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It is being increasingly recognized that a dysregulation of the immune system plays a 
vital role in neurological disorders and shapes the treatment of the disease. Aberrant 
T cell responses, in particular, are key in driving autoimmunity and have been traditionally 
associated with multiple sclerosis. Yet, it is evident that there are other neurological 
diseases in which autoreactive T cells have an active role in pathogenesis. In this review, 
we report on the recent progress in profiling and assessing the functionality of autore-
active T cells in central nervous system (CNS) autoimmune disorders that are currently 
postulated to be primarily T cell driven. We also explore the autoreactive T cell response 
in a recently emerging group of syndromes characterized by autoantibodies against 
neuronal cell-surface proteins. Common methodology implemented in T cell biology is 
further considered as it is an important determinant in their detection and characteriza-
tion. An improved understanding of the contribution of autoreactive T cells expands our 
knowledge of the autoimmune response in CNS disorders and can offer novel methods 
of therapeutic intervention.

Keywords: autoreactive T cells, central nervous system autoimmune diseases, neuroimmunology, autoantibodies, 
multiple sclerosis, T cell detection

iNTRODUCTiON

Autoimmunity is believed to be the underlying cause in a growing number of neurological disorders. 
Although the precise mechanisms that trigger autoimmunity have not been fully elucidated, it is 
known that a dysregulation in T cells is a key component, given their constitutive role in immunosur-
veillance (1). The archetypal neurological disease mediated primarily by T cells is multiple sclerosis 
(MS) (2, 3). It has been studied extensively for many years in both humans and animal models, and 
an informed understanding of MS has laid the groundwork for further studies in other suspected 
autoimmune neurological disorders. In particular, Rasmussen’s encephalitis (RE) (4) and a spectrum 
of paraneoplastic syndromes (5, 6) are hypothesized to be T  cell driven. In other disorders, like 
amytrophic lateral sclerosis (ALS), T cells may conversely play a neuroprotective role (7). In addition 
to a dysfunctional cellular immunity, effector molecules of humoral immunity, such as autoanti-
bodies, may concomitantly participate in autoimmunity. Although paraneoplastic syndromes have 
been associated with specific autoantibodies, the search for autoantibodies in autoimmune central 
nervous system (CNS) diseases such as MS, RE, and ALS is still ongoing.

Indeed, in recent years, a growing number of autoantibodies targeting neuronal receptors 
or synaptic proteins of the CNS are proving to be useful biomarkers of various neurological 
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diseases treatable with immunotherapy (8–15). This has spurred 
intensive investigations to understand the mechanisms behind 
autoantibody responses, with emerging evidence suggesting a 
pathogenic role. However, it is well established that the produc-
tion and sustenance of immunoglobulin-G (IgG) autoantibodies 
and autoantibody-producing B  cells necessitates the involve-
ment of T cells reactive against a shared protein antigen (16–19). 
Although this aspect of adaptive immunity has been explored less 
thoroughly in autoantibody-associated neuroimmune disorders, 
this premise has broadened studies to focus on cellular responses 
in the following autoantibody-associated diseases: neuromyelitis 
optica (NMO), acute disseminated encephalomyelitis (ADEM), 
stiff person syndrome (SPS), and anti-N-methyl-d-aspartate 
receptor (anti-NMDAR) encephalitis.

In this review, we explore the accumulating evidence of cel-
lular immune responses in various disorders of the CNS that are 
predominantly T cell-driven, as well as the more newly classified 
group of autoantibody-associated syndromes. In particular, we 
focus on findings in humans, as many studies conducted in 
animal models are reviewed elsewhere or have been recently 
reviewed (1, 20–23). Common methods implemented in the 
study of T cell biology are also evaluated.

iMMUNOSURveiLLANCe OF T CeLLS  
iN THe CNS

The CNS has been traditionally viewed as an immune privilege 
site that is inaccessible to T cells and other immune cells. However, 
it is now well recognized that T cells actively survey the CNS in 
the healthy state to ensure host defense against infections. Central 
and effector memory T cells constantly patrol the brain and spinal 
cord for pathogens via the cerebrospinal fluid (CSF) that bathes 
these structures (24–26). In fact, around 80% of immune cells 
in the CSF are T cells (27). As they travel through the subarach-
noid space between the meninges, T cells interact with resident 
antigen-presenting cells (APCs) to sample antigens, including 
parenchyma-derived antigens in the interstitial fluid that drains 
into the CSF (28). Memory T cells can then be restimulated upon 
recognition of a pathogen as part of the host response.

Moreover, recent evidence confirms the presence of lymphatic 
vessels within the meninges of healthy mice that resemble tradi-
tional lymphatic vessels found in the periphery, both structurally 
and functionally (29, 30). These meningeal vessels line the dural 
sinuses and drain cells and fluid of the subarachnoid space directly 
into the deep cervical lymph node. Notably, T cells were identi-
fied in these meningeal lymphatics (30), indicating a travel route 
between the CNS and lymph nodes in the steady state. Together, 
this refutes previous notions that immune cell entry into the CNS 
was restricted by the apparent absence of lymphatic drainage, and 
further supports the concept of immunosurveillance by T cells 
in the CNS.

Although the blood–brain barrier (BBB) and blood–CSF 
barrier shielding the CNS were seen to be another mechanism 
exempting the CNS from immune monitoring, various adhesion 
molecules on their surface enable T cell migration. Egress from 
the blood to the CSF is dependent on the expression of P-selectin 

in choroid plexus stroma vessels and meningeal vessels (24, 31). 
In addition, the interaction of α4β1 integrin with vascular cell 
adhesion molecule 1 (VCAM1) on endothelial cells of the BBB 
is important in facilitating T cell movement into the perivascular 
space, as evidenced by the efficacy of natalizumab in reducing 
inflammation in MS (32–34).

As will be discussed later, the importance of immunosurveil-
lance in maintaining homeostasis in the CNS is particularly 
evident when it is disrupted by immunosuppression. Under 
immunosuppression, the mobilization of immune cells into the 
CNS is hindered, making the body more susceptible to opportun-
istic infections by agents such as, JC polyoma virus (JCV), herpes 
simplex virus, toxoplasmosis, and Cryptococcus (35–37). With 
the host immune response dampened and the CNS unguarded, 
the pathogenic response goes unchecked, leading to potentially 
fatal diseases.

T CeLL-MeDiATeD CNS DiSeASeS

Multiple Sclerosis
Multiple sclerosis is a common chronic inflammatory disease 
of the CNS resulting in the demyelination of neurons. Damage 
to the myelin sheath surrounding neuronal axons leads to the 
progressive loss of neurological function and affects over two 
million people globally (38, 39). The majority of MS patients 
(85%) experience a relapsing-remitting disease course (40), 
who can transition into a secondary progressive disease form 
after approximately 10  years of primary disease (41, 42). The 
remaining 15% of patients follow a primary progressive disease 
course characterized by a steady decline in neurological function 
from the initial attack (38). Lesions, or plaques, are traditionally 
thought to present in the white matter of the brain and spinal 
cord. However, recent studies have shown gray matter lesions to 
accrue through the MS disease course and dominate in progres-
sive disease (43–49).

The current consensus argues in favor of MS as an autoim-
mune disease mediated by self-reactive, myelin-specific T  cells  
(1, 38, 46), with additional components of genetic susceptibility 
and environmental factors (41, 50). In terms of genetic suscepti-
bility, MS has been strongly associated with different HLA class II 
haplotypes, including HLA-DR15 and HLA-DQ6, although their 
contributions to clinical disease have yet to be uncovered (51–53). 
It is hypothesized that these MHC molecules are able to present 
target autoantigens to autoreactive components of the adaptive 
immune system (54, 55). Several immune system genes have also 
been implicated in MS disease susceptibility, including those that 
code for IL-17 and IL-2 receptor (51, 52).

However, genetics only partially contribute to the risk of MS 
disease development. A significant proportion of disease risk can 
be directly correlated with various lifestyle and environmental 
factors including vitamin D deficiency, Epstein-Barr virus (EBV) 
infection, and smoking (56, 57). Epidemiological studies show 
that there is a strong association between MS prevalence and the 
angle of latitude. This trend may be attributed to exposure to solar 
radiation and vitamin D, with vitamin D-deficient individuals 
more prone to developing disease (58, 59). Several studies have 
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also shown that MS patients with lower serum levels of vitamin 
D to be more susceptible to relapses (60–63). Additionally, EBV 
infection has been strongly linked to MS disease initiation (64). 
While up to 95% of the general population is seropositive for the 
virus by early adulthood, the risk of MS will be 15 fold greater 
in the seropositive population than the seronegative cohort 
(65). Certain sequences of EBV have been hypothesized to share 
homology with components of the CNS, suggesting that MS 
autoimmunity may be initiated by molecular mimicry (66, 67).

The MS autoimmune hypothesis is supported by the pre-
dominant presence of activated T cells in active plaques (41, 50, 65, 
68–70). Myelin-specific T cells are first activated in the peripheral 
compartment, after which they cross the BBB into the CNS as they 
gain the expression of the appropriate adhesion molecules and 
homing receptors (55, 71). Once inside the CNS, T cells are then 
reactivated by CNS autoantigens presented by CNS-resident APCs, 
contributing to the clinical disease and demyelination (72, 73).

CD4+ T  cells have been the focus of MS autoimmunity for 
decades, as MHC class II-restricted T cells are preferentially acti-
vated by EAE disease induction (38). Self-reactive CD4+ T cells 
have been shown to recognize proteins of the myelin sheath, 
including myelin basic protein (MBP) (74, 75), myelin-associated 
glycoprotein (MAG) (76, 77), and myelin oligodendrocyte gly-
coprotein (MOG) (78) in both MS patients and healthy donors 
(69). However, CD4+ T cells in MS patients display an activated 
or memory phenotype with increased avidity to myelin proteins, 
compared to naive myelin-specific CD4+ T  cells isolated from 
controls (79–82). Previously, myelin-specific CD4+ T cells in MS 
were thought to contribute to Th1-mediated inflammation, in 
contrast to the Th2-mediated response of myelin-reactive T cells 
isolated from healthy donors (83, 84). However, recent studies 
have demonstrated the importance of IL-23 in MS. IL-23 is neces-
sary for the regulation of the proinflammatory IL-17-secreting 
Th17 cell lineage, which have been described as the pathogenic 
mediators of several autoimmune diseases (85–87). This is 
supported by the upregulation of IL-17 gene expression in the 
brain lesions of MS patients as measured by microarray analysis  
(88, 89). The levels of Th17  cells in the CSF of relapsing MS 
patients were elevated in comparison to non-inflammatory neu-
rological disease controls, whereas there were no differences in 
the percentages of IFN-γ-secreting Th1 cells (90). Th17 cells were 
also raised in the peripheral compartments of MS patients during 
relapses, implicating their possible relevance to disease activity 
(91, 92). Th17 cells were additionally demonstrated to home to 
active regions of lesions and areas of inflammatory demyelina-
tion, and are a major constituent of perivascular cuffs (93). The 
high expression of granzyme B by myelin-specific Th17  cells 
also promotes the death of human neurons (94). These works 
combined strongly insinuates Th17 cells as a potential mediator 
of MS pathogenesis.

The focus of research in MS has recently shifted from a pre-
dominantly CD4+ T cell field to include CD8+ cytotoxic T cells as 
a novel effector cell type in MS pathology (95, 96). CD8+ T cells 
have been shown to outnumber CD4+ T  cells in MS plaques 
up to 10-fold at all stages of disease progression (47, 97–100). 
Oligoclonal expansion within the CD8+ T  cell compartment is 
elevated compared to CD4+ T cells in lesions, CSF, and peripheral 

blood of MS patients (95, 96, 101). In contrast to its constitutive 
low expression in the CNS, MHC class I is highly upregulated on 
neurons and glial cells within MS lesions, which proposes that 
CD8+ T cells may be interacting with these cells (100, 102, 103). A 
significant number of activated or memory CD8+ T cells are capa-
ble of secreting the proinflammatory cytokine, IL-17, similar to 
the Th17 cells mentioned earlier (93). Histological analysis of MS 
lesions has also revealed that granzyme B-positive CD8+ T cells are 
often located adjacent to regions of demyelination (47, 104, 105).  
Expectedly, the levels of CD8+ T cells within lesions have been 
positively correlated with the magnitude of axonal injury (106). 
These findings encourage the hypothesis that CD8+ T cells play  
a role in the demyelination of axons in MS lesions.

The monoclonal antibody natalizumab is successfully used 
as an immunosuppressant in diseases such as MS. Natalizumab 
therapy is administered to MS patients who are unresponsive to 
first-line immunotherapies, as well as those with severe clinical 
disease (107). It has shown a 68% reduction in the annualized 
relapse rate of MS patients and has decreased the probability of 
sustained disability progression by 42% over the course of 2 years 
(108). Natalizumab targets the α4β1 integrin on T cells, thereby 
preventing T cells binding to VCAM1 on endothelial cells of the 
BBB and subsequent egress into the CNS. This is evidenced by 
the significant decline of several populations of T cells in the CSF 
of natalizumab-treated MS patients compared to controls (34). 
As such, immune surveillance within the CNS is compromised, 
which can lead to various inherited or acquired immune deficien-
cies (37). In particular, the use of natalizumab has been associated 
with opportunistic infections, most significantly JCV infection or 
reactivation leading to potentially lethal progressive multifocal 
leukoencephalopathy (inflammation of white matter in the brain) 
in 4 out of 1,000 treated patients (37).

Based on a review of the literature, it seems apparent that MS is 
a multifaceted autoimmune disease with potential contributions 
from Th17  cells and CD8+ T  cells in demyelination (Table  1). 
Although T  cell dependency is well established, the quest for 
potential autoantibodies in MS is still going strong (109). Popularly 
studied autoantigens in this field include MOG and aquaporin 4 
(AQP4), although extensive research into these targets reveal that 
they are not, in fact, associated with MS (11, 110).

Rasmussen’s encephalitis
Rasmussen’s encephalitis is a chronic pediatric inflammatory 
neurological disorder characterized by drug-resistant focal sei-
zures, unihemispheric inflammation and atrophy, and unilateral 
movement disorders accompanied by progressive neurological 
decline (112, 123, 124). Lymphocytic and microglial nodules 
are commonly observed upon histopathological analysis of RE 
brain specimens, along with perivascular cuffing of infiltrating 
T cells, neuron and astrocyte death, and gliosis of the diseased 
hemisphere (4, 124, 125). RE has not yet been associated with 
any disease-specific autoantibodies, and the presence of autoan-
tibodies to glutamate receptor 3 is secondary to and not causative 
of disease (124, 126–129). In fact, RE has been hypothesized to 
be a T  cell-mediated disease based on the dominant influx of 
CD8+ T cells into active brain lesions at the initiation of disease 
(4) (Table 1). 7% of these infiltrating CD8+ cells are granzyme 
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TABLe 1 | Summary of findings of T cell activity in T cell-associated central nervous system diseases.

Disease T cell 
antigen

implicated T cell subset(s) and 
dysregulation of associated 
cytokines, chemokines, and 
other inflammatory mediators

HLA 
associations

Associated 
antibody

Reference

Multiple sclerosis MBP, MAG, 
MOG

Th17: IL-23, IL-17, granzyme B 
CD8+ T cells: IL-17, granzyme B

HLA-DR15, 
HLA-DQ-6

Unknown Andersson et al. (76), Cua et al. (85), Hafler et al. (51), 
International Multiple Sclerosis Genetics et al. (52), Montes 
et al. (88), Olsson and Hillert (53), Pette et al. (74), Raine et al. 
(89), Tsuchida et al. (77), Valli et al. (75), Zhang et al. (78)

Rasmussen’s 
encephalitis

Unknown CD8+ T cells: granzyme B 
Unknown source: IL-6, TNF-α, 
IFN-γ

HLA-DR6 
(possible)

Unknown Andermann et al. (111), Bien et al. (112), Takahashi 
et al. (113), Tekgul et al. (114)

Paraneoplastic 
syndromes

Hu, Ma2, Yo CD8+ T cells: granzyme B 
Unknown source: IFN-α, IL-12

Hu: HLA-DR3, 
HLA-DQ2
Yo:HLA-A24

Hu, Ma2, Yo, 
CRMP5/CV2, 
amphiphysin

Benyahia et al. (115), Darnell et al. (116), De Graaf et al. 
(117), Domschke et al. (118), Leypoldt and Wandinger (119), 
Rousseau et al. (120), Tanaka et al. (121), Tanaka and  
Tanaka (122)
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B-positive, and vesicles were often found positioned adjacent 
to MHC class I-expressing neurons and astrocytes with their 
granules polarized toward their target(s), suggesting a cytotoxic 
T  cell-mediated disease course of RE (112). In addition to 
increased levels of granzyme B at initial stages of disease (113), 
Tekgul et al. revealed raised concentrations of the cytokine IL-6 in 
the CSF of RE patients compared to controls (114). A correlation 
was then established between the magnitude of neuronal death 
and inflammation with the level of IL-6 in the CNS of these 
patients, based on magnetic resonance spectroscopy (114). The 
overproduction of IL-6 has been attributed to overstimulation of 
TNF-α early in disease (113). Takahashi et al. have also shown 
that excessive IFN-γ production during the early stages of disease 
induces the secretion of IL-12 from macrophages (113).

Analysis of the T cell receptor (TCR) repertoire in the CNS 
and periphery of RE patients revealed clonal expansions of 
CD8+ T cells in both compartments, suggesting the presence of 
an antigen-specific T cell response (130). This is in contrast to 
normal TCR distribution in stroke patient controls (130). The 
number of peripheral CD8+ T cell clones has also been shown to 
correlate with the magnitude of unihemispheric atrophy (131). 
Although the disease epitope for RE has not yet been elucidated, 
the identification of a CD8+ T  cell-mediated response in this 
disease expands potential treatment options, as seizures may be 
refractory and poorly responsive to anti-epileptic drugs (124). 
As a result, some patients may require invasive procedures such 
as hemispherectomy to regulate seizure frequency (124). Novel 
T  cell-specific immunotherapies, like T  cell blockade from the 
CNS with natalizumab, are therefore a promising alternative 
(124, 132, 133).

Paraneoplastic Syndromes
Diseases in which the body’s immune system is altered in 
response to cancer are termed paraneoplastic syndromes. When 
paraneoplastic syndromes disturb the CNS, the effects can be far 
more severe than the initiating tumor, with significant disability 
taking hold over short periods of time (134). In CNS paraneoplas-
tic syndromes, paraneoplastic antibodies are present at higher 
titers in CSF versus serum, insinuating that they are synthesized 

intrathecally (135). These onconeuronal IgG antibodies target 
intracellular neuronal antigens expressed ectopically by the 
tumor (136). Paraneoplastic antibodies are important biomarkers 
of disease, but appear unrelated to pathogenesis (137). Instead, 
pathogenesis may be mediated by T  cells targeting the same 
autoantigens as the onconeural antibodies present (5) (Table 1). 
This hypothesis is supported by the presence of disease-specific 
T cells in the peripheral blood and CSF of patients with anti-Yo 
(cdr2) (116) and anti-Hu antibodies (115, 120). Extensive T cell 
infiltration into the CNS in patients with anti-Ma2 (138) and anti-
Hu antibody-associated paraneoplastic encephalitis (139) has 
also been observed, and along with poor responses to humoral 
immunotherapies (140–142), supports a T cell-mediated patho-
genesis of CNS paraneoplastic syndromes.

CD8+ cytotoxic T cells have been implicated in paraneoplastic 
limbic encephalitis and are associated with autoantibodies 
against intracellular antigens, mainly Hu (139) and Ma2, as 
well as CRMP5/CV2 and amphiphysin (5). In comparison to 
encephalitides with neuronal cell-surface antigen-directed 
autoantibodies, T cells in anti-Ma2 and anti-Hu paraneoplastic 
encephalitis are preferentially skewed toward a CD8+ phenotype, 
with a significantly higher number of activated cytotoxic gran-
zyme B-positive cells found in close proximity to injured neurons 
(143, 144).

There is a limited number of studies that detail the cytokine 
profile in paraneoplastic patients. Autoreactive T  cells in para-
neoplastic breast cancer patients were found in association with 
elevated intratumoural levels of IFN-α and IL-12, a correlation 
unseen in antibody-negative breast cancer patients (118). As 
IL-12 is concomitant with T  cell activation and function, the 
increase of this cytokine likely promotes the expansion of auto-
reactive T  cells in paraneoplastic syndromes (118, 145). These 
results collectively suggest that paraneoplastic encephalitides are 
mediated by cytotoxic, antigen-specific CD8+ T cells, in which 
onconeuronal antibodies may exist as an epiphenomenon.

Amyotrophic Lateral Sclerosis
Amytrophic lateral sclerosis is a neurodegenerative disease of 
the motor neurons resulting in progressive muscle paralysis. The 
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TABLe 2 | Summary of findings of T cell activity in antibody-associated central nervous system diseases.

Disease T cell 
antigen

implicated CD4+ T cell subset(s) 
and dysregulation of associated 
cytokines and chemokines

HLA 
associations

Associated 
antibody

Reference

Neuromyelitis optica AQP4 Th1: IFN-γ; Th17: IL-17, IL-6, IL-10 HLA-DRB1*03, 
HLA-DRB3, 
HLA-DP1*0501

Anti-AQP4 IgG Brum et al. (163), Deschamps et al. (164), Matsuya 
et al. (165), Tanaka et al. (166), Uzawa et al. (167), 
Vaknin-Dembinsky et al. (168), Varrin-Doyer et al. 
(169), Wang et al. (170), Zephir et al. (171)

Acute disseminated 
encephalomyelitis

Unknown Th1: IFN-γ, TNF-α, IL-2; Th2; IL-4, 
IL-6, G-CSF, IL-10; Th17: IL-17, IL-6, 
G-CSF, IL-10; Chemokines: CXCL10, 
CCL1, CCL7, CCL22

Unknown Anti-MOG IgG Dale and Morovat (172), Ichiyama et al. (173),  
Ishizu et al. (174), Jorens et al. (175),  
Pohl-Koppe et al. (176), Yoshitomi et al. (177)

Stiff person syndrome GAD65 Th1: IFN-γ; Th2: IL-13, IL-4, IL-5 HLA-DQB*0201, 
HLA-DRB1*0301

Anti-GAD IgG Costa et al. (178), Hanninen et al. (179),  
Hummel et al. (180), Pugliese et al. (181),  
Schloot et al. (182), Skorstad et al. (183)

Anti-NMDAR 
encephalitis

Unknown Th1: IFN-γ, TNF-α; Th17: IL-17, IL-6, 
IL-23; Chemokines: CXCL10

Unknown Anti-NMDAR IgG Byun et al. (184), Kothur et al. (185),  
Lee et al. (186), Liba et al. (187), Ulusoy et al. (188)
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underlying mechanisms of ALS have not yet been elucidated, 
and therapies to modify or delay the advancement of the disease 
are still being trialed. Intriguingly, recent studies have shown 
that CD4+ T cells infiltrating the spinal cord in ALS patients and 
mice lie adjacent to degenerating motor neurons and activated 
microglia (7, 146–148). However, global immunosuppression 
does not appear to be effective in ALS treatment, suggesting 
that these T  cells may, in fact, rescue motor neuron death (7). 
There have been several studies investigating the neuroprotective 
mechanisms of CD4+ T cells following injury (7, 149–152). The 
data collected thus far suggests that CD4+ T cells in ALS mediate 
motor neuron survival in a highly regulated process (7).

T CeLLS iN ANTiBODY-ASSOCiATeD  
CNS DiSeASeS

Neuromyelitis Optica
The most compelling evidence for autoreactive T  cell involve-
ment in an autoantibody-associated disease comes from studies 
in neuromyelitis optica (Table 2). NMO is an aggressive demy-
elinating disease that is distinguished from MS by the presence 
of specific IgG1 antibodies against AQP4 (153, 154), a water 
channel abundantly expressed by astrocytes in the CNS. Anti-
AQP4 antibodies are detected in a significant proportion (up to 
75%) of NMO patients (110, 155) and have become an important 
diagnostic tool. However, involvement of other immune mecha-
nisms has been theorized as several lines of evidence, while 
inconclusive, indicate that anti-AQP4 antibodies alone do not 
induce complete pathogenesis. For example, there are incongru-
ences in NMO induction in animal models by passive transfer 
of anti-AQP4 IgG alone (156–158), and high titers of anti-AQP4 
antibodies were detected in humans during remission (159, 160). 
Furthermore, B  cell-targeted immunotherapies do not always 
ameliorate the disease (161, 162).

Since the early description of CD3+ T  cells in active NMO 
lesions (189), there is mounting evidence of cellular involvement 
in NMO. In fact, activated T cells infiltrate NMO patient-derived 

lesions (190) and clonal expansion of T cells was reported (191). 
Efforts have been made to define the immunodominant epitope 
by identifying which peptide from a human AQP4 (hAQP4) 
peptide library induced the greatest T  cell proliferation when 
cultured with peripheral blood mononuclear cells (PBMCs) 
from anti-AQP4 antibody-positive NMO patients compared 
to MS subjects and healthy controls (165, 168, 169). However, 
further studies are required to precisely define the dominant 
target region as these epitopes differed greatly between studies. 
This discrepancy could be due to different populations with var-
ied HLA associations, or different stages of the disease in which 
subjects were sampled. Indeed, a longitudinal analysis of NMO 
patients has demonstrated a change in reactivity and specificity 
of T cells toward the hAQP4 peptides over time (168). Relapses in 
the disease were associated with elevated CD69+ activated T cells 
compared to remission (165), highlighting the possible intermit-
tent role of T cells during an NMO attack, and thus emphasizing 
the importance of understanding the T cell response to monitor 
the disease course.

Cytokine profiling helps elucidate the functional properties 
of AQP4-specific T cells and has revealed that these cells exhibit 
predominantly a Th17 bias but also a Th1 response. Compared 
to MS patients or healthy controls, increased secretion of IL-17, 
IL-10, IL-6, and IFN-γ have been reported in the CSF (166, 167),  
peripheral blood (168, 169, 192), and epitope-specific T  cell 
lines derived from NMO patients (168). Secretion of IL-17 
from Th17-biased AQP4-specific T  cells promoted neutrophil 
infiltration, which was consistent with pathological findings 
(169, 189). In particular, elevated IL-6, a cytokine important for 
Th17 differentiation, may promote survival of AQP4-specific 
Th17 cells while suppressing FOXP3+ Treg function (193–195). 
Furthermore, tocilizumab, a monoclonal antibody against IL-6 
receptor, ameliorated the disease in NMO patients unresponsive 
to standard immunotherapy (196, 197).

Genetics may be a determinant of autoimmunity and  
indeed, there appears to be a HLA haplotype association in  
NMO. Depending on the ethnicity of the cohort, there is 
an over-representation of HLA-DRB1*03, HLA-DRB3, or 
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HLA-DPB1*0501 in anti-AQP4 antibody-positive NMO patients 
(163, 164, 169–171, 198). Interestingly, Varrin-Doyer et al. dem-
onstrated that the hAQP4 epitope they identified induced the 
highest T cell reactivity in NMO patients that were HLA-DR car-
riers (169). However, there needs to be more definitive analysis as 
a distinct HLA allele could not be determined based on the T cell 
response to a different set of AQP4 epitopes (165).

While the triggers of autoimmunity remain elusive, like in 
many other autoimmune diseases, molecular mimicry has been 
implicated in the generation of AQP4-specific T cells. In addition 
to proposing AQP4-specific T cell epitopes, Varrin-Doyer et al. 
revealed a 90% homology between the immunodominant AQP4 
epitope and Clostridium perfringens adenosine triphosphate-
binding cassette transporter permease, and a 60–70% homology 
to other commensal and pathogenic Clostridium species (169). 
Not only could these microbes serve to display cross-reactive 
determinants, the Clostridium species may also augment a Th17-
biased response as demonstrated in mice (169, 199). Nevertheless, 
further investigations into molecular mimicry are required to 
ascertain the extent of its contribution to the development of 
AQP4-specific T cells.

Acute Disseminated encephalomyelitis
Acute disseminated encephalomyelitis is a monophasic inflam-
matory demyelinating disease predominantly affecting children. 
It can have postinfectious origins but in a subset of patients 
(27–47%) (200), extensive evidence implicates pathogenic auto-
antibodies against MOG, a protein on the outer surface of the 
myelin sheath (201–206). Interestingly, findings predating the 
discovery of anti-MOG antibodies in ADEM (205) provide sup-
port for an autoimmune T cell response.

The majority of literature supporting T  cell involvement 
in ADEM stems indirectly from analyses of chemokines and 
cytokines (Table  2). Concurrent recruitment of Th1 and Th2 
cells has been proposed as there was an increase in their signature 
chemokines, CXCL10, CCL1, CCL7, and CCL22 in the CSF of 
adults with ADEM compared to MS and healthy controls and was 
correlated with an increase in pleocytosis (207). Dysregulation in 
cytokine production was not distinguished in adults, but IFN-γ, 
TNF-α, IL-2, IL-10, IL-6, and G-CSF were upregulated in sepa-
rate pediatric ADEM cohorts (172–176), further supporting the 
contribution of Th1 and Th2 cells. Pohl-Koppe et al. hypothesized 
that Th1 cells contribute to the deleterious effects of the disease, 
while Th2 cells predominate in the recovery of ADEM as they 
reported an absence of IFN-γ but an increase in IL-4 in patients 
during the recovery phase (176). Consistent with this, there was 
increased IFN-γ+CD3+ T cells in the peripheral blood during the 
acute stage of ADEM (177).

Conversely, as IL-6, G-CSF, and IL-10 are pleiotropic, their 
elevation along with IL-17A, but little Th1 and no Th2 cytokines, 
in the CSF of anti-MOG antibody-positive children favors a Th17 
phenotype (208). Interestingly, this increase in Th17 cytokines 
correlated with an increase in B  cell-associated cytokines and 
chemokines, suggesting possible interactions between multiple cell 
types in mediating demyelination (208). Likewise, CSF IL-6 levels 
correlated with the presence of plasma anti-MOG antibodies in 
acquired demyelinating syndromes like ADEM (209). It can then 

be proposed that, like in NMO, IL-6 signaling is a suitable target 
for treatment in anti-MOG antibody-positive patients resistant to 
conventional immunotherapy (196, 197). These preliminary, albeit 
conflicting, reports of functional helper T cells warrant investiga-
tions into autoreactive T cells themselves, but also in combination 
with the recent developments in anti-MOG antibodies to assess 
the interplay between the humoral and cellular components of the 
autoimmune response in ADEM (201, 204, 210).

Stiff Person Syndrome and Other  
Anti-Glutamic Acid Decarboxylase 
Glutamic Acid Decarboxylase (GAD) 
Antibody-Associated Neurological 
Disorders
Markedly high titers of autoantibodies against glutamic acid 
decarboxylase (GAD) are a hallmark of non-paraneoplastic SPS 
and variants of cerebellar ataxia, limbic encephalitis, and epilepsy 
(211–214). As GAD is an enzyme involved in the synthesis of the 
inhibitory neurotransmitter γ–aminobutyric (GABA), the cur-
rent hypothesis is that anti-GAD antibodies disrupt GABAergic 
signaling. Indeed, in vitro and in vivo studies demonstrate the 
potential pathogenicity of anti-GAD antibodies (215–217). The 
salient question remains, however, of the mechanism underlying 
autoantibody recognition of a cytoplasmic antigen like GAD, 
which is unlike other known extracellular antigens targeted by 
pathogenic autoantibodies (218).

Given the variety of anti-GAD antibody-associated neurologi-
cal disorders, it is plausible that antigen-specific T cells play an 
additional role in pathogenesis that differentiates the diseases 
(Table 2). This is an important aspect for investigation but there is a 
paucity of studies examining cellular mechanisms despite reports 
of CNS infiltration of lymphocytes in these patients (219). In a 
study comparing SPS with cerebellar ataxia associated with poly-
endocrine autoimmunity (CAPA), both cohorts presented with 
high titers of anti-GAD antibodies (178). Yet, cell proliferation 
and the percentage of HLADR+CD3+ activated T cells in response 
to GAD65 protein was significantly greater in SPS but not CAPA. 
Monitoring the course of SPS revealed a constant reactivity of 
CD4+ T cells against GAD65, which notably correlated with high 
anti-GAD antibody titers (179). A few other groups have identi-
fied GAD65-specific T cells in the blood but these were weakly 
responsive to GAD65 (180, 182, 220, 221). To this end, Skorstad 
et al. argue that GAD65-specific T cells largely reside in the CNS 
along with B cells to collaborate in the intrathecal production of 
anti-GAD antibodies as they were more successful in identifying 
and cloning GAD65-specific T cells from CSF than from blood 
(183). Furthermore, using overlapping GAD65 peptides, putative 
T  cell epitopes have been identified but differ between studies 
and depending on whether T cell lines were generated from the 
blood or CSF (179, 182, 183, 220). As has been demonstrated with 
anti-GAD65 antibody epitopes (222) [recently reviewed in Ref. 
(223)], differences in T  cell epitopes have been shown to be a 
distinguishing factor between SPS and type 1 diabetes, another 
anti-GAD antibody-associated disease (220, 221).

Exploration of the cytokine environment to determine the 
phenotype of T cells has indicated largely a Th2 bias. Secretion 
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of IL-13, IL-4, and IL-5 reported in SPS (179, 182, 183) sup-
ports a non-inflammatory environment wherein disease is 
driven by autoantibodies. IFN-γ production, indicative of a 
Th1 response, was also recorded (182, 183) and subsequently 
reduced upon treatment with immunotherapy, and coincided 
with clinical improvement (180). It was proposed that high 
levels of IFN-γ production occurs in the early phase of SPS but 
is later exceeded by significant production of IL-13, alluding 
to a shift from Th1 to Th2 (179). While low or undetectable 
in SPS, there was a notable production of IFN-γ, and hence a 
dominant Th1 response is observed in CAPA (178) and type 1 
diabetes (220).

T cell involvement is further supported by preliminary find-
ings on HLA allele correlations in SPS. Pugliese et al. described a 
strong association between SPS and carriers of HLA-DQB1*0201 
haplotype (181). HLA-DRB1*0301 has additionally been 
proposed as a correlate of SPS but the validity of this finding is 
hampered by small sample size (178, 179).

Anti-NMDAR encephalitis
Anti-NMDAR encephalitis is the prototypic autoimmune 
enceph alitis associated with autoantibodies against cell-surface 
antigens. Discovery of the specific anti-NMDAR antibody (224) 
has sparked considerable interest in humoral mechanisms of this 
disease [recently reviewed in Ref. (225)], leading to the current 
hypothesis that anti-NMDAR antibodies exhibit pathogenic 
effects via internalization of the surface receptor, thereby result-
ing in reversible NMDAR hypofunction (226–228).

To date, there are limited and small studies investigating 
cellular responses in anti-NMDAR encephalitis but neverthe-
less, prompt further exploration (Table  2). Evidence of T  cell 
involvement derives from cytokine and chemokine profiling and 
mainly favors a Th17 response. Based on significantly elevated 
serum levels of IL-17 and IL-6 in anti-NMDAR antibody-positive 
patients compared to controls (184), Byun et al. hypothesized that 
undetected Th17 cells secrete IL-17, which promotes a positive 
feedback loop of IL-6 signaling that facilitates intrathecal anti-
body production observed in most patients (224, 229). In line 
with this finding, targeting the IL-6 receptor with tocilizumab in 
rituximab-resistant patients with suspected autoimmune enceph-
alitis demonstrated marked improvements (186), as was also seen 
in NMO. Upregulation of serum IL-23 strengthens the case for 
Th17 activity (188). There appears to be some heterogeneity in 
T cell lineage as higher levels IFN-γ and TNF-α were observed 
in the CSF, indicative of a Th1 cytokine dysregulation (185, 187). 
Consistent with T cell involvement in anti-NMDAR encephalitis 
was the increased level of T cell-related chemokine CXCL10 in 
patient CSF, which correlated with CSF pleocytosis (187).

On the other hand, there is contentious evidence of T  cell 
involvement. Immunopathological analysis of brain sections 
from anti-NMDAR encephalitis patients show some to no evi-
dence of T cell infiltration in the parenchyma and perivascular 
space, which disqualifies CD8+ cytotoxic T  cells as drivers of 
the disease (143, 230–232). However, this does not preclude 
the possibility of NMDAR-specific T cell involvement in B cell 
activation in the periphery, prior to anti-NMDAR antibodies 
trafficking to the CNS.

evALUATiNG T CeLL DeTeCTiON 
MeTHODS

Choice of methods is a key determinant in discovering and 
studying T cell biology. An important consideration is the rar-
ity of antigen-specific T cells, especially the proportion reactive 
against auto-antigens which is typically less than 0.01% of the 
total T cell repertoire (233). It is therefore imperative that sensi-
tive yet specific techniques are implemented when analyzing 
antigen-specific T  cells. Widely used T  cell detection methods 
can be broadly distinguished into two categories: techniques 
that identify and assess specificity and assays that examine the 
functionality (Table 3).

An important tool for identification of antigen-specific T cells 
is peptide-MHC (pMHC) multimers. This rapidly evolving tech-
nology involves the formation of a complex of peptide-loaded 
MHC monomers via biotinylation with a fluorescently labeled 
streptavidin (Figure 1), which increases binding avidity (234) and 
overcomes the issue of low affinity binding and fast dissociation 
rate between TCRs and pMHC monomers (235). The value of this 
method lies in the direct and specific recognition and isolation of 
T cells via flow cytometry that is independent of their biological 
activity, such as anergic cells that are incapable of proliferation 
and cytokine production (236–239). However, this is a double-
edged sword, as knowledge of the functional characteristics of 
the identified T cells allows for a deeper understanding of their 
response. In addition, a major drawback of this approach is that 
it necessitates knowledge of the T cell epitope and its MHC hap-
lotype association (236). While pMHC multimers are extensively 
used for study of CD8+ T cells, their use in the study of MHC class 
II-restricted CD4+ T cells is challenged by the lower frequency of 
antigen-specific CD4+ T cells in the peripheral blood (240) but 
also largely by the difficulty in creating them because of variations 
in MHC structure and TCR affinity (236, 238).

Alternatively, antigen-specific T  cells can be directly identi-
fied and isolated for downstream functional characterization by 
probing for activation markers expressed on the surface of T cells 
upon antigenic stimulation. A major advantage of this technique 
is that unlike pMHC multimers, it does not require knowledge of 
the antigenic epitope and associated MHC haplotypes (236) and 
is effective for studying CD4+ T cells. A multitude of activation 
markers have been proposed, including CD25, CD69, CD40L, 
CD134, CD137, and HLA-DR (241–245). Such markers are 
favorable indicators of an antigenic-specific response as their 
surface expression is contingent on activation, but absent or 
minimally expressed in the resting phase, and occurs for a tran-
sient period of time. Moreover, like pMHC multimer staining, 
expression of some activation markers is irrespective of T  cell 
function and its differentiation state (236, 244), allowing for an 
unbiased characterization of antigen-specific T cells.

Detection of antigen-specific T  cells is a vital step, but 
determining the functional capacity of the identified cells in 
pro ducing a robust immune response is equally important 
and relies on functional assays (Figure 2). Methods measuring 
[3H]-thymidine incorporation into lymphocyte DNA (246) and 
dilution of carboxyfluorescein succinimidyl ester (CFSE) dye 
bound to amine groups of intracellular molecules (247) during 
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TABLe 3 | Evaluation of major techniques used in the analysis of human antigen-specific T cells.

Technique Advantages Disadvantages

identification of antigen-specific T cells

Peptide-MHC (pMHC) 
multimers

• Highly specific interaction between T cell receptor and its 
cognate antigenic peptide presented by the multimer

• Independent of functional status of cells
• Labeled T cells can be isolated and purified for further 

characterization

• Requires prior knowledge of epitope and its HLA haplotype restriction
• Does not provide functional details of identified antigen-specific T cell
• More difficult to develop multimers for CD4+ T cells

Detection via activation 
markers

• Independent of epitope and HLA haplotype restriction
• Allows characterization of all antigen-specific T cells, 

irrespective of subtype
• Identified cells are viable, allowing for isolation and 

purification for further characterization

• Unless appropriate activation markers are selected, results may be 
confounded by marker expression on non-stimulated T cells and 
bystander activation

Functional assays

[3H]-thymidine incorporation • Demonstrates the proliferative capacity of antigen-specific 
T cells

• Allows for detection of numerous antigen-specific T cells

• Source of cytokine is not available, making it an indirect method of 
T cell detection

• Phenotype of proliferative cells cannot be determined
• Results may be confounded by bystander activation
• Frequency of T cells in original sample cannot be elucidated

Carboxyfluorescein 
succinimidyl ester (CFSE) 
dilution assay

• Demonstrates the proliferative capacity of antigen-specific 
T cells

• Allows for detection of numerous antigen-specific T cells
• If used in conjunction with antibodies against activation 

markers, the phenotype of the proliferative cells may be 
determined

• An indirect method of T cell detection if CFSE used alone
• Frequency of T cells in original sample may be confounded by 

bystander activation
• CFSE may interfere with normal cellular processes

Enzyme-linked immunospot 
(ELISPOT)

• Can enumerate cells capable of secreting cytokine of 
interest and categorize them into likely T cell subsets

• Can characterize cytokine kinetics based on spot 
morphology

• Highly sensitive, even in small samples

• Selection of cytokine for analysis is based on hypothesis of its 
relevance

• Restricted to analysis of maximum two cytokines per experiment
• Frequency of antigen-specific T cells may be underestimated due to 

non-functional cells and also possible secretion of cytokines other 
than that being tested by assay

• Source of cytokine is not available, making it an indirect method of 
T cell detection

Intracellular cytokine staining 
(ICS)

• Allows simultaneous determination of cytokines produced 
and phenotype of cells producing the cytokines, if 
antibodies against activation markers used in conjunction

• Quantify cytokine produced per cell

• Selection of cytokine for analysis is based on hypothesis of its 
relevance

• Requires larger sample than ELISPOT
• Cells not viable for further analysis due to fixation and permeabilization 
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FiGURe 1 | Detection of human antigen-specific T cells with peptide-MHC 
(pMHC) multimer. Binding four pMHC monomers, for instance, via  
biotin–streptavidin interactions increases binding avidity between antigen  
and T cell receptor. This in turn enhances the sensitivity and specificity of 
antigen-specific T cells detected by flow cytometry analysis via the 
fluorescent streptavidin.

cell division have been a mainstay for evaluating the prolifera-
tion of lymphocytes in response to antigens. These procedures 
circumvent the issue of low frequency of target cells. However, 
as it is often PBMCs that are cultured, and not sorted T  cells, 
there is the possibility of bystander activation, which decreases 
the specificity of the response observed and the frequency of the 
antigen-specific T cells cannot be accurately extrapolated. In the 
case of [3H]-thymidine incorporation assay, the proliferative cell 
subpopulation cannot be phenotyped, whereas with CFSE dilu-
tion assay, cell subpopulations may be delineated with surface 
markers and flow cytometry analysis. However, the dye can 
interfere with expression of activation markers (248).

Functional assays that examine cytokine production allows 
for classification of the cells into different subsets that are dis-
tinguished by different effector functions. This is particularly 
valuable for CD4+ T cells that can be categorized as Th1, Th2, 
and Th17 cells, for example. Two classic procedures that assess 
cytokine production are enzyme-linked immunospot (ELISPOT) 
and intracellular cytokine staining (ICS) (Figure  2). While an 
ELISPOT detects secreted cytokines induced by antigens, ICS 
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FiGURe 2 | Functional assays commonly used in human T cell studies. Functional assays can be categorized into those that assess proliferative capacity of 
antigen-specific T cells and assays that analyze cytokine profiles upon T cell recognition of cognate antigen and subsequent activation. Proliferation assays can 
measure the amount of radioactive [3H]-thymidine incorporated into the DNA during cell division, with greater radioactivity indicating greater cell division. Alternatively, 
the level of fluorescence emitted by cells stained with carboxyfluorescein succinimidyl ester (CFSE) can be detected by flow cytometry, with greater number divisions 
correlating with lower fluorescence. In intracellular cytokine staining (ICS), protein secretion inhibitors, such as brefeldin A or monensin, allows for examination of 
cytokine production within a cell. Staining surface activation markers allows for phenotyping. Following fixation and permeabilization, the trapped intracellular 
cytokines are stained with fluorescent antibodies which can be detected via flow cytometry. Enzyme-linked immunospot (ELISPOT) is a popular method to assess 
cytokine secretion. The cytokine of interest secreted from an activated T cell is bound to a capture antibody on a PVDF bottom well. A biotinylated detection 
antibody also binds to the cytokine and facilitates the interaction between streptavidin-conjugated enzyme and its substrate to produce a color spot. Spots are 
quantified with a ELISPOT plate reader. Each spot represents one reactive cell.
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reveals cytokine production within the golgi/ER bodies upon 
permeabilization of the cell and treatment with protein secretion 
inhibitors, such as brefeldin A or monensin. Both techniques are 
sensitive for detection of antigen-specific T cells and allow for 
enumeration and characterization at a single-cell level. However, 
as both techniques also depend on postulating cytokines relevant 
for the disease, it is possible that the frequency of cytokine-
producing cells is underestimated if cells secrete cytokines other 
than the one of interest. Additionally, the breadth of cytokine 
analysis is limited in an ELISPOT to only two cytokines for a 
given experiment (249). The source of the cytokine cannot be 
determined with an ELISPOT, making it an indirect method of 
T cell identification. Conversely, ICS allows for the simultane-
ous detection of cytokines and the phenotype of the cytokine-
producing cells by the addition of activation marker fluorescent 
antibodies. Hence, pairing with pMHC multimer or activation 
marker staining enhances the specificity of the reaction observed 
and provides a complete assessment of the antigen-specific 
response.

Pre-enrichment is a modification often made to the above 
methods to overcome the issue of low target cells and further 
improve the sensitivity offered by flow cytometry. A common 
approach is in  vitro expansion, wherein PBMCs are cultured 
in the presence of the antigen over one to two weeks to pref-
erentially grow antigen-specific T  cells. However, similar to 
proliferation assays, a drawback of this procedure is the risk of 
activating non-T cells present in the sample, thereby increasing 
background and reducing the accuracy of the quoted frequency 
of antigen-specific T  cells (236). Alternatively, enriching the 
target cell population via magnetic separation greatly increases 
sensitivity and provides insight into previously unidentified 
T cell subpopulations, provided that highly specific markers were 
utilized, whether that be pMHC multimers or activation markers 
(236, 238).

Employing the right technique may lead to discovery of 
T  cells in disease. Each method explores different aspects of 
T  cell biology. Taking this into consideration and the rarity  
of antigen-specific T cells, it is advantageous to integrate the vari-
ous approaches for a more reliable and holistic understanding of 
the cellular mechanisms at play.

FUTURe DiReCTiONS

Cellular immunity is a key player in the autoimmune response, 
as evidenced by the growing number of studies in both T cell-
mediated and antibody-associated CNS disorders. Yet, there is 
much to be learnt of T cell contribution to the complexities of 
CNS autoimmunity. Investigating the underlying cellular mecha-
nisms can deepen our understanding of disease pathogenesis, 
especially in the expanding range of neurological diseases recently 
associated with antibodies, in patients seronegative for antibodies 
but suspected to have immune dysregulation, in differentiating 
clinically similar diseases with heterogeneous pathology, and in 
conditions currently classified as idiopathic. Importantly, this 
new found knowledge can lead to the development of improved 
diagnostic tools and also translate into novel immunotherapeu-
tics that are more targeted against T cells or their cytokines, like 
tocilizumab and IL-17-directed secukinumab (250), which can 
be more effective than the current treatment regime given the 
unique environment of the CNS.
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