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Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differen-
tiate into all cell types in human body, and therefore hold great potential for cell therapy 
of currently incurable diseases including neural degenerative diseases, heart failure, and 
macular degeneration. This potential is further underscored by the promising safety 
and efficacy data from the ongoing clinical trials of hESC-based therapy of macular 
degeneration. However, one main challenge for the clinical application of hESC-based 
therapy is the allogeneic immune rejection of hESC-derived cells by the recipient. The 
breakthrough of the technology to generate autologous-induced pluripotent stem cells 
(iPSCs) by nuclear reprogramming of patient’s somatic cells raised the possibility that 
autologous iPSC-derived cells can be transplanted into the patients without the concern 
of immune rejection. However, accumulating data indicate that certain iPSC-derived 
cells can be immunogenic. In addition, the genomic instability associated with iPSCs 
raises additional safety concern to use iPSC-derived cells in human cell therapy. In this 
review, we will discuss the mechanism underlying the immunogenicity of the pluripotent 
stem cells and recent progress in developing immune tolerance strategies of human 
pluripotent stem cell (hPSC)-derived allografts. The successful development of safe 
and effective immune tolerance strategy will greatly facilitate the clinical development of 
hPSC-based cell therapy.

Keywords: embryonic stem cells, induced pluripotent stem cells, cell therapy, allogeneic immune rejection, 
immunogenicity, immune tolerance

THe PROMiSe OF PLURiPOTenT STeM CeLL (PSC)-DeRiveD 
CeLLS in CeLL THeRAPY OF MAJOR HUMAn DiSeASeS

The successful establishment of human embryonic stem cells (hESCs) from the inner cell mass of 
the human blastocyts has opened up a new era in regenerative medicine (1). Significant progress has 
been achieved in developing protocols to differentiate hESCs into various lineages of biologically 
active cells such as neural cells, pancreatic β cells, retinal pigmented epithelial (RPE) cells, cardio-
myocytes, and hepatocytes (2). Three of such hESC-derived cells have entered clinical trial to treat 
macular degeneration, spinal cord injury, and type 1 diabetes (3). In addition, these clinical trials 
have provided promising data on the safety and efficacy of hESC-based cell therapy of macular 
degeneration, further supporting the great potential of the clinical application of hESC (4–6). 
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However, one of the main bottlenecks that hinder the clinical 
development of hESC-based therapy is the allogeneic immune 
rejection by the recipient. While current immune suppression 
regimen can effectively prevent allogeneic immune rejection, the 
persistent use of immune suppressants is toxic to patients, and 
can greatly increase the risk of infection and cancer, especially 
in patients infected with cytomegalovirus and the herpes viruses 
(7). In addition, immune suppressants are toxic to some of the 
hESC-derived progenitor cells (8).

The development of induced pluripotent stem cells (iPSCs) by 
reprogramming somatic cells into pluripotent state with defined 
transcriptional factors has provided another source of PSC for 
human cell therapy (9–12). When compared with hESC-based 
cell therapy, iPSCs were thought to provide certain advantages, 
including the lack of ethic concerns and immune rejection by 
the recipient (13). However, recent studies have demonstrated 
the increased genomic instability, epigenetic abnormality, and 
immunogenicity of iPSCs, raising safety concerns of iPSC-based 
cell therapy (14, 15). Therefore, to improve the feasibility of 
iPSC-based therapy, it is important to understand the underlying 
reprogramming mechanism and develop strategies to minimize 
these safety concerns.

THe iMMUne ReSPOnSeS TO 
ALLOGeneiC eSCs AnD THeiR 
DeRivATiveS

The polymorphic major histocompatibility complex (MHC) 
molecules are distinct between individuals, leading to the massive 
T cell-mediated immune response and rejection of the transplanted 
allogeneic cells (16). There are two classes of MHC molecules, 
MHC class I molecules that are expressed on most of the nucleated 
cells and MHC class II molecules that are expressed primarily on 
antigen presenting cells (16). MHC class I molecules are required 
to activate CD8+ cytotoxic T cells that can destroy the target cells, 
and MHC class II molecules are required to activate CD4+ helper 
T cells that are critical to activate other immune cells including 
cytotoxic T  cells (16). In addition, certain cell types lacking the 
expression of MHC class I molecules such as stem cells and cancer 
cells are rejected by natural killer (NK) cells (17).

While mouse ESCs do not express detectable MHC Class I and 
Class II molecules (18, 19), hESCs express MHC Class I molecules 
but not MHC Class II molecules, and hESCs cannot directly 
activate T cells in vitro and in vivo (20–23). However, hESCs can 
be immune rejected by various mechanisms after transplantation. 
First, allogeneic NK cells can eliminate mouse and human ESCs 
in vitro (24, 25). Second, while ESCs do not directly activate allo-
geneic T cell through the interaction between allogeneic MHC 
molecules and TCR, ESCs express immunogenic antigens such 
as MHC Class I molecules and Oct4 that can indirectly activate 
T cells through antigen presenting cells (22, 23, 26). Third, after 
transplantation, both mouse and human ESCs cannot maintain 
the pluripotent state and will undergo spontaneous differentia-
tion into various cell types that express MHC molecules, leading 
to robust T-dependent allogeneic rejection (27, 28). Therefore, 
hESCs and their derivatives will be immune rejected when trans-
planted into allogeneic recipients.

While it has been suggested that ESCs might have immune 
modulatory functions in treating certain diseases such as myo-
cardial infarction (29), ESCs pose a serious teratoma risk after 
transplantation and thus are unlikely to be used directly in therapy. 
Therefore, the major effort should be devoted to understanding 
the allogeneic immune responses to hESC-derived cells that have 
no teratoma risk. There has been limited progress in this area of 
research due to the lack of robust animal models to study the human 
immune responses to hESC-derived cells. Recent application of 
humanized mice reconstituted with functional human immune 
system, which are generated by transplanting human fetal thymus 
and CD34+ fetal liver cells, has made this research more feasible 
(30). In support of this notion, recent studies demonstrated that 
the humanized mice could mount vigorous allogeneic immune 
rejection of hESC-derived cells (31).

THe iMMUnOGeniCiTY OF iPSCs  
AnD THeiR DeRivATiveS

The breakthrough of induced pluripotency to reprogram somatic 
cells from patients into PSC has raised the possibility that the cells 
derived from patient-specific iPSCs are autologous and thus will 
not be immune rejected by the patient (32). However, hiPSCs 
can be rejected by allogeneic and autologous NK  cells (33). In 
addition, accumulating data have demonstrated that cells derived 
from iPSCs can be immunogenic to the autologous immune sys-
tem. Using an inbred C57/BL6 (B6) transplantation mouse model, 
Zhao et al. (27) demonstrated that cells derived from B6 iPSCs 
can activate syngeneic T-dependent immune responses due to the 
deregulated expression of immunogenic proteins such as the tumor 
antigen Hormad1. This conclusion is supported by a following 
study, which also demonstrated that the endothelial cells derived 
from B6 iPSCs are immune tolerated by B6 mice (34). However, 
the iPSC-derived endothelial cells express high levels of immune 
suppressive cytokines such as IL-10 and are immune rejected in 
B6 mice when treated with anti-IL-10 antibody, supporting the 
notion that these iPSC-derived endothelial cells are intrinsically 
immunogenic (34). In addition, cardiomyocytes derived from B6 
iPSCs are highly immunogenic when transplanted into the B6 
mice subcutaneously (35). In the same study, the authors derived 
GFP+ skin tissue from B6 chimeric mice generated by injecting 
GFP-expressing B6 iPSCs into B6 blastocyts and found no immune 
rejection when the GFP+ skin tissue was grafted to new B6 mice. 
However, these B6 iPSC-derived skin tissues have already been 
preselected by the B6 immune system in the chimeric mice, and 
thus the skin graft will not be rejected by B6 immune system when 
transplanted onto new B6 mice. In support of this notion, GFP is 
a foreign protein and immunogenic to B6 mice when expressed 
in the skin, and GFP-expressing skin tissues of GFP transgenic B6 
mice are immune rejected when grafted to the B6 mice (36–38).

Several recent studies have argued that iPSC-derived cells are 
not immunogenic to the isogenic or autologous immune system. 
By transplanting cells derived from B6 iPSCs under the kidney 
capsule of B6 mice, Guha et al. (39) concluded that various lineages 
of iPSC-derived cells exhibit no immunogenicity. In addition, the 
transplantation of iPSC-derived neural cells in the brain of autolo-
gous monkeys leads to minimum immune response (40). To resolve 
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this apparent discrepancy, a recent study showed that the lack of 
immunogenicity of B6-derived iPSCs transplanted under the kid-
ney capsule is due to the absence of functional antigen presenting 
cells in the kidney, and the cotransplantation of B6 iPSC-derived 
cells with functional B6 dendritic cells under the kidney capsule 
leads to robust immune rejection (41). Therefore, the presence of 
functional antigen presenting cells at the transplantation site is 
required to reveal the immunogenicity of iPSC-derived cells. In 
further support of the conclusion that iPSC-derived cells can be 
immunogenic, using a humanized mouse model reconstituted with 
human immune system, Zhao et al. demonstrated the differential 
immunogenicity of human iPSC-derived cells. In this context, 
iPSC-derived smooth muscle cells are highly immunogenic to the 
autologous immune system due to the deregulated expression of 
immunogenic proteins, but iPSC-derived RPE cells are not immu-
nogenic to the autologous immune system even when transplanted 
into smooth muscle (28). Importantly, the lack of immunogenicity 
of iPSC-derived RPE cells has been recapitulated in the only one 
treated patient in the clinical trial to use autologous iPSC-derived 
RPE cells to treat macular degeneration (42).

There are several mechanisms to explain the immunogenic-
ity of iPSCs. First, compared to ESCs, iPSCs are epigenetically 
abnormal and inherited epigenetic signature of parental cells 
(43–45). The epigenetic abnormalities could explain the abnor-
mal expression of immunogenic proteins expressed during the 
differentiation of iPSCs but not ESCs (27, 28). The impact of this 
epigenetic mechanism on the deregulated expression of immu-
nogenic proteins could be cell lineage specific as observed in 
the differentiation of hiPSCs into RPEs and smooth muscle cells 
(28). Second, somatic coding mutations are detected in all iPSC 
lines tested, and the protein coding mutations can create new 
immunogenic determinants like the tumor antigens developed 
in cancer cells (46, 47). Third, the genomic translocation detected 
in the iPSCs will create fusion proteins and new immunogenic 
determinants (14). Therefore, in addition to the immunogenicity 
of iPSC-derived cells, a more serious safety concern of the iPSC-
based cell therapy is the genomic instability of iPSCs that can 
greatly increase cancer risk (14). In support of this notion, the 
first clinical trials of iPSC-based cell therapy was terminated after 
the enrollment of the first patient due to the discovery of coding 
mutations in cancer related genes in the iPSCs reprogrammed 
from the somatic cells of the second patient (42). This cancer 
concern poses a serious bottleneck for developing individualized 
cell therapy using patients’ own iPSC. Instead, future effort will 
be devoted to establish genetically stable iPSC cell bank, and the 
iPSC line with the best match to the patient’s HLA will be used for 
cell therapy. In this context, the clinic development of allogeneic 
iPSC will face the same challenge of immune rejection as hESCs.

STRATeGieS TO PROTeCT ALLOGeneiC 
HUMAn PLURiPOTenT STeM CeLL 
(hPSC)-DeRiveD CeLLS FROM iMMUne 
ReJeCTiOn

While immune suppressant regimen can effectively suppress 
allogeneic immune responses, the persistent use of immune 

suppressants will significantly increase the risk of infection 
and cancer, especially in the majority of the population with 
Cytomegalovirus infection (7). In addition, the immune suppres-
sants are toxic to some hESC-derived cells such as neural progeni-
tor cells (48). Therefore, to realize the potential of hESC-based 
therapy, it is important to develop safe and effective immune 
tolerance strategy of allogeneic hESC-derived cells.

Allogeneic immune rejection is primarily mediated by T cell-
dependent immune responses. Previous studies have demonstrated 
that standard immunosuppressive drug regimens can significantly 
reduce the immune response to prolong the survival of hESC-
derived xenografts but cannot eventually prevent immune rejec-
tion (49, 50). Based on our knowledge of the pathways critical 
for T-cell activation, it is possible to induce immune tolerance of 
hESC-derived allogeneic cells by disrupting the T cell costimula-
tory pathways, such as CD28-CD80/CD86 and CD40–CD40L 
pathways (51, 52). PD-L1 also plays a central role in maintaining 
T cell anergy and preventing autoimmunity (51). PD-L1 (B7-H1, 
CD274) interacts with programmed cell death 1 (PD-1), which is 
an inhibitory receptor expressed on activated T cells, NK cells, and 
B cells, and this interaction leads to negative regulation of lympho-
cyte activation (53), and PD-1 is required for the induction of T-cell 
tolerance by dendritic cells (54). Therefore, it is possible to develop 
immune tolerance strategy by modulating these costimulatory and 
inhibitory pathways.

A recent study has shown that treatment of mice with cytotoxic 
T  lymphocyte antigen 4-Ig (CTLA4-Ig), which binds to the B7 
family of costimulatory molecules CD80 and CD86 with higher 
affinity and avidity than CD28, and anti-CD40L blocking CD40-
CD40L pathway not only prolonged hESC-derived pancreatic 
endoderm graft survival but also resulted in the establishment 
of immune tolerance of the xeno-immune system (55). A similar 
study also showed that the blockade of costimulatory pathways 
with antibodies significantly prolonged the engraftment of cells 
derived from human ESCs and iPSCs in mice without inhibiting 
the ability of the recipient to respond to other foreign antigens (56). 
However, in contrast to the naive T cells of a mouse model, up to 
50% of alloreactive T cells in a human receiving transplants may 
display a memory phenotype (57, 58), and the allogeneic immune 
tolerance of mouse immune system can be achieved more easily 
than human immune system. Therefore, the immune tolerance 
strategy developed in mouse models must be re-evaluated in the 
context of human immune system.

To address this bottleneck, recent studies have employed 
humanized mice reconstituted with human immune system to 
study human immune responses to cells derived from hPSCs  
(28, 31, 51, 53, 54, 59). The human immune system of human-
ized mice can robustly reject allogeneic cells derived from human 
embryonic stem cells (hESCs), and thus can be used to vigorously 
test immune tolerance strategy (31). Using humanized mice, it 
was demonstrated that the expression of CTLA4-Ig and PD-L1 in 
the cells derived from genetically modified hESCs can effectively 
protect these cells from allogeneic human immune responses 
without inducing systemic immune suppression (31). Neither the 
expression of CTLA4-Ig nor PD-L1 alone is sufficient to provide 
immune protection, consistent with human clinical data (31, 
58). Because the CTLA4-Ig/PD-L1-expressing cells are immune 
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evasive, they are susceptible to infection and cancer. To minimize 
the risk, the co-expression of the suicidal thymidine kinase gene 
in these cells enables the efficient elimination of the graft with 
FDA-approved TK-targeting drug (59). These studies supported 
the feasibility to develop safe and effective strategy to protect 
hESC-derived allografts from immune rejection.

In addition to the modulation of the T cell costimulatory and 
inhibitory pathways, other strategies have been explored to confer 
immune protection of allogeneic hESC-derived allografts. One 
such attempt is to reduce the immunogenicity of hESC-derived 
cells by disrupting the expression of MHC molecules that elicit 
allogeneic T-cell responses. For example, knockdown of both 
HLA class I and class II in hESC could provoke T-cell ignorance 
in vitro and protection from xenogeneic immune rejection in vivo 
(60–62). Disruption of MHC class II transactivator in hESCs 
leads to the silencing of HLA class II expression in differentiated 
cells, such genetic modification could confer protection from 
the allogeneic helper T cells (63, 64). While the immune evasive 
properties of these cells lacking HLA I and II molecules have been 
confirmed in vitro and in mice, they remain to be evaluated in the 
context of a human immune system.

COnCLUSiOn

Despite their potential in curing major diseases and the 
encouraging clinical trial data, one of the key challenges for 
hPSC-based therapy is the immune rejection by the recipient. 

With extensive data of the transplantation immunology in mice 
and the accumulating data on the human immune responses 
to hESC-derived allografts in humanized mice, it has become 
apparently feasible to develop safe and effective strategies to 
induce graft-specific immune tolerance in the near future. Such 
achievement will greatly facilitate the clinic development of 
hPSC-based therapy.
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