during the course of the treatment. (a) ELISPOT quantitation of frequency of IFN-γ-producing HBV-specific T cells. (B) Heat map representation 
of the percentage of patients reacting to each individual HBV antigen and peptide pool in ELISPOT. The assessment of the functionality of T cells was performed by 
FACS following two rounds of stimulation with HBV antigens and HBV-specific overlapping peptides covering HBV core and HBV surface regions. (c) IFN-γ-
producing HBV-specific CD4+ T cells, (D) IFN-γ-producing HBV-specific CD8+ T cells, (e) CD107a-producing HBV-specific CD8+ T cells, and (F) T regulatory cells 
were quantitated by FACS. A total of 100,000 events were collected during FACS acquisition and the subsequent analysis was performed using FACS DIVA 
software. Data are shown as mean ± SEM. Two-way ANOVA followed multiple comparison tests were performed for statistical analysis.
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FigUre 4 | effect of treatment on serum cytokines production during treatment in patients group 1 and group 2 (n = 13). Cytokines (a) IL-18, (B) IL-8, 
(c) IL15, (D) IL-17, (e) IP-10, (F) IFN-α, and (g) IFN-β were measured in the sera of patients by cytometric bead array or ELISA. Data are shown as mean ± SEM. 
Two-way ANOVA followed by multiple comparison tests were performed for statistical analysis.
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T cells antiviral abilities. Further to this, we show that the spec-
trum of changes observed with IFNλ treatment are far wider 
than that observed with conventional IFN-α treatment in CHB 
patients.

Natural killer cells display two main effector functions that 
directly contribute to HBV infection control, direct killing of 
infected cells and the production of a variety of cytokines includ-
ing the potent anti-HBV cytokine IFN-γ, which has directly 
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antiviral activities and activates and promotes downstream 
antigen-specific adaptive immune responses (60). In our study, 
we find an improvement in these two functions of NK  cells 
when Peg-IFNλ is introduced and observe a notable increase of 
NK cells expressing TRAIL, an activation marker which induces 
target-cell apoptosis. Studies that investigated the modulation 
of NK cells during directly acting antiviral therapy have shown 
no effect on IFN-γ producing CD56bright NK cells; which allow 
us to conclude that the increase in IFN-γ-producing NK cells 
observed during add-on Peg-IFNλ is directly the result of IFNλ 
administration (36, 61). IFNλ mediated activation of cytolytic 
and non-cytolytic NK functionality is found in our study to 
be closely associated with reduction in viral replication rates 
and HBsAg levels. We therefore conclude that IFNλ induces a 
significant expansion of both cytotoxic and IFN-γ-producing 
NK cells in patients with the greatest decline in viral replication 
during ETV.

In addition to the activation of NK cell functionality during 
IFNλ therapy in Group 1 patients, we also observed significant 
restoration of the virus-specific T cell responses which are widely 
known to be pivotal to the host control of HBV replication 
long-term (43, 62). We observed an increase in the frequency 
of HBV-specific CD4+ and CD8+ T  cells producing IFN-γ, 
which correlated strongly with the reduction of viremia and 
HBsAg. Further to this, we report an increase in the percent-
age of patients recognizing HBV antigens and peptide pools 
suggesting a diversification of epitope recognition and T  cell 
activation. This is key for long-term control, as the ability of the 
immune system to attack multiple targets on a given pathogen 
has obvious advantages (63). Previous studies of ETV treatment 
of HBeAg-positive patients have reported partial restoration of 
HBV-specific CD8+ T cells and may explain the small increase in 
IFN-γ producing HBV-specific CD8+ T cells during ETV alone 
(64, 65). IFN-γ producing HBV-specific CD4+ T cells, however, 
are not susceptible to this ETV-driven immune improvement. In 
parallel, during IFNλ treatment, we observe a temporal relation-
ship between HBV-specific CD8+ T cells and mild elevations of 
liver transaminases denoting destruction of infected hepatocytes, 
suggesting the mobilization of activated cytotoxic immune cells 
into the liver. We have previously shown that this equilibrium 
between cytolytic and non-cytolytic CD8+ T  cells functions is 
critical in control of infection without excessive exacerbation of 
inflammation and liver injury and this study reveals that IFNλ 
favorably maintains this balance (66).

It was not possible to delineate the direct mechanisms by 
which IFNλ activated NK and virus-specific T cell responses. 
We did explore whether this was mediated via the programmed 
death-1 pathway and found no modulation of the expression of 
this inhibitory pathway on NK or T cells ex vivo during the study 
period (data not shown). While further work will need to be 
performed to identify the specific pathways of IFNλ-mediated 
immune activation, our data does reveal a novel relationship 
between IFNλ and IL-18, particularly in patients that showed 
greatest decline in HBsAg levels during IFNλ treatment. This 
increase in IL-18 levels was however quite small and further 
studies are needed. The lack of changes in IFN-α and IFN-β 
plasma levels during IFNλ administration, is in line with 

previous in  vitro work by Ank et  al  (67), suggests that this is 
also not the mechanism by which host antiviral immunity was 
induced.

The root cause for lack of immune reactivation in Group 2 
could not be fully delineated due to the lack of sample availability. 
We had hypothesized that hyperexpression of the checkpoint 
inhibitor programmed death-1 may be partly responsible but 
this was not substantiated experimentally. This does not preclude 
the possibility of overexpression of other immune checkpoint 
inhibitors, on immune cells of group 2 patients, such as Tim-3 
and CTLA-4 which have been documented to impair immune 
function in CHB (68). Further to this, multiple reports have 
suggested that mutations and splice variants in the HBV genome 
and lower pregenomic/precore RNA could negatively influence 
the response to interferon treatment (69–71) and this may also 
be responsible for lack of response observed in Group 2. Finally 
and possibly most likely, IFNλ intracellular signaling may have 
been disrupted by HBV-induced elevated levels of the suppres-
sor of cytokine signaling SOCS 1 and 3 in Group 2 patients, 
thereby rendering IFNλ treatment ineffective (72, 73). Further 
in-depth studies addressing these possibilities are required to 
characterize and confirm the mechanisms underlying IFNλ non-
responsiveness in vivo.

In this study, we have highlighted several differences in the 
immunoregulatory activities of IFNλ when compared to IFN-α. 
The dysregulation of the adaptive immune response, a hallmark 
of CHB, cannot be overcome by treatment with IFN-α (13). 
In fact, studies have shown that treatment with IFN-α actively 
results in the suppression of HBV-specific CD8+ T cells (12, 14). 
It has been hypothesized that this is consequent to the known 
potent anti-proliferative effects of IFN-α. This suppressive effect 
of IFN-α is not confined to CHB and has been demonstrated 
in several other chronic viral infections (74–77). We show that 
add-on IFNλ treatment does not lead to the suppression but to 
the maintenance in the frequency of HBV-specific CD8+ T cells 
producing IFN-γ. Their negative strong correlation with HBsAg 
levels further highlights the importance of these cells in the 
control of HBV infection. In further contrast, IFN-α does not 
seem to activate the cytotoxic capacity of NK cells to kill target 
cells (13), whereas in this investigation we reveal the ability of 
IFNλ to improve this important effector function. Our data also 
suggest that IFNλ mediates improvement of anti-HBV immunity 
via IL-18. In contrast, IFN-α is believed to activate NK responses 
via IL-15 (13).

Anti-HBs seroconversion, the marker of functional cure 
in CHB, was not seen in this study. It is well described that a 
decline of >1 Log HBsAg is predictive of sustained HBsAg loss 
in HBeAg-positive CHB patients (78, 79) and we would suggest 
that given the steady decline of HBsAg levels seen in Group 1 
patients during IFNλ treatment, in concert with improvement in 
innate and adaptive immune responses in Group 1, we may have 
observed HBsAg loss, possibly followed by anti-HBs seroconver-
sion post-treatment. Additionally, IFNλ was only administered 
for a truncated 32 weeks and treatment for at least 48 weeks might 
be needed to observe an on-treatment HBsAg loss and anti-HBs 
seroconversion especially due to the restricted distribution of 
IFNλ receptor. Regrettably, there was no posttreatment follow-up 
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due to the early cessation of the clinical trial, due to commercial 
reasons based on results from a parallel trial showing that non-
inferiority of IFNλ to IFN-α was not met at week 24 (46).

In conclusion, this study has demonstrated for the first time a 
dual immunomodulatory effect of IFNλ on both the innate and 
adaptive arms of the immune response in  vivo during chronic 
viral infection. When IFNλ is administered in patients with 
suppressed HBV replication rates, it can induce broad immune 
stimulatory properties and drive activation of cytokine-producing 
and cytotoxic NK cells, IFN-γ-producing HBV-specific CD4+ T 
and maintenance of the antiviral and cytotoxic functions of HBV-
specific CD8+ T cells.
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FigUre s1 | Flow cytometry gating strategy for analysis of cD56bright, 
cD56dim nK cells subsets. (a) The lymphocyte population was gated on 
forward and side scatter. (B) The NK cells population was identified with the 
CD56 and CD3 markers. (c) CD56 and CD16 markers were used to identify 
CD56bright NK cells (CD56bright/CD16−) and CD56dim NK cells (CD56dim/CD16+) 
subpopulations. A total of 250,000 events were acquired. Analysis was 
performed using FACS diva software.
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