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Ionizing radiation can affect the immune system in many ways. Depending on the  
situation, the whole body or parts of the body can be acutely or chronically exposed to 
different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor 
(and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and 
also electrons, neutrons, protons, and heavier particles such as carbon ions, are used 
in radiotherapy. Tumor elimination can be supported by an effective immune response. 
In recent years, much progress has been achieved in the understanding of basic inter-
actions between the irradiated tumor and the immune system. Here, direct and indirect 
effects of radiation on immune cells have to be considered. Lymphocytes for example 
are known to be highly radiosensitive. One important factor in indirect interactions is 
the radiation-induced bystander effect which can be initiated in unexposed cells by 
expression of cytokines of the irradiated cells and by direct exchange of molecules via 
gap junctions. In this review, we summarize the current knowledge about the indirect 
effects observed after exposure to different radiation qualities. The different immune cell 
populations important for the tumor immune response are natural killer cells, dendritic 
cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modu-
lation of their functions due to ionizing radiation exposure of tumor cells. After radiation 
exposure, cytokines are produced by exposed tumor and immune cells and a mod-
ulated expression profile has also been observed in bystander immune cells. Release 
of damage-associated molecular patterns by irradiated tumor cells is another factor in 
immune activation. In conclusion, both immune-activating and -suppressing effects can 
occur. Enhancing or inhibiting these effects, respectively, could contribute to modified 
tumor cell killing after radiotherapy.

Keywords: radiation-induced bystander effects, natural killer cells, cytotoxic T-cells, cytokines, radiotherapy

iNTRODUCTiON

In the response to radiation exposure, interactions with the immune system play an important role 
at multiple levels. Different exposure conditions [e.g., partial body/total body, dose and dose rate, 
fractionation, acute or chronic, radiation quality as determined by linear energy transfer (LET)] are 
expected to modulate the immune system in many ways. A concept of the complex involvement of 
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FigURe 1 | Role of immune responses and affection of the immune system in different dose ranges after whole-body exposure (or bone marrow exposure) or partial 
body exposure. A modulation of immune responses can be expected in all dose ranges. Anti-inflammatory effects are observed in low-dose radiotherapy (partial 
body exposure), and proinflammatory and immune stimulating effects in some tumor radiotherapy settings (partial body exposure), but also immune-suppressing 
effects might occur. In whole-body exposure to medium to high doses of ionizing radiation, exacerbation of innate immune responses, and bone marrow depression 
dominate the picture of acute radiation sickness.
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the immune system in the organismal response to whole-body or 
partial body irradiation is suggested in Figure 1.

First of all, immune cells and their lymphoid and myeloid pre-
cursors and stem cells can be affected directly. These effects are of 
major importance for acute medium- to high-dose exposures to ion-
izing radiation as the hematopoietic system. Self-renewing hemat-
opoietic stem cells (HSCs) and more differentiated hematopoietic 

progenitor cells (HPCs) in the bone marrow are extremely radio-
sensitive (1) because of their rapid turnover. Also, some  
of the mature cells from the different lineages such as lymphocytes 
are sensitive to ionizing radiation. Depletion of already differenti-
ated cells by cell death mechanisms and failing replacement by 
stem cells due to cell death [apoptosis of HPCs and HSCs (2)] 
or increased p21Cip1/Waf1 (Gene name: Cdkn1a, cyclin dependent 
kinase inhibitor 1 A) expression leading to a cell cycle block and 
loss of clonogenic function (2) severely affects the immune sys-
tem. Only cells overcoming the cell cycle block are able to replace 
radiation-damaged tissue to regain normal function.

Therefore, immunodepression is a predominant feature of 
acute radiation sickness (bone marrow or hematopoietic syn-
drome) and it appears after whole-body exposure to doses of 
0.5–4 Gy (Figure 1) (3, 4). In the bone marrow syndrome, pro-
gressive lymphopenia develops during the first days after radia-
tion exposure. Exposure to ~2 Gy results in maximal depression 
of the lymphocytes in the blood (5). The lymphocyte deprivation 
decreases the resistance to infections. A possible early granulo-
cytosis is followed by a progressive granulocytopenia (6). Death 
usually occurs from sepsis at 30–60 days after radiation exposure, 
if the patient cannot be carried through the critical period of the 
possibly reversible aplastic state of the bone marrow (5). Long-
term persisting damage (up to 16  months in mice) of HSCs is 
observed after a single acute high-dose exposure (7). Cytological 
abnormalities (multipolar mitosis, micronuclei, mitotic bridges, 
and binucleated cells) and a reduced mitotic index were observed 

Abbreviations: APCs, antigen-presenting cells; CCL, C–C motif chemokine 
ligand; CCR, C–C chemokine receptor type; CD, cluster of differentiation; Cdkn1a, 
cyclin dependent kinase inhibitor 1A; CEA, carcinoembryonic antigen; CHX, 
cycloheximide; CSF-1, colony stimulating factor-1/M-CSF, macrophage CSF/G-
CSF, granulocyte CSF/GM-CSF, granulocyte-macrophage CSF; CTL, cytotoxic 
T-cell; CTLA4, cytotoxic T-lymphocyte associated protein 4; CXCL, C–X–C 
motif chemokine ligand; CXCR, C–X–C chemokine receptor type; DAMPs, 
damage-associated molecular patterns; DCs, dendritic cells; Flt3-L, Fms-related 
tyrosine kinase-3 ligand; HLA, human leukocyte antigen; HMGB1, high mobility 
group box 1; HPC, hematopoietic progenitor cell; HSC, hematopoietic stem cell; 
ICAM-1, intercellular adhesion molecule 1; IFN-γ, interferon γ; IL, interleukin; 
IP-10 (CXCL10), IFN γ-induced protein 10; LET, linear energy transfer; MCP-1 
(CCL2), monocyte chemotactic protein 1; MeV/n, Megaelectronvolt per nucleon; 
MHC-I and II, major histocompatibility complex class 1 and 2; MIC, MHC class 
I chain-related protein; MIP-1β (CCL3), macrophage inflammatory protein 1β; 
MUC-1, mucin-1; NK, natural killer; NF-κB, nuclear factor κB; NKG2D, Natural 
Killer Group 2D; PGE2, prostaglandin E2; PRRs, pattern recognition receptors; 
RIBEs, radiation-induced bystander effects; RNS, reactive nitrogen species; ROS, 
reactive oxygen species; TGF-β, transforming growth factor β; Th, T helper; TLR, 
toll-like receptor; TNF-α, tumor necrosis factor α; Tregs, regulatory T-cells; ULBP, 
UL16-binding proteins; VEGF, vascular endothelial growth factor.
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in human bone marrow cells (e.g., erythroblasts) during the first 
days after accidental sublethal whole-body γ-radiation exposure, 
and they persist at a lower frequency for years after the accident 
(8). The long-term bone marrow injury after acute exposure to 
moderate of high doses of low-LET-irradiation might be caused 
by HSC senescence (9) as indicated by increased p16Ink4a expres-
sion and senescence-associated-β-galactosidase activity (2). 
Radiation qualities with higher biological effectiveness such as 
accelerated iron ions, exhibiting a different LET depending on 
charge and energy of the ion, were shown to initiate long-term 
damage to hematopoietic early and late multipotent progenitor 
cells in mice and reprogramming to a primitive pluripotent state 
(1). Furthermore, chronic low-dose exposure to ionizing radia-
tion might damage bone marrow cells as the hematopoietic niche 
is regarded to be highly sensitive to low-dose ionizing radiation 
exposure (Figure 1) (1).

In addition to the well-known immunosuppression as the  
predominant feature of the bone marrow syndrome, recent studies 
suggest that in the acute radiation syndrome, exacerbated innate 
immune responses play a major role in pathogenesis (10–12). 
Epithelial and endothelial cells are suggested as source of the pro-
inflammatory cytokines in the acute radiation syndrome (12). In 
this complex chain of events, endothelial cells and parenchymal 
cells are damaged (13), endothelial cells and leukocytes are acti-
vated, proinflammatory cytokines such as interleukin-8 (IL-8),  
IL-6, IL-12 and IL-18, prostaglandin E2 (PGE2) and reactive 
oxygen species (ROS) are produced (10, 14), and neuropeptides 
are released (15). Activation of the innate immune system was 
suggested to be involved in target organ damage and adverse 
metabolic and hemodynamic responses (10). In the brain, over-
expression of cytokines such as tumor necrosis factor α (TNF-α), 
IL-1α, and IL-1β occurs within several hours after whole-body 
irradiation of mice (10).

Partial body irradiation is applied in tumor radiotherapy 
or can occur in radiation accidents. Short-term side effects of 
conventional radiotherapy depend on the location, the total 
dose of radiation treatment, the individual radiosensitivity, and 
the size of the radiation field. A persistent accumulation and 
activation of immune cells (e.g., macrophages), resulting in the 
release of proinflammatory cytokines (IL-1, IL-6), contributes 
to radiotherapy-induced side effects (10) such as cutaneous 
radiation syndrome, oral mucositis, radiation pneumonitis 
or esophagitis, or cystitis (16–18). Furthermore, the cytokine 
transforming growth factor β (TGF-β) might be activated in 
the extracellular space and upregulation of its receptors might 
deregulate fibroblast proliferation and differentiation and con-
tribute to radiation-induced fibrosis (19).

Accelerated ion species, especially protons and carbon ions,  
are already established features of state-of-the-art radiotherapy. 
One of their main physical properties is a distance-controlled 
energy distribution (Bragg Peak), resulting in highly localized 
energy deposition of radiation with high LET within a tumor 
while at the same time protecting out-of-field tissue from expo-
sure due to low entry- and even less exit-energies. Such level of 
radiation control makes this therapeutic approach especially suit-
able for treatment in unfavorable locations and strongly promotes 
personalized therapy.

The direct effects of ionizing radiation exposure on different 
immune cells and their stem cells and especially their radiation 
sensitivity were recently summarized in three reviews (20–22), 
therefore, the readers are referred to these reviews and other 
reviews for a detailed description of the immune cells, an overview 
of their function and the direct radiation effects. Shortly, granu-
locytes (eosinophils, basophils, neutrophils), natural killer (NK) 
cells and mast cells are the major players in the innate immune sys-
tem. T-lymphocytes with their subtypes [cytotoxic T-cells (CTLs), 
helper T-cells (Ths) with the subpopulations Th1, Th2, Th17, 
regulatory T-cells (Tregs), memory T-cells] and B-lymphocytes 
(23) [plasma cells, and memory B cells] represent the adaptive 
arm of the immune system. T-lymphocytes are the key players 
in the cell-mediated immune response, while B-lymphocytes 
mediate the humoral reactions. The circulating peripheral blood 
lymphocytes represent only <2% of the lymphocytes in lym-
phoid tissues (24). At the interface of the innate and the adaptive  
immune system, macrophages derived from monocytes and 
dendritic cells (DCs) act as antigen-presenting cells (APCs). 
NKT  cells show features of NK  cells and T-lymphocytes. The 
direct effects encompass reduced survival, proliferation, cell 
cycle alterations, diminished function, gene expression changes 
(25–27), chromosomal aberrations, mutations, and possible 
transformation (28). In vivo, mitotic catastrophe is usually fol-
lowed by necrosis resulting in an inflammatory reaction (29, 30). 
Mitotic catastrophe contributes strongly to the death of tumor 
cells induced by ionizing radiation (29), and is now assumed 
to be the major cell death pathway in solid tumors following 
radiotherapy (31). In tumor radiotherapy, this might result in 
enhanced tumor cell killing by cytotoxic immune cells and also 
in damage to the normal tissue (32).

More subtle changes are expected at low doses, and the 
bystander effect as a non-targeted effect being expressed in unex-
posed cells which are in the vicinity of irradiated cells, becomes 
apparent when only a small fraction of cells was hit. Such 
bystander effects are also relevant in radiotherapy dose ranges, as 
immune cells can enter the irradiated tumor tissue and interact 
with the irradiated tumor cells. They are of high importance for 
cancer immunotherapy concepts in combination with radio-
therapy in which unirradiated immune cells are to be injected in 
the tumor/the patient. Also, the effects on immune cells in their 
niche—mesenchymal stem cells (33, 34) and endothelial cells 
(35) are in the focus of current research activities. Furthermore, 
abscopal effects, which are observed in non-irradiated fields after 
localized radiation exposure, have been recognized for decades, 
most particularly after radiotherapy (12).

In this review, we discuss the intercellular communication in 
the tumor immune response with a focus on different ionizing 
radiation qualities. This encompasses the recruitment of immune 
cells to the irradiation site by, e.g., chemokines, and the functional 
modulation of immune cells.

RADiATiON-iNDUCeD BYSTANDeR 
eFFeCTS

Ionizing radiation, whether it is photonic radiation like X-rays 
and γ-rays or accelerated high energy particles, affects not only 
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the cells they are exposed to. Radiation-induced bystander effects 
(RIBEs) are a response of cells that are not directly hit by ionizing 
photons or traversed by heavy ion species that is initiated by cells 
which received doses of ionizing radiation (36).

After an ionizing radiation event damages a cell, pathways 
leading to the repair of the damages or the induction of apoptosis 
also induce the production of factors that can travel outside of 
the cell or from cell to cell, either by secretion or via cell-to-cell 
connecting channels. These factors act as damaging agents or 
signaling molecules and can affect other cells in a paracrine or 
endocrine manner.

Radiation-induced bystander effects have been first described 
by Nagasawa and Little in an experiment, where only a small 
fraction of the cells (<1%) were traversed by an α-particle, but 
more than 30% of the whole cell population showed damages 
(37). At present time, damages by RIBE are characterized as 
DNA damage, chromosome aberrations, sister-chromatid 
exchanges, genomic instability, and cellular senescence. Among 
the  damaging agents are ROS and reactive nitrogen species 
(RNS) (38, 39).

Radiation-induced bystander effects are not only an indirect 
way for ionizing radiation to cause destruction. The secretion 
of signaling factors of this particular cellular response can also 
protect cells from further damages by preenhancing repair 
mechanisms or lead to a faster clean-up of radiation-damaged 
cells (40–42).

The most prominent signaling molecules in RIBE are factors 
triggering an immune response. Part of the damage response 
of an irradiated cell is the activation of the transcription factor 
nuclear factor κB (NF-κB) (43). Downstream of NF-κB activation, 
chemokines and cytokines are produced and secreted, which can 
attract and stimulate cells of the immune system.

Besides cytokine and chemokine secretion, cells can 
communicate via extracellular vesicles or exosomes. These 
membrane-coated bodies can contain a multitude of factors 
ranging from proteins to micro-RNA that can modulate cel-
lular functions and induce signaling pathways. After secretion 
of the vesicles into the extracellular space, exosomes can affect 
neighboring cells by binding to surface receptors or by uptake 
and intracellular release of their content. Exosomes in RIBE 
have been associated with DNA damage, survival, proliferation, 
and signal transduction, resulting from the variety of factors 
carried within and the possible ways to impact recipient cells 
(44–52). The influence of ionizing radiation on composition 
and secretion of exosomes was recently reviewed by Jelonek 
et al. (49).

In the innate immune response, recognition of pathogen-
associated molecular patterns or damage-associated molecular 
patterns (DAMPs) by germline-coded cell surface or intracellular 
receptors [pattern recognition receptors (PRRs)] is the central 
trigger of activation. In the adaptive immune response, antigen 
presentation by APCs to T- and B-lymphocytes is the central 
 process for their activation. Antigens are bound to major 
 histocompatibility complex class I (MHC-I) molecules on the 
surface of body cells and to MHC class II (MHC-II) molecules 
on APCs [in humans: MHC class Ia – human leukocyte antigen 
(HLA)-A, -B and -C; MHC class Ib  –  HLA-E, -F-, -G; MHC 

class II  – HLA-DM, -DO, -DP, -DQ, -DR]. Antigen recogni-
tion by T  helper cells and B-cells or CTL in combination with  
co-stimulation, intercellular adhesion and stimulation by cytokines 
results in their activation. Therefore, radiation induced modifica-
tions of these intercellular communication pathways are of utmost 
importance in the non-targeted response of the immune system.

Radiation-induced bystander effects in the immune system 
encompass a complex network of signaling pathways, ranging 
from the DNA damage response of irradiated cells and unirradi-
ated cells over the regulation of surface molecules on stationary 
body cells as well as circulating immune cells after radiation 
exposure and on the non-irradiated neighbors to the response of 
immune cells, due to direct or indirect intercellular communica-
tions of immune cell populations.

In vitro experiments for analysis of RIBE are based on transfer 
of conditioned medium from irradiated cells on unirradiated 
cells, coculture of irradiated and unirradiated cells, or irradiation 
of a subpopulation of cells by means of a microbeam or partial 
shielding.

ACTiON OF iMMUNe CeLLS AFTeR 
TUMOR iRRADiATiON

Tumors contain diverse immune cells, and therefore, the responses 
of immune cells to irradiated tumor cells including RIBE are an 
important factor for the overall outcome of the tumor therapy. 
Noteworthy for this topic is the strict differentiation of in vitro 
and in  vivo studies: in  vitro experiments with unirradiated 
immune cells can show an uncompromised immune response 
against irradiated tumor cells. In in vivo studies, immune cells 
may also be irradiated during radiation therapy of the experi-
mental tumor.

The responses of immune cells to stresses of any kind differ 
as much as their population diversity. While there are actively 
lytic cell populations, such as CD8+ CTLs and NK cells, there 
is also a host of immune actions that are necessary for initiating 
aforementioned lytic responses (e.g., dendritic, monocytic, and 
macrophage-mediated presentation of antigens) and enhancing 
actions (Th1 and Th2 responses). Opposed to those proinflam-
matory lymphocytes are cell populations that suppress the 
responses, for example, Tregs that secrete the hematopoietic 
cell activity regulating and anti-inflammatory TGF-β and the 
immune-suppressing IL-10 (53).

Activation of CTLs
Involvement of cytotoxic immune cells has been studied in a 
variety of model systems with different radiation qualities. The 
most notable modifications of lymphocyte actions are summa-
rized in Table 1. Activation of CTL (shown in Figure 2) is mainly 
triggered via the T-cell receptor. In 67NR and A20 tumor-bearing 
mice irradiated with γ-rays (2–6 Gy), increased CTL cytotoxicity 
was reported (54). In an in vitro study by Garnett et al. (55) using 
several carcinoma cell lines, it was shown that after irradiation 
with γ-rays (10–20  Gy), WiDr, Caco-2, SW620, SW1463, and 
HCT116 cells were more sensitive to CTL-mediated lysis primed 
against carcinoembryonic antigen (CEA), while A549 cells 
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TABLe 1 | Modulation of lymphocyte activity after irradiation of tumor tissue.

Tumor cell Radiation quality Dose Study 
type

Lymphocyte 
type

Activity Reference

Mouse adenocarcinoma γ-Irradiation (137Cs source) 20 Gy In vivo CTL ⇑ (56)

67NR (breast) γ-Irradiation (60Co source) 2–6 Gy In vivo CTL ⇑ (54)
A20 (lymphoma)

WiDr (colon) γ-Irradiation (137Cs source) 10–20 Gy In vitro CTL ⇑ (55)
Caco-2 (colon)
SW620 (colon)
SW1463 (colon)
HCT116 (colon)
A549

MelJuSo (melanoma) γ-Irradiation (137Cs source) 1–30 Gy In vitro CTL ⇑ (59)

RMA-S lymphoma Radiation therapy (presumed X-rays) a In vivo NK ⇑ (60)
B16 melanoma

A549 (lung carcinoma) X-rays exposure (ClinaciX Linear Accelerator) 8 Gy In vitro NK ⇑ (61)
NCI-H23 (lung adenocarcinoma)

MDA-MB-231 (breast) Electron beam exposure (Elekta Synergy linear 
accelerator)

8 Gy In vivo NK ⇑ (62)
U87MG (glioblastoma)
A673 (muscle)
PANC-1 (pancreas)

Lewis Lung carcinoma X-rays exposure (6-MV photon beam, dose rate  
6.1 Gy/min)

12 Gy In vivo Treg ⇑ (63)
CT-26 colon carcinoma

B16 melanoma γ-Irradiation (137Cs source) 6–12 Gy In vivo Treg ⇑ (64)
EL-4 lymphoma

PANC-02 (pancreas) γ-Irradiation (Siemens Gammatron) 5 Gy × 2 Gy In vivo CTL, NK CTL > NK (65)

LNCaP (prostate) γ-Irradiation (137Cs source) 8 Gy In vivo CTL ⇑ (66)
MDA-MB-231 (breast)
H1703 (lung) Proton ion irradiation (200 MeV, LET 0.5 keV/µm) 8 Gy
JHC7 (chordoma)

Mouse SCCVII (squamous cell carcinoma) Carbon ion irradiation (290 MeV/n, LET 77 keV/µm) 10 Gy/minb In vivo CTL+ DC ⇑ (67)

⇑ up.
aDose not indicated.
bDuration of irradiation not indicated.
LET, linear energy transfer.
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responded to Fas-mediated cell lysis. Increased expression of 
Fas (CD95) was also observed on tumor cells in a MC38 mouse 
adenocarcinoma cell model after γ-irradiation (20  Gy), which 
enhanced the lytic activity of CTL (56). Expression of the surface 
proteins Fas, CEA, intercellular adhesion molecule 1 (ICAM-1), 
mucin-1 (MUC-1), and MHC-1 was increased in those cell lines 
as well, enhancing their susceptibility to immune mediated lysis 
(55). ICAM-1 can engage in receptor-ligand binding between a 
T-cell and an antigen-presenting DC and thereby contribute to 
T-cell activation (21) as well as recruitment of immune cells from 
the blood stream to endothelial cells before extravasation to the 
tumor (57, 58).

Similar results were obtained using 200  MeV protons (pro-
duced using a passive scattering proton beam). In in vitro tumor 
cell models (human prostate (LNCaP), breast (MDA-MB-231), 
lung (H1703) carcinoma, and chordoma (JHC7) cells), expres-
sion of HLA-ABC, CEA, MUC-1, and ICAM-1 was increased 
after proton (8  Gy) and γ-irradiation (8  Gy), as well as sensi-
tivity of the tumor cells to CEA-specific CTL-mediated lysis 
increased (66). Increased CTL activity has been partially allotted 

to the production of unique MHC-I antigenic peptides after 
γ-irradiation (1–25 Gy) leading to increased tumor recognition 
by T-cells (59).

In vivo studies with carbon ion irradiation (290  MeV/n, 
LET 77 keV/µm) of tumor-bearing mice revealed an increased 
CTL-associated lysis of isolated tumor splenocytes after carbon 
ion irradiation treatment with supplementary intratumoral DC 
injection (67).

Activation of NK Cells
The Natural Killer Group 2D [NKG2D, reviewed by Spear 
et al. (68)] receptor promotes amongst others the activation of 
NK  cells. The human NKG2D receptor recognizes the ligands 
MHC class I chain-related protein A (MIC-A) and B (MIC-B) 
and HCMV UL16-binding proteins [ULBP1-6 (68)]. Expression 
of NKG2D ligands has been found to be increased in irradiated 
tumor cell lines [NCI-H23, A549 (61, 69)] resulting in enhanced 
activity of NK cells (summarized in Figure 3) toward tumor cells 
after X-irradiation (8 Gy). The response was presumed to be trig-
gered by an upregulation of the NKG2D ligands MIC-A/B and 
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FigURe 2 | Activation of CD8+ cytotoxic T-cells (CTL) by tumor specific antigens presented by the irradiated tumor cell and dendritic cells (DCs). After irradiation, 
the tumor cell shows an increased expression of surface markers CD95 (Fas), carcinoembryonic antigen (CEA), intercellular adhesion molecule 1 (ICAM-1), and 
mucin-1 (MUC-1), as well as upregulated expression of major histocompatibility complex class I (MHC-I; HLA-ABC, human leukocyte antigen A, B, and C). While 
increased expression of CEA, ICAM-1, and MUC-1 are found to enhance cytolytic T-cell activity, CD95, and MHC-I are responsible for the activation of the T-cell. 
Increased expression of either has been associated with elevated activation of CTL. By binding with surface bound Fas-ligand (FasL) to the tumors’ CD95, T-cells 
can initiate tumor cell death via apoptosis. MHC-I molecules on the other hand present tumor specific antigens to the T-cell via the T-cell receptor and initiate 
degranulation of tumor necrosis factor α (TNF-α), perforines, and granzymes, thereby lysing the target tumor cell. After irradiation, tumor cells were found to produce 
unique antigen peptides, leading to increased tumor recognition. DCs, in their role as antigen-presenting cells, enable radiation-induced CTL lysis. DC take up tumor 
specific antigens and present them via MHC-II molecules to T-helper cells (CD4+), which prime and activate CTL, e.g., via secretion of interleukin-2 (IL-2).
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ULBP1-3 and could be further increased by inhibition of histone 
deacetylase (61).

Upregulation of MHC-I molecules and heat-shock proteins 
may abolish this activation (Figure 3) by induction of an increased 
expression of inhibitory NK cell surface receptors (61). NK cell 
activity has also been found to be diminished after cleavage of 
NKG2D ligands via matrix metalloproteases (69, 70).

An enhanced radiotherapy effect mediated by NK  cells has 
been reported after electron irradiation (8  Gy). The cytotoxic 
effect of NK  cells was tested on various cancer stem cell lines 
(MDA-MB-231, U87MG, A673, and PANC-1) in  vivo, where 
mice were inoculated with cultured tumor cells and locally irradi-
ated, then injected with NK cells, and in vitro, assessing the NK 
cytotoxicity directly on irradiated tumor cell (62).

As mentioned above, in vivo studies can imply direct irradia-
tion effects on immune cells. A way around this is to inject non-
irradiated lymphocytes into the irradiated tumor-bearing host 
and analyze the effects.

An in vivo study explained a reduced tumor volume (RMA-S 
lymphoma/B16 melanoma) in mice by injected NK  cells after 
5 Gy total body irradiation. The effect was even more pronounced 
after prestimulating the NK cells with IL-12, -15, and -18, with 
highly increased expression of interferon γ (IFN-γ), granzyme B, 

and perforin. Those prestimulated NK cells were found to have 
rapidly proliferated in dependence of IL-2 production by CD4+ 
Th-cells (60).

involvement of DCs
Enhanced antitumor response after X-irradiation (PANTAK 
Therapax DXT 300 Model X-Ray Unit, 42.5  Gy) has been 
linked to DCs. Intratumoral injection of DC was performed in 
 mice bearing irradiated D5 tumors, resulting in reduced tumor 
size and increased IFN-γ secretion (71). As shown by Scholch 
et al. (65), in the in vivo (PANC-02 cells in mouse model) antitu-
mor response of immune cells after irradiation (5 Gy × 2 Gy), the 
CTL mediated response dominates over NK cells, and was shown 
to be abrogated by depletion of DC, indicating a necessity of DC 
mediated antigen presentation for the immune cell effectiveness 
against tumor tissue. Although very promising, the described 
effects do not take the radiation effect on immune cells into 
account, since no immune cells were injected after irradiation 
(65). After X-irradiation (5 Gy × 2 Gy, 3 Gy × 5 Gy, 15 Gy), DC 
show an increased expression of IL-2R (CD25), which can medi-
ate an increased activation of CD4+ T-cells via presentation of 
the activating IL-2 to the T-cell [and potentially CTL and NK cells 
as well, although not tested in the study (72)].

http://www.frontiersin.org/Immunology/
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FigURe 3 | Activation and inhibition of natural killer (NK) cells by irradiated tumor cells. (A) Irradiated tumor cells show increased expression of the surface proteins 
MHC class I chain-related protein A and B (MIC-A/B) and HCMV UL16-binding proteins (ULBP1-3), which are ligands for NK cell activating receptors NKG2D. 
Activation of NK cells is orchestrated by a balancing of bound activating and inhibiting receptors. Increased expression of NKG2D ligands therefore shifts the 
balance toward NK cell activation and triggers degranulation of perforine, granzyme B, and interferon γ (IFN-γ)—the NK cells’ mediators of cytolytic activity. (B,C) 
Decreasing NK cell cytotoxicity on the other hand is mediated by different mechanisms. (B) Major histocompatibility complex class I (MHC-I) is a ligand for the 
inhibiting receptors on the NK cell surface and has been found to be elevated in irradiated tumor cells. By increasing the binding of inhibitory receptors, the NK cells’ 
cytotoxic capabilities are diminished. (C) Another mechanism is to decrease the binding to the activating NK cell receptors, like NKG2D. This can be accomplished 
by cleaving the respective ligands on the target cell surface with matrix metalloproteases (MMP).
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involvement of Tregs
On the other hand, immunosuppressive Tregs were found to be 
increased in irradiated tumors in an in vivo mouse study, bear-
ing lung and colon tumors (63) as well as in tumors and tumor 
draining lymph nodes of mice injected with mouse melanoma 
and lymphoma cell lines (64). The increased presence of Tregs 
was associated with increased tumor growth and has been 
hypothesized to depend on Langerhans cells, the DCs in the 
epidermis (64). Systemic inhibition of Tregs using cycloheximide 
(CHX) and anti-CD25 antibodies proved to increase the number 
of CD8+ and CD4+ non-Tregs. Along with those results, CHX 
and anti-CD25-antibody treatment resulted in enhanced tumor 
regression, indicating a suppressive function of Tregs (63). In other 
in vivo studies, Tregs were suppressed by blockage of cytotoxic 
T-lymphocyte associated protein 4 (CTLA4) in mice injected 
with 4T1 mouse mammary carcinoma or CD-26 murine colon 
cancer cells. Subsequent radiation exposure with 10 and 12 Gy 
of γ-irradiation resulted in tumor reduction that was associated 
with CTL-mediated cytotoxicity (73, 74). In the study by Son 
et al., the irradiation treatment was augmented with immature 
DC (74), but due to different irradiation parameters as well as 
different tumor application of the two studies, the effectiveness 
of this augmentation cannot be assessed.

Bystander and Abscopal effects
Monocytes and T-cells were shown in vitro (THP-1 and Jurkat 
cell lines, respectively) to have increased viability after incubating 
them with conditioned medium from carbon ion irradiated neu-
ronal tumor cells (SH-SY5Y and U87; Carbon ions 165 MeV/n, 

LET 30  keV/µm, 1–5  Gy), as well as decreased migration of 
THP-1, hinting at more in-depth interactions of immune cells in 
response to radiation (75).

Radiation therapy with an electron beam (fractionated 8 Gy on 
three consecutive days; Varian Truebeam linear accelerator) has 
been shown to slow tumor growth of mice bearing 67NR tumors 
in  vivo in an abscopal manner (76). In the same model, after 
enrichment of DC using DC growth factor Flt3-L (Fms-related 
tyrosine kinase-3 ligand), abscopal tumor size reduction was 
observed after low doses (2–6 Gy) of γ-irradiation (60Co source). 
The effect was proven to be T-cell dependent, as abscopal tumor 
size was not influenced in T-cell deficient mice (54).

The systemic inhibition of Tregs using CHX and anti-CD25-
antibodies in an in vivo tumor-bearing mouse model (lung and 
colon carcinoma) or via CTLA4 blockage in an in vivo tumor-
bearing mouse model (colon carcinoma) after irradiation of 
the tumor resulted in reduced growth of distant non-irradiated 
tumor cells (63, 74). The indicated suppressive action of Tregs on 
antitumor responses can thereby also be expected non-irradiated 
tumors.

These studies show that irradiation of tumor cells or tissue has 
long-ranging effects on different immune cell subpopulations. 
This results in activation of CTL and NK  cells, supported by 
increased activity of DCs, which meets an orchestrated immune 
suppressive response initiated by Tregs. Activation of CTL and 
NK cells was shown in in vitro and in vivo studies, Treg activation 
only in vivo. As a broad variety of neoplastic cell lines activated 
these immune cell populations, the tumor cell type seems to have 
no apparent influence on immune cell activation.

http://www.frontiersin.org/Immunology/
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CYTOKiNeS AND CHeMOKiNeS

The Tumor Milieu
The presence of immunosuppressing cyto- and chemokines is vital 
to the development and progression of tumor cells. The tumor 
cells themselves can secrete factors that protect them from lysis 
via CTLs or NK cells or elicit cytokine expression in other cells 
that enable tumor survival, most notably are TGF-β and IL-10.

Transforming growth factor β has been shown to reduce a 
wide variety of antitumor immune functions. It inhibits growth of 
immune cells and reduces IL-2, IL-2R, IFN-γ, and NKG2D expres-
sion resulting in impairment of their activity. Furthermore, down-
regulation of MHC-I molecules on the tumor cell surface reduces 
their susceptibility to CTL-mediated tumor cell lysis. Expression of 
TGF-β by several tumor types has been reported (77, 78).

Interleukin 10 is one of the immune system’s “Off-Switches,” 
known for its regulatory characteristics in suppressing 
inflammatory responses (79). It effectively reduces antigen-
presentation, Th1 responses, NK  cell cytokine expression, 
and functions of monocytes and macrophages. An important 
way of inactivating the inflammatory immune response is by 
reducing the abilities of DCs to present antigens and to produce 
proinflammatory cytokines such as IL-12 (80). IL-12 can pro-
mote NK-mediated actions against tumor tissue. Among other 
factors associated with tumor growth are TNF, IL-1, IL-6, IL-8 
[C-X-C motif chemokine ligand 8 (CXCL8)], IL-11, IL-17a, 
IL-22, acute phase proteins, CCL20, PGE2, colony stimulating 
factor-1 (CSF-1)/macrophage CSF (M-CSF), vascular endothe-
lial growth factor (VEGF), and granulocyte-macrophage CSF 
(GM-CSF) (81–86).

The field of cytokines promoting tumor development and 
progression is vast and has been reviewed elsewhere (81–85). The 
communicative relationship of cytokines in radiation biology, as 
well as general notions on their functions, has been extensively 
reviewed by Schaue et al. (87). One can suspect that modulation 
of cytokine expression may be able to accomplish long ranging 
effects in terms of non-targeted responses after irradiation expo-
sure. In this review, the focus lies on the modulation of cytokine 
expression after exposure to ionizing radiation from differing 
radiation qualities and irradiation schemes.

impact of irradiation of Tumor Cells on 
Cytokine expression
Since the tumor environment is of immunosuppressive nature, 
the question arises, how irradiation of tumor cells modulates the 
cytokine responses that induce or further suppress the immune 
response. The cytokine and chemokine response of diverse tumor 
cell lines is shown in Table 2 and Figure 4.

Fractionated irradiation (5 Gy × 2 Gy, 3 Gy × 5 Gy, 15 Gy) of 
human colorectal adenocarcinoma cells (SW480 cell line) with 
X-rays has been reported to increase expression and secretion of 
proinflammatory cytokines IL-6, IL-8, IL-12p70, and TNF-α by 
DCs. The immunosuppressive cytokine IL-10 and the proinflam-
matory cytokine IL-1β were insignificantly increased without 
impeding antitumor response of Th1-cells (72).

The glioblastoma cell line T98G expressed and secreted an 
elevated level of IL-6 and IL-8 after γ-irradiation (1 Gy) (89). In 

addition to IL-6 and IL-8, CXCL1 expression was induced by high 
γ-radiation doses (10–30  Gy) in LN-229 glioma cells, this was 
observed for several days after irradiation (98).

Desai et al. (97) analyzed cytokine expression in the tumor cell 
lines HT1080, U373MG, HT29, A549, and MCF-7, using a single 
dose (2 and 6 Gy) and fractionated doses (2 Gy × 3 Gy) of γ-rays. 
Amongst the cytokines tested were TNF-α, IL-1β, IL-6, TGF-β, 
monocyte chemotactic protein 1 (MCP-1/CCL2), IL-15, VEGF, 
G-CSF, GM-CSF, Flt3-L, and IFN-γ-induced protein 10 (IP-10). 
While some cytokines (TNF-α, IL-8, IL-15, GM-CSF, and TGF-β) 
were highly upregulated after 6 Gy single-dose γ-irradiation, the 
expression profile strongly depended on the dose (TGF-β was 
downregulated in HT1080 cells at 2  Gy, highly upregulated at 
6 Gy, and moderately upregulated in the fractionated irradiation 
scheme), cell line (downregulation of IL-6 in every irradiation 
scheme of U373MG cells but upregulation in HT1080 and A549 
cells) and fractionation (IL-1β was downregulated in HT29 cells 
at 2 and 6  Gy single-dose irradiation but upregulated in the 
fractionated irradiation scheme).

In a mouse tumor model (RipTag-5 transgenic mice), TNF-α, 
IL-12p70, and INF-γ expression was found to be elevated, while 
VEGF and TGF-β were decreased after irradiation with 2  Gy 
γ-rays (100).

Tumor necrosis factor α and IL-1α were also reported to be 
released in H446 lung cancer cells after irradiation with γ-rays 
(8 Gy), but only TNF-α after irradiation with accelerated carbon 
ions (290 MeV/n, LET 13 keV/µm, 2 Gy) (99). IL-1 can act as 
stromal growth factor in tumors (103).

In conclusion, exposure to X-rays or γ-rays in therapeutic 
dose ranges (in fractionated or single-dose regime) modulates the 
expression of cytokines in many different tumor cell lines and also 
spontaneous tumor models.

impact of irradiation of immune Cells on 
Cytokine expression
Monocytes (THP-1 cell line) expressed reduced levels of the 
activating factors IL-15, IL-17, macrophage inflammatory 
protein 1β (MIP-1β, also known as CCL3) and IL-2 as well 
as increased levels of Treg-attracting IP-10 [CXCL10 (104)], 
Rantes (CCL5) and immunosuppressive VEGF (105) 24  h 
after irradiation with 1.5  Gy α-particles (241Am Source, LET 
127 keV/µm) (106). Irradiation of THP-1 derived macrophages 
with 0.5–20 Gy carbon ions (18.3 MeV/n, LET 108 keV/µm) has 
been shown to result in decreased TNF-α and IL-6 expression. 
Only extremely high doses (50 Gy) of carbon ions resulted in 
this study in an increased IL-6 expression (107). Irradiation of 
monocytes and macrophages with α-particles or accelerated 
carbon ions in therapeutic dose ranges (fractionated scheme) 
may therefore negatively modulate the immune response 
against tumor cells.

Release of DAMPs
Damage-associated molecular patterns are secreted or released 
biomolecules that can initiate inflammatory responses upon 
binding to recipient receptors. Among those biomolecules are 
DNA molecules that are recognized by PRR anywhere outside 
the cell nucleus, or damaged RNA, which may be released in 
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TABLe 2 | Cyto- and chemokine response and damage-associated molecular patterns (DAMPs) release by tumor cells after irradiation.

Tumor cell Radiation quality Dose Study 
type

Cytokine/chemokine expression Reference

4T1, 67NR, HTB-20 (breast carcinoma) γ-Irradiation (137Cs source) 2–12 Gy In vivo CXCL16 ⇑ (88)
In vitro

T98G (glioblastoma) γ-Irradiation (60Co source) 1 Gy In vitro IL-6, IL-8 ⇑ (89)

4T1, 67NR (breast carcinoma), B16/F10 
(melanoma), MC57 (fibrosarcoma), MCA38  
(colon carcinoma)

γ-Irradiation (137Cs source) 12 Gy In vivo CXCL16 ⇑ (90)

A549, TE2, KYSE70 (esophageal 
squamous), NCI-H460 (large cell 
carcinoma), WiDr (colon adenocarcinoma), 
MCF-7, NCI-H1703 (lung), DU-145, PC-3 
(prostate), HCT-15 (colorectal), SW480, 
T98G and U251MG

Photonic 2.1–15 Gy In vitro HMGB1 ⇑ (91–95)

DF-19, BW-225 (squamous cell carcinoma) Ionizing radiation (not specified) 2 Gy In vitro CXCL1, CXCL12 = (96)

HT1080 (colorectal tumor), U373MG, HT29,  
A549, MCF-7

γ-Irradiation (60Co source) 2 Gy, 6 Gy, 
3 Gy × 2 Gy

In vitro Flt3-L, G-CSF, GM, CSF, IL-1β, 
IL-6, IL-8, IL-15, IP-10, MCP-1, 
TNF-α, TGF-β, VEGF

⇑ (97)

G-CSF, GM-CSF, IL-1β, IL-6, 
IL-8, MCP-1, TNF-α, TGF-β

⇓

SW480 (colorectal) X-rays 5 Gy × 2 Gy, 
3 Gy × 5 Gy, 
15 Gy

In vitro IL-6, IL-8, IL-12p70, TNF-α, 
IL-10, IL-1β

⇑ (72)

LN-229 (glioma) γ-Irradiation (Nordion GC40 
Gammacell irradiator)

10–30 Gy In vitro IL-6 ⇑ (98)
IL-8, CXCL1 (only mRNA)

NCI-H446 (lung) γ-Irradiation (137Cs source) 8 Gy In vitro TNF-α, IL-1α ⇑ (99)
Carbon ions (290 MeV/n,  
LET 13 keV/µm)

2 Gy TNF-α ⇑

RipTag5 mice (spontaneous insulinoma) γ-Irradiation (60Co source) 2 Gy In vivo TNF-α, IL-12p70, IFN-γ ⇑ (100)
VEGF, TGF-β ⇓

MCF7, SKBR3, and MDA-MB231 (breast) γ-Irradiation (137Cs source) 10–20 Gy In vitro CXCL16 ⇑ (101)

NR-S1 and SCCVII (squamous cell 
carcinoma), NFSa, #8520 (fibrosarcoma)

γ-Irradiation (137Cs source) 30–50 Gy In vivo CCL3 (only mRNA) ⇑ (102)
Carbon ions (290 MeV/n,  
LET 50 keV/µm)

30 Gy CCL3, CXCL2 (only mRNA)

TE2, KYSE70, A549, NCI-H460 and WiDr Carbon ions (290 MeV/n,  
LET 30 keV/µm)

0.9–3.5 Gy 
(iso-survival 
dose D10

a)

In vitro HMGB1 ⇑ (93)

⇑ up, ⇓ down.
aThe D10 dose represents the radiation dose required to reduce the surviving fraction to 10%.
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response to damages induced by ionizing radiation. Certain 
signaling proteins may also be recognized by PRR and stimulate 
immune functions.

One of those proteins is the high mobility group box 1 (HMGB1), 
a protein that under normal conditions binds to chromosomal 
DNA and facilitates nucleosomal structure maintenance and 
regulates gene expression. Acting as a DAMP (Figure 4), HMGB1 
can support recruitment of immune cells via the chemokine recep-
tor CXCR4 (which is bound by CXCL12) and activate immune 
responses via toll-like receptor 4 (TLR4) or induce caspase-
1-dependent apoptosis (93, 95, 108) as well as DC maturation, Th1 
polarization (109), and IFN-γ release of NK cells (110). It has been 
shown to be released after 2–15 Gy, X- and 0.9–3.5 Gy carbon ion 
irradiation by normal human fibroblasts (GM0639) and human 
bronchial epithelial cells (16HBE), as well as by the tumor cell lines 
A549, TE2, KYSE70, NCI-H460, WiDr, and the mouse melanoma 

cell line B16-F10 (93–95). Similar findings were reported in tumor 
cell lines of various tissue origins (MCF-7, NCI-H1703, DU-145, 
PC-3, HCT-15, SW480, T98G, and U251MG cells) (91, 92). Upon 
TLR9 stimulation, HMGB1 induces expression of IL-12p70, 
IL-12p40, IFN-α, IFN-γ, and TRAIL in DCs (111).

HMGB1 has also been indicated to induce NF-κB activity, as 
measured by p65 translocation as well as IκBα degradation, in 
presence of PRR CD14 and TLR4 (112). HMGB1 also induces 
increased TNF-α expression in human peripheral blood mono-
nuclear cells, as well as TNF-α, IL-1α, IL-1β, IL-1RA, IL-6, IL-8, 
MIP-1α, and MIP-1β in human monocytes, but not IL-10 or 
IL-12 (113).

This indicates that inflammatory protein expression of immune 
cells may be in part due to stimulation via HMGB1 acting as 
DAMP after irradiation injury. As part of the bystander response 
of immune cells, this HMGB1 induced expression of cytokines 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigURe 4 | Cytokine and chemokine expression by irradiated tumor cells, recruitment of immune cells and cytokine expression of the involved immune cells. Tumor 
cells express a plethora of soluble factors, cytokines and chemokines, and after irradiation, the secretion profile is modified. On the one hand, proinflammatory 
cytokines, like interleukin-6 (IL-6), IL-8, IL-12p70, tumor necrosis factor α (TNF-α), interferon γ (IFN-γ), and IL-1α, are increasingly expressed in tumor cells models 
in vitro and in vivo. On the other hand, the expression of immune-suppressive soluble factors is modified. IL-10 and IL-1β expression is increased, but secretion of 
vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) is reduced. Further, chemokines, like CXCL16, are increasingly expressed and 
initiate recruitment of natural killer (NK) cells and other immune cells. The secretion of the damage-associated molecular pattern molecule high mobility group box 1 
(HMGB1) is elevated as well in irradiated tumor cells, which leads to a activation of immune cells via the toll-like receptor 4 (TLR4), recruitment of immune cells via 
chemokine receptor CXCR4, as well as modification of cytokine expression of peripheral blood mononuclear cells.
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may lead to prompting further immune action such as CD8+ 
T-cell or NK  cell mediated killing of irradiated tumor tissue. 
There is very little data available regarding HMGB1 modulation 
by proton or carbon ion irradiation. This calls for more research in 
this upcoming and promising radiotherapy approach—especially 
in context of DAMP interaction with immune cells. While the 
primary signaling pathways for interactions of HMGB1 with any 
leukocyte population can be elucidated using X-irradiation, the 
effect of particle irradiation on this intercellular communication 
can only be assessed with specifically designed experiments for 
this question.

Bystander Cytokine expression
Besides the cyto- and chemokine expression of irradiated tumor 
or immune cells, bystander cells not directly hit by radiation 

might modify their gene expression profile. In coculture, U937 
macrophages have been shown to secrete TNF-α and IL-1α 
(IL-1α not at high doses) after irradiation of NCI-H446 lung 
cancer cells with γ-rays (137Cs Source, 8  Gy) but only TNF-α 
after irradiation with accelerated carbon ions (290  MeV/n, 
LET 13  keV/µm, 2  Gy) (99). Microbeam irradiation of 0.45% 
of a THP-1 derived   macrophage population with 5  Gy 
carbon ions (18.3  MeV/n,  LET 108  keV/µm) using a heavy 
ion   microbeam  resulted in significantly reduced expression of 
TNF-α and IL-6 (107).

Chemokines and Lymphocyte Recruitment
The release of chemokines by irradiated cells and build-up of a 
chemokine gradient results in recruitment of selected immune 
cell populations to the irradiation site.
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The chemokine CX3CL1 can recruit osteoclasts which are 
formed by fusion and differentiation of monocytes (114). This 
might have clinical relevance for osteolytic tumors.

Expression of CXCL16, the only known ligand for chemokine 
receptor CXCR6—expressed on NK cells, is increased in various 
breast cancer (MCF7, SKBR3, and MDA-MB231, 4T1, 67NR, 
HTB-20), melanoma (B16/F10), fibrosarcoma (MC57), and 
colon carcinoma (MCA38) cell lines after γ-irradiation (2–20 Gy) 
(88, 90, 101). This increased expression of CXCL16 facilitates an 
enhanced migration NK cells (Figure 4) toward the tested tumor 
cells (101).

Macrophage inflammatory protein 1α (CCL3) is a 
T-lymphocyte/monocyte derived chemokine recruiting CCR1/
CCR5 expressing leukocytes (monocytes, DC, NK-, and T-cells). 
Administration of an active CCL3 agent (ECI301) resulted in 
reduction of tumors in vivo (Colon26 adenocarcinoma, MethA 
fibrosarcoma and Lewis lung carcinoma cells in mice) after 
electron irradiation (6 MeV electron beam, 6 Gy). Depletion of 
CD8+ T-cells reduced the antitumor effect of CCL3 administra-
tion indicating radiation induced recruitment of this cell popula-
tion to the tumor site (115).

Abscopal effects
CCL3 administration also served to reduce tumor size of non-
irradiated tumors in the in  vivo model used by Shiraishi et  al. 
(115). This effect was dependent CD4+ Th cells and NK cells, as 
depletion of those cell populations has shown. This indicates a 
CCL3 dependent recruitment of those populations to the non-
irradiated tumor after irradiation (115).

CONCLUSiON

After the initial irradiation of tumor cells, the RIBE can contrib-
ute to a more effective elimination of the tumor by recruiting 
immune cells to the tumor and by activating immune cells at the 
tumor site. The interactions between irradiated cancer as well as 
irradiated or bystander and abscopal immune cells are manifold. 
These  radiation-induced interactions of immune cells in the 
tumor response are being elucidated for photonic radiation, but 
the effects of protons and carbon ions are largely unknown. First 
studies indicate a trend toward stronger cytokine expression by 
the tumor cells after carbon ion exposure. Extensive research 

is still necessary to unravel the mechanisms of the interplay of 
immune cells with the irradiated tumor in order to promote a more 
efficient therapy. The dependence on radiation quality, irradiation 
scheme as well as tumor origin makes a unifying statement about 
the expression of cytokines by tumor cells incredibly difficult. The 
ability of cytokines—as well as danger signals like HMGB1—to 
shift the immunoevasive tumor toward a state of damaged tissue 
engages the whole immune machinery to intervene against the 
neoplasia.

A cancer therapy approach using ionizing radiation and 
immune modulation has reached the clinical study status (76). 
Especially modulations that use agents promoting either acti-
vation or recruitment of immune cells are being considered. 
Postirradiation injection of non-irradiated endogenous immune 
cells, such as CTL, NK cells, and DC, to clear up the irradiated 
tumor more effectively are worth further investigation.

The use of radiation qualities that can more precisely target 
tumor cells, such as protons and carbon ions, in combination with 
immune therapy seems like a promising approach toward even 
more efficient cancer treatment, as the immune promoting effects 
of ionizing radiation can be supported by the local tumor control.

AUTHOR CONTRiBUTiONS

CEH had the idea for this review, designed it and wrote the 
abstract and the introduction, designed Figure  1, contributed 
the immune cells for Figures 2–4 and redesigned Figures 2–4, 
inserted the references, corrected, and edited all other parts. SD 
wrote all chapters following the introduction, drafted Tables  1 
and 2, and invented Figures 2–4.

FUNDiNg

Sebastian Diegeler was supported by a scholarship of the 
Helmholtz Space Life Sciences Research School (SpaceLife), 
German Aerospace Center (DLR) Cologne, Germany, which was 
funded by the Helmholtz Association (Helmholtz-Gemeinschaft) 
over a period of 6 years (grant no. VH-KO-300) and received addi-
tional funds from the DLR, including the Aerospace Executive 
Board and the Institute of Aerospace Medicine. The project was 
supported by the DLR grant FuE-Projekt ‘‘ISS LIFE’’ (Programm 
RF-FuW, Teilprogramm 475).

ReFeReNCeS

1. Muralidharan S, Sasi SP, Zuriaga MA, Hirschi KK, Porada CD, Coleman MA, 
et al. Ionizing particle radiation as a modulator of endogenous bone marrow 
cell reprogramming: implications for hematological cancers. Front Oncol 
(2015) 5:231. doi:10.3389/fonc.2015.00231 

2. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D. Total body irradiation 
selectively induces murine hematopoietic stem cell senescence. Blood (2006) 
107:358–66. doi:10.1182/blood-2005-04-1418 

3. Dainiak N. Potential for new medical countermeasures for radiation injury 
by targeting the Hedgehog signaling pathway. Bone Marrow Transplant 
(2014) 49:321–3. doi:10.1038/bmt.2013.203 

4. Dainiak N, Waselenko JK, Armitage JO, MacVittie TJ, Farese AM. The hema-
tologist and radiation casualties. Hematology Am Soc Hematol Educ Program 
(2003):473–96. doi:10.1182/asheducation-2003.1.473 

5. Cronkite EP. The diagnosis, treatment, and prognosis of human radiation 
injury from whole-body exposure. Ann N Y Acad Sci (1964) 114:341–55.  
doi:10.1111/j.1749-6632.1964.tb53589.x 

6. Chao NJ. Accidental or intentional exposure to ionizing radiation: biodo-
simetry and treatment options. Exp Hematol (2007) 35:24–7. doi:10.1016/j.
exphem.2007.01.008 

7. Chua HL, Plett PA, Sampson CH, Joshi M, Tabbey R, Katz BP, et al. Long-
term hematopoietic stem cell damage in a murine model of the hematopoietic 
syndrome of the acute radiation syndrome. Health Phys (2012) 103:356–66. 
doi:10.1097/HP.0b013e3182666d6f 

8. Fliedner TM, Andrews GA, Cronkite EP, Bond VP. Early and late cytologic 
effects of whole body irradiation on human marrow. Blood (1964) 23:471–87. 

9. Li C, Lu L, Zhang J, Huang S, Xing Y, Zhao M, et al. Granulocyte colony- 
stimulating factor exacerbates hematopoietic stem cell injury after irradia-
tion. Cell Biosci (2015) 5:65. doi:10.1186/s13578-015-0057-3 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.3389/fonc.2015.00231
https://doi.org/10.1182/blood-2005-04-1418
https://doi.org/10.1038/bmt.2013.203
https://doi.org/10.1182/asheducation-2003.1.473
https://doi.org/10.1111/j.1749-6632.1964.tb53589.x
https://doi.org/10.1016/j.exphem.2007.01.008
https://doi.org/10.1016/j.exphem.2007.01.008
https://doi.org/10.1097/HP.0b013e3182666d6f
https://doi.org/10.1186/s13578-015-0057-3


12

Diegeler and Hellweg Bystander Effects on Immune Cells

Frontiers in Immunology | www.frontiersin.org June 2017 | Volume 8 | Article 664

10. Jacob A, Shah KG, Wu R, Wang P. Ghrelin as a novel therapy for radia-
tion combined injury. Mol Med (2010) 16:137–43. doi:10.2119/molmed. 
2009.00109 

11. Drouet M, Herodin F. Radiation victim management and the haematologist 
in the future: time to revisit therapeutic guidelines? Int J Radiat Biol (2010) 
86:636–48. doi:10.3109/09553001003789604 

12. Van der Meeren A, Monti P, Vandamme M, Squiban C, Wysocki J, Griffiths N. 
Abdominal radiation exposure elicits inflammatory responses and abscopal 
effects in the lungs of mice. Radiat Res (2005) 163:144–52. doi:10.1667/
RR3293 

13. Gaugler MH, Vereycken-Holler V, Squiban C, Vandamme M, Vozenin-
Brotons MC, Benderitter M. Pravastatin limits endothelial activation after 
irradiation and decreases the resulting inflammatory and thrombotic 
responses. Radiat Res (2005) 163:479–87. doi:10.1667/RR3302 

14. Wang H, Sethi G, Loke WK, Sim MK. Des-aspartate-angiotensin I attenuates 
mortality of mice exposed to gamma radiation via a novel mechanism of 
action. PLoS One (2015) 10:e0138009. doi:10.1371/journal.pone.0138009 

15. Gourmelon P, Benderitter M, Bertho JM, Huet C, Gorin NC, De Revel P. 
European consensus on the medical management of acute radiation syn-
drome and analysis of the radiation accidents in Belgium and Senegal. Health 
Phys (2010) 98:825–32. doi:10.1097/HP.0b013e3181ce64d4 

16. Berkey FJ. Managing the adverse effects of radiation therapy. Am Fam 
Physician (2010) 82:381–8, 394. 

17. Kumar S, Juresic E, Barton M, Shafiq J. Management of skin toxicity during 
radiation therapy: a review of the evidence. J Med Imaging Radiat Oncol 
(2010) 54:264–79. doi:10.1111/j.1754-9485.2010.02170.x 

18. Graves PR, Siddiqui F, Anscher MS, Movsas B. Radiation pulmonary toxicity: 
from mechanisms to management. Semin Radiat Oncol (2010) 20:201–7. 
doi:10.1016/j.semradonc.2010.01.010 

19. Zhang H, Wang YA, Meng A, Yan H, Wang X, Niu J, et al. Inhibiting TGFbeta1 
has a protective effect on mouse bone marrow suppression following ionizing 
radiation exposure in  vitro. J Radiat Res (2013) 54:630–6. doi:10.1093/jrr/
rrs142 

20. Heylmann D, Rödel F, Kindler T, Kaina B. Radiation sensitivity of human and 
murine peripheral blood lymphocytes, stem and progenitor cells. Biochim 
Biophys Acta (2014) 1846:121–9. doi:10.1016/j.bbcan.2014.04.009 

21. Manda K, Glasow A, Paape D, Hildebrandt G. Effects of ionizing 
radiation on the immune system with special emphasis on the inter-
action of dendritic and T cells. Front Oncol (2012) 2:102. doi:10.3389/
fonc.2012.00102 

22. Mendes F, Antunes C, Abrantes AM, Goncalves AC, Nobre-Gois I, 
Sarmento AB, et  al. Lung cancer: the immune system and radiation. Br 
J Biomed Sci (2015) 72:78–84. doi:10.1080/09674845.2015.11666801 

23. Han D, Zhang M, Ma J, Hong J, Chen C, Zhang B, et al. Transition pattern and 
mechanism of B-lymphocyte precursors in regenerated mouse bone marrow 
after subtotal body irradiation. PLoS One (2012) 7:e46560. doi:10.1371/
journal.pone.0046560 

24. Donahue RE, Srinivasula S, Uchida N, Kim I, St Claire A, Duralde G, et al. 
Discordance in lymphoid tissue recovery following stem cell transplantation 
in rhesus macaques: an in  vivo imaging study. Blood (2015) 126:2632–41. 
doi:10.1182/blood-2015-07-657346 

25. Pawlik A, Alibert O, Baulande S, Vaigot P, Tronik-Le Roux D. Transcriptome 
characterization uncovers the molecular response of hematopoietic cells to 
ionizing radiation. Radiat Res (2011) 175:66–82. doi:10.1667/RR2282.1 

26. Sanzari JK, Romero-Weaver AL, James G, Krigsfeld G, Lin L, Diffenderfer ES,  
et  al. Leukocyte activity is altered in a ground based murine model of 
microgravity and proton radiation exposure. PLoS One (2013) 8:e71757. 
doi:10.1371/journal.pone.0071757 

27. Xie Y, Zhang H, Wang YL, Zhou QM, Qiu R, Yuan ZG, et al. Alterations of 
immune functions induced by 12C6+ ion irradiation in mice. Int J Radiat 
Biol (2007) 83:577–81. doi:10.1080/09553000701481774 

28. Marusyk A, Porter CC, Zaberezhnyy V, DeGregori J. Irradiation selects 
for p53-deficient hematopoietic progenitors. PLoS Biol (2010) 8:e1000324. 
doi:10.1371/journal.pbio.1000324 

29. Jonathan EC, Bernhard EJ, McKenna WG. How does radiation kill cells? Curr 
Opin Chem Biol (1999) 3:77–83. doi:10.1016/S1367-5931(99)80014-3 

30. Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-
induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 
(2001) 4:303–13. doi:10.1054/drup.2001.0213 

31. Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour 
Biol (2010) 31:363–72. doi:10.1007/s13277-010-0042-8 

32. Portugal J, Mansilla S, Bataller M. Mechanisms of drug-induced 
mitotic catastrophe in cancer cells. Curr Pharm Des (2010) 16:69–78. 
doi:10.2174/138161210789941801 

33. Pajonk F, Vlashi E. Characterization of the stem cell niche and its impor-
tance in radiobiological response. Semin Radiat Oncol (2013) 23:237–41. 
doi:10.1016/j.semradonc.2013.05.007 

34. Sugrue T, Lowndes NF, Ceredig R. Mesenchymal stromal cells: radio- 
resistant members of the bone marrow. Immunol Cell Biol (2013) 91:5–11. 
doi:10.1038/icb.2012.61 

35. Doan PL, Russell JL, Himburg HA, Helms K, Harris JR, Lucas J, et al. Tie2(+) 
bone marrow endothelial cells regulate hematopoietic stem cell regeneration 
following radiation injury. Stem Cells (2013) 31:327–37. doi:10.1002/
stem.1275 

36. Shao C, Folkard M, Michael BD, Prise KM. Bystander signaling between 
glioma cells and fibroblasts targeted with counted particles. Int J Cancer 
(2005) 116:45–51. doi:10.1002/ijc.21003 

37. Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely 
low doses of alpha-particles. Cancer Res (1992) 52:6394–6. 

38. Belloni P, Latini P, Palitti F. Radiation-induced bystander effect in healthy 
G(o) human lymphocytes: biological and clinical significance. Mutat Res 
(2011) 713:32–8. doi:10.1016/j.mrfmmm.2011.05.010 

39. Dong C, He M, Ren R, Xie Y, Yuan D, Dang B, et  al. Role of the MAPK 
pathway in the observed bystander effect in lymphocytes co-cultured with 
macrophages irradiated with gamma-rays or carbon ions. Life Sci (2015) 
127:19–25. doi:10.1016/j.lfs.2015.02.017 

40. Widel M, Przybyszewski WM, Cieslar-Pobuda A, Saenko YV, Rzeszowska-
Wolny J. Bystander normal human fibroblasts reduce damage response in 
radiation targeted cancer cells through intercellular ROS level modulation. 
Mutat Res (2012) 731:117–24. doi:10.1016/j.mrfmmm.2011.12.007 

41. Chen S, Zhao Y, Han W, Chiu SK, Zhu L, Wu L, et  al. Rescue effects in 
radiobiology: unirradiated bystander cells assist irradiated cells through 
intercellular signal feedback. Mutat Res (2011) 706:59–64. doi:10.1016/j.
mrfmmm.2010.10.011 

42. Desai S, Kobayashi A, Konishi T, Oikawa M, Pandey BN. Damaging and 
protective bystander cross-talk between human lung cancer and normal 
cells after proton microbeam irradiation. Mutat Res (2014) 763-764:39–44. 
doi:10.1016/j.mrfmmm.2014.03.004 

43. Hellweg CE, Spitta LF, Henschenmacher B, Diegeler S, Baumstark-Khan C. 
Transcription factors in the cellular response to charged particle exposure. 
Front Oncol (2016) 6:61. doi:10.3389/fonc.2016.00061 

44. Al-Mayah A, Bright S, Chapman K, Irons S, Luo P, Carter D, et  al. The 
non-targeted effects of radiation are perpetuated by exosomes. Mutat Res 
(2015) 772:38–45. doi:10.1016/j.mrfmmm.2014.12.007 

45. Al-Mayah AH, Bright SJ, Bowler DA, Slijepcevic P, Goodwin E, Kadhim MA.  
Exosome-mediated telomere instability in human breast epithelial cancer 
cells after X irradiation. Radiat Res (2017) 187:98–106. doi:10.1667/
RR14201.1 

46. Al-Mayah AH, Irons SL, Pink RC, Carter DR, Kadhim MA. Possible role 
of exosomes containing RNA in mediating nontargeted effect of ionizing 
radiation. Radiat Res (2012) 177:539–45. doi:10.1667/RR2868.1 

47. Arscott WT, Tandle AT, Zhao S, Shabason  JE I, Gordon K, Schlaff CD, et al. 
Ionizing radiation and glioblastoma exosomes: implications in tumor biology 
and cell migration. Transl Oncol (2013) 6:638–48. doi:10.1593/tlo.13640 

48. Jella KK, Rani S, O’Driscoll L, McClean B, Byrne HJ, Lyng FM. Exosomes 
are involved in mediating radiation induced bystander signaling in human 
keratinocyte cells. Radiat Res (2014) 181:138–45. doi:10.1667/RR13337.1 

49. Jelonek K, Widlak P, Pietrowska M. The influence of ionizing radiation on 
exosome composition, secretion and intercellular communication. Protein 
Pept Lett (2016) 23:656–63. doi:10.2174/0929866523666160427105138 

50. Jelonek K, Wojakowska A, Marczak L, Muer A, Tinhofer-Keilholz I, Lysek-
Gladysinska M, et  al. Ionizing radiation affects protein composition of 
exosomes secreted in vitro from head and neck squamous cell carcinoma. 
Acta Biochim Pol (2015) 62:265–72. doi:10.18388/abp.2015_970 

51. Mutschelknaus L, Peters C, Winkler K, Yentrapalli R, Heider T, Atkinson MJ, 
et al. Exosomes derived from squamous head and neck cancer promote cell 
survival after ionizing radiation. PLoS One (2016) 11:e0152213. doi:10.1371/
journal.pone.0152213 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.2119/molmed.2009.00109
https://doi.org/10.2119/molmed.2009.00109
https://doi.org/10.3109/09553001003789604
https://doi.org/10.1667/RR3293
https://doi.org/10.1667/RR3293
https://doi.org/10.1667/RR3302
https://doi.org/10.1371/journal.pone.0138009
https://doi.org/10.1097/HP.0b013e3181ce64d4
https://doi.org/10.1111/j.1754-9485.2010.02170.x
https://doi.org/10.1016/j.semradonc.2010.01.010
https://doi.org/10.1093/jrr/rrs142
https://doi.org/10.1093/jrr/rrs142
https://doi.org/10.1016/j.bbcan.2014.04.009
https://doi.org/10.3389/fonc.2012.00102
https://doi.org/10.3389/fonc.2012.00102
https://doi.org/10.1080/09674845.2015.11666801
https://doi.org/10.1371/journal.pone.0046560
https://doi.org/10.1371/journal.pone.0046560
https://doi.org/10.1182/blood-2015-07-657346
https://doi.org/10.1667/RR2282.1
https://doi.org/10.1371/journal.pone.0071757
https://doi.org/10.1080/09553000701481774
https://doi.org/10.1371/journal.pbio.1000324
https://doi.org/10.1016/S1367-5931(99)80014-3
https://doi.org/10.1054/drup.2001.0213
https://doi.org/10.1007/s13277-010-0042-8
https://doi.org/10.2174/138161210789941801
https://doi.org/10.1016/j.semradonc.2013.05.007
https://doi.org/10.1038/icb.2012.61
https://doi.org/10.1002/stem.1275
https://doi.org/10.1002/stem.1275
https://doi.org/10.1002/ijc.21003
https://doi.org/10.1016/j.mrfmmm.2011.05.010
https://doi.org/10.1016/j.lfs.2015.02.017
https://doi.org/10.1016/j.mrfmmm.2011.12.007
https://doi.org/10.1016/j.mrfmmm.2010.10.011
https://doi.org/10.1016/j.mrfmmm.2010.10.011
https://doi.org/10.1016/j.mrfmmm.2014.03.004
https://doi.org/10.3389/fonc.2016.00061
https://doi.org/10.1016/j.mrfmmm.2014.12.007
https://doi.org/10.1667/RR14201.1
https://doi.org/10.1667/RR14201.1
https://doi.org/10.1667/RR2868.1
https://doi.org/10.1593/tlo.13640
https://doi.org/10.1667/RR13337.1
https://doi.org/10.2174/0929866523666160427105138
https://doi.org/10.18388/abp.2015_970
https://doi.org/10.1371/journal.pone.0152213
https://doi.org/10.1371/journal.pone.0152213


13

Diegeler and Hellweg Bystander Effects on Immune Cells

Frontiers in Immunology | www.frontiersin.org June 2017 | Volume 8 | Article 664

52. Szatmari T, Kis D, Bogdandi EN, Benedek A, Bright S, Bowler D, et  al. 
Extracellular vesicles mediate radiation-induced systemic bystander signals 
in the bone marrow and spleen. Front Immunol (2017) 8:347. doi:10.3389/
fimmu.2017.00347 

53. Medina KL. Overview of the immune system. Handb Clin Neurol (2016) 
133:61–76. doi:10.1016/B978-0-444-63432-0.00004-9 

54. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, et al. Ionizing 
radiation inhibition of distant untreated tumors (abscopal effect) is immune 
mediated. Int J Radiat Oncol Biol Phys (2004) 58:862–70. doi:10.1016/j.
ijrobp.2003.09.012 

55. Garnett CT, Palena C, Chakraborty M, Tsang KY, Schlom J, Hodge JW. 
Sublethal irradiation of human tumor cells modulates phenotype resulting in 
enhanced killing by cytotoxic T lymphocytes. Cancer Res (2004) 64:7985–94. 
doi:10.1158/0008-5472.CAN-04-1525 

56. Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN, 
et  al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic 
activity and CTL adoptive immunotherapy. J Immunol (2003) 170:6338–47. 
doi:10.4049/jimmunol.170.12.6338 

57. Kobayashi H, Boelte KC, Lin PC. Endothelial cell adhesion molecules 
and cancer progression. Curr Med Chem (2007) 14:377–86. doi:10.2174/ 
092986707779941032 

58. Hallahan D, Kuchibhotla J, Wyble C. Cell adhesion molecules mediate 
radiation-induced leukocyte adhesion to the vascular endothelium. Cancer 
Res (1996) 56:5150–5. 

59. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK,  
et  al. Radiation modulates the peptide repertoire, enhances MHC class I 
expression, and induces successful antitumor immunotherapy. J Exp Med 
(2006) 203:1259–71. doi:10.1084/jem.20052494 

60. Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A. Sustained effector func-
tion of IL-12/15/18-preactivated NK cells against established tumors. J Exp 
Med (2012) 209:2351–65. doi:10.1084/jem.20120944 

61. Son CH, Keum JH, Yang K, Nam J, Kim MJ, Kim SH, et  al. Synergistic 
enhancement of NK  cell-mediated cytotoxicity by combination of histone 
deacetylase inhibitor and ionizing radiation. Radiat Oncol (2014) 9:49. 
doi:10.1186/1748-717X-9-49 

62. Ames E, Canter RJ, Grossenbacher SK, Mac S, Smith RC, Monjazeb AM, 
et al. Enhanced targeting of stem-like solid tumor cells with radiation and 
natural killer cells. Oncoimmunology (2015) 4:e1036212. doi:10.1080/2162
402X.2015.1036212 

63. Son CH, Bae JH, Shin DY, Lee HR, Jo WS, Yang K, et al. Combination effect 
of regulatory T-cell depletion and ionizing radiation in mouse models of lung 
and colon cancer. Int J Radiat Oncol Biol Phys (2015) 92:390–8. doi:10.1016/j.
ijrobp.2015.01.011 

64. Price JG, Idoyaga J, Salmon H, Hogstad B, Bigarella CL, Ghaffari S, et  al. 
CDKN1A regulates Langerhans cell survival and promotes Treg cell genera-
tion upon exposure to ionizing irradiation. Nat Immunol (2015) 16:1060–8. 
doi:10.1038/ni.3270 

65. Scholch S, Rauber C, Tietz A, Rahbari NN, Bork U, Schmidt T, et  al. 
Radiotherapy combined with TLR7/8 activation induces strong immune 
responses against gastrointestinal tumors. Oncotarget (2015) 6:4663–76. 
doi:10.18632/oncotarget.3081 

66. Gameiro SR, Malamas AS, Bernstein MB, Tsang KY, Vassantachart A, Sahoo N,  
et al. Tumor cells surviving exposure to proton or photon radiation share a 
common immunogenic modulation signature, rendering them more sensi-
tive to T cell-mediated killing. Int J Radiat Oncol Biol Phys (2016) 95:120–30. 
doi:10.1016/j.ijrobp.2016.02.022 

67. Matsunaga A, Ueda Y, Yamada S, Harada Y, Shimada H, Hasegawa M, et al. 
Carbon-ion beam treatment induces systemic antitumor immunity against 
murine squamous cell carcinoma. Cancer (2010) 116:3740–8. doi:10.1002/
cncr.25134 

68. Spear P, Wu MR, Sentman ML, Sentman CL. NKG2D ligands as therapeutic 
targets. Cancer Immun (2013) 13:8. 

69. Heo W, Lee YS, Son CH, Yang K, Park YS, Bae J. Radiation-induced matrix 
metalloproteinases limit natural killer cell-mediated anticancer immunity 
in NCI-H23 lung cancer cells. Mol Med Rep (2015) 11:1800–6. doi:10.3892/
mmr.2014.2918 

70. Chitadze G, Bhat J, Lettau M, Janssen O, Kabelitz D. Generation of soluble 
NKG2D ligands: proteolytic cleavage, exosome secretion and functional 
implications. Scand J Immunol (2013) 78:120–9. doi:10.1111/sji.12072 

71. Teitz-Tennenbaum S, Li Q, Rynkiewicz S, Ito F, Davis MA, McGinn CJ, et al. 
Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic 
cell administration. Cancer Res (2003) 63:8466–75. 

72. Kulzer L, Rubner Y, Deloch L, Allgauer A, Frey B, Fietkau R, et  al. 
Norm- and hypo-fractionated radiotherapy is capable of activating human 
dendritic cells. J Immunotoxicol (2014) 11:328–36. doi:10.3109/1547691X. 
2014.880533 

73. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, et al. 
Immune-mediated inhibition of metastases after treatment with local radi-
ation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer 
Res (2005) 11:728–34. 

74. Son CH, Bae JH, Shin DY, Lee HR, Choi YJ, Jo WS, et al. CTLA-4 blockade 
enhances antitumor immunity of intratumoral injection of immature den-
dritic cells into irradiated tumor in a mouse colon cancer model. J Immunother  
(2014) 37:1–7. doi:10.1097/CJI.0000000000000007 

75. Lei R, Zhao T, Li Q, Wang X, Ma H, Deng Y. Carbon ion irradiated neural 
injury induced the peripheral immune effects in vitro or in vivo. Int J Mol Sci 
(2015) 16:28334–46. doi:10.3390/ijms161226109 

76. Habets TH, Oth T, Houben AW, Huijskens MJ, Senden-Gijsbers BL, 
Schnijderberg MC, et al. Fractionated radiotherapy with 3 × 8 Gy induces 
systemic anti-tumour responses and abscopal tumour inhibition with-
out modulating the humoral anti-tumour response. PLoS One (2016) 
11:e0159515. doi:10.1371/journal.pone.0159515 

77. Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and 
pro-metastatic factor in human cancer. Biochim Biophys Acta (2007) 
1775:21–62. doi:10.1016/j.bbcan.2006.06.004 

78. Zarzynska JM. Two faces of TGF-beta1 in breast cancer. Mediators Inflamm 
(2014) 2014:141747. doi:10.1155/2014/141747 

79. Chen ML, Wang FH, Lee PK, Lin CM. Interleukin-10-induced T cell unre-
sponsiveness can be reversed by dendritic cell stimulation. Immunol Lett 
(2001) 75:91–6. doi:10.1016/S0165-2478(00)00301-1 

80. Shi L, Lin H, Li G, Jin RA, Xu J, Sun Y, et al. Targeting androgen receptor 
(AR)→IL12A signal enhances efficacy of sorafenib plus NK  cells immu-
notherapy to better suppress HCC progression. Mol Cancer Ther (2016) 
15:731–42. doi:10.1158/1535-7163.MCT-15-0706 

81. Ben-Baruch A. Inflammation-associated immune suppression in cancer: 
the roles played by cytokines, chemokines and additional mediators. Semin 
Cancer Biol (2006) 16:38–52. doi:10.1016/j.semcancer.2005.07.006 

82. Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruit-
ment, phenotype, properties, and mechanisms of immune suppression. 
Semin Cancer Biol (2006) 16:53–65. doi:10.1016/j.semcancer.2005.07.005 

83. Sheng KC, Wright MD, Apostolopoulos V. Inflammatory mediators hold the 
key to dendritic cell suppression and tumor progression. Curr Med Chem 
(2011) 18:5507–18. doi:10.2174/092986711798347207 

84. Tecchio C, Scapini P, Pizzolo G, Cassatella MA. On the cytokines produced 
by human neutrophils in tumors. Semin Cancer Biol (2013) 23:159–70. 
doi:10.1016/j.semcancer.2013.02.004 

85. West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in 
colorectal cancer. Nat Rev Immunol (2015) 15:615–29. doi:10.1038/nri3896 

86. Kozlowski L, Zakrzewska I, Tokajuk P, Wojtukiewicz MZ. Concentration of 
interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood 
serum of breast cancer patients. Rocz Akad Med Bialymst (2003) 48:82–4. 

87. Schaue D, Kachikwu EL, McBride WH. Cytokines in radiobiological 
responses: a review. Radiat Res (2012) 178:505–23. doi:10.1667/RR3031.1 

88. Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, 
et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector 
T cells. J Immunol (2008) 181:3099–107. doi:10.4049/jimmunol.181.5.3099 

89. Pasi F, Facoetti A, Nano R. IL-8 and IL-6 bystander signalling in human 
glioblastoma cells exposed to gamma radiation. Anticancer Res (2010) 
30:2769–72. 

90. Matsumura S, Demaria S. Up-regulation of the pro-inflammatory chemokine 
CXCL16 is a common response of tumor cells to ionizing radiation. Radiat 
Res (2010) 173:418–25. doi:10.1667/RR1860.1 

91. Schildkopf P, Frey B, Mantel F, Ott OJ, Weiss EM, Sieber R, et al. Application 
of hyperthermia in addition to ionizing irradiation fosters necrotic cell death 
and HMGB1 release of colorectal tumor cells. Biochem Biophys Res Commun 
(2010) 391:1014–20. doi:10.1016/j.bbrc.2009.12.008 

92. Pasi F, Paolini A, Nano R, Di Liberto R, Capelli E. Effects of single or combined 
treatments with radiation and chemotherapy on survival and danger signals 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.3389/fimmu.2017.00347
https://doi.org/10.3389/fimmu.2017.00347
https://doi.org/10.1016/B978-0-444-63432-0.00004-9
https://doi.org/10.1016/j.ijrobp.2003.09.012
https://doi.org/10.1016/j.ijrobp.2003.09.012
https://doi.org/10.1158/0008-5472.CAN-04-1525
https://doi.org/10.4049/jimmunol.170.12.6338
https://doi.org/10.2174/
092986707779941032
https://doi.org/10.2174/
092986707779941032
https://doi.org/10.1084/jem.20052494
https://doi.org/10.1084/jem.20120944
https://doi.org/10.1186/1748-717X-9-49
https://doi.org/10.1080/2162402X.2015.1036212
https://doi.org/10.1080/2162402X.2015.1036212
https://doi.org/10.1016/j.ijrobp.2015.01.011
https://doi.org/10.1016/j.ijrobp.2015.01.011
https://doi.org/10.1038/ni.3270
https://doi.org/10.18632/oncotarget.3081
https://doi.org/10.1016/j.ijrobp.2016.02.022
https://doi.org/10.1002/cncr.25134
https://doi.org/10.1002/cncr.25134
https://doi.org/10.3892/mmr.2014.2918
https://doi.org/10.3892/mmr.2014.2918
https://doi.org/10.1111/sji.12072
https://doi.org/10.3109/1547691X.
2014.880533
https://doi.org/10.3109/1547691X.
2014.880533
https://doi.org/10.1097/CJI.0000000000000007
https://doi.org/10.3390/ijms161226109
https://doi.org/10.1371/journal.pone.0159515
https://doi.org/10.1016/j.bbcan.2006.06.004
https://doi.org/10.1155/2014/141747
https://doi.org/10.1016/S0165-2478(00)00301-1
https://doi.org/10.1158/1535-7163.MCT-15-0706
https://doi.org/10.1016/j.semcancer.2005.07.006
https://doi.org/10.1016/j.semcancer.2005.07.005
https://doi.org/10.2174/092986711798347207
https://doi.org/10.1016/j.semcancer.2013.02.004
https://doi.org/10.1038/nri3896
https://doi.org/10.1667/RR3031.1
https://doi.org/10.4049/jimmunol.181.5.3099
https://doi.org/10.1667/RR1860.1
https://doi.org/10.1016/j.bbrc.2009.12.008


14

Diegeler and Hellweg Bystander Effects on Immune Cells

Frontiers in Immunology | www.frontiersin.org June 2017 | Volume 8 | Article 664

expression in glioblastoma cell lines. Biomed Res Int (2014) 2014:453497. 
doi:10.1155/2014/453497 

93. Yoshimoto Y, Oike T, Okonogi N, Suzuki Y, Ando K, Sato H, et al. Carbon-
ion beams induce production of an immune mediator protein, high mobility 
group box 1, at levels comparable with X-ray irradiation. J Radiat Res (2015) 
56:509–14. doi:10.1093/jrr/rrv007 

94. Finkel P, Frey B, Mayer F, Bosl K, Werthmoller N, Mackensen A, et al. The 
dual role of NK cells in antitumor reactions triggered by ionizing radiation 
in combination with hyperthermia. Oncoimmunology (2016) 5:e1101206.  
doi:10.1080/2162402X.2015.1101206 

95. Wang L, He L, Bao G, He X, Fan S, Wang H. Ionizing radiation induces 
HMGB1 cytoplasmic translocation and extracellular release. Guo Ji Fang She 
Yi Xue He Yi Xue Za Zhi (2016) 40:91–9. 

96. Wolff HA, Rolke D, Rave-Frank M, Schirmer M, Eicheler W, Doerfler A, et al. 
Analysis of chemokine and chemokine receptor expression in squamous cell 
carcinoma of the head and neck (SCCHN) cell lines. Radiat Environ Biophys 
(2011) 50:145–54. doi:10.1007/s00411-010-0341-x 

97. Desai S, Kumar A, Laskar S, Pandey BN. Cytokine profile of conditioned 
medium from human tumor cell lines after acute and fractionated doses of 
gamma radiation and its effect on survival of bystander tumor cells. Cytokine 
(2013) 61:54–62. doi:10.1016/j.cyto.2012.08.022 

98. Brennenstuhl H, Armento A, Braczysnki AK, Mittelbronn M, Naumann U. 
IkappaBzeta, an atypical member of the inhibitor of nuclear factor kappa B 
family, is induced by gamma-irradiation in glioma cells, regulating cytokine 
secretion and associated with poor prognosis. Int J Oncol (2015) 47:1971–80. 
doi:10.3892/ijo.2015.3159 

99. Dong C, He M, Tu W, Konishi T, Liu W, Xie Y, et al. The differential role 
of human macrophage in triggering secondary bystander effects after either 
gamma-ray or carbon beam irradiation. Cancer Lett (2015) 363:92–100. 
doi:10.1016/j.canlet.2015.04.013 

100. Prakash H, Klug F, Nadella V, Mazumdar V, Schmitz-Winnenthal H, Umansky L.  
Low doses of gamma irradiation potentially modifies immunosuppressive 
tumor microenvironment by retuning tumor-associated macrophages: les-
son from insulinoma. Carcinogenesis (2016) 37:301–13. doi:10.1093/carcin/
bgw007 

101. Yoon MS, Pham CT, Phan MT, Shin DJ, Jang YY, Park MH, et al. Irradiation 
of breast cancer cells enhances CXCL16 ligand expression and induces the 
migration of natural killer cells expressing the CXCR6 receptor. Cytotherapy 
(2016) 18:1532–42. doi:10.1016/j.jcyt.2016.08.006 

102. Imadome K, Iwakawa M, Nojiri K, Tamaki T, Sakai M, Nakawatari M, et al. 
Upregulation of stress-response genes with cell cycle arrest induced by 
carbon ion irradiation in multiple murine tumors models. Cancer Biol Ther 
(2008) 7:208–17. doi:10.4161/cbt.7.2.5255 

103. Bigildeev AE, Zhironkina OA, Lubkova ON, Drize NJ. Interleukin-1 beta 
is an irradiation-induced stromal growth factor. Cytokine (2013) 64:131–7. 
doi:10.1016/j.cyto.2013.07.003 

104. Lunardi S, Lim SY, Muschel RJ, Brunner TB. IP-10/CXCL10 attracts regu-
latory T  cells: implication for pancreatic cancer. Oncoimmunology (2015) 
4:e1027473. doi:10.1080/2162402X.2015.1027473 

105. Shimabukuro-Vornhagen A, Draube A, Liebig TM, Rothe A, Kochanek M, 
von Bergwelt-Baildon MS. The immunosuppressive factors IL-10, TGF-beta, 
and VEGF do not affect the antigen-presenting function of CD40-activated 
B cells. J Exp Clin Cancer Res (2012) 31:47. doi:10.1186/1756-9966-31-47 

106. Chauhan V, Howland M, Kutzner B, McNamee JP, Bellier PV, Wilkins RC.  
Biological effects of alpha particle radiation exposure on human mono-
cytic cells. Int J Hyg Environ Health (2012) 215:339–44. doi:10.1016/j.
ijheh.2012.04.004 

107. Mutou-Yoshihara Y, Funayama T, Yokota Y, Kobayashi Y. Involvement 
of bystander effect in suppression of the cytokine production induced by 
heavy-ion broad beams. Int J Radiat Biol (2012) 88:258–66. doi:10.3109/09
553002.2012.636138 

108. Schiraldi M, Raucci A, Munoz LM, Livoti E, Celona B, Venereau E, et  al. 
HMGB1 promotes recruitment of inflammatory cells to damaged tissues by 
forming a complex with CXCL12 and signaling via CXCR4. J Exp Med (2012) 
209:551–63. doi:10.1084/jem.20111739 

109. Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B, et  al. High 
mobility group box protein 1: an endogenous signal for dendritic cell mat-
uration and Th1 polarization. J Immunol (2004) 173:307–13. doi:10.4049/
jimmunol.173.1.307 

110. DeMarco RA, Fink MP, Lotze MT. Monocytes promote natural killer 
cell interferon gamma production in response to the endogenous 
danger signal HMGB1. Mol Immunol (2005) 42:433–44. doi:10.1016/j.
molimm.2004.07.023 

111. Saidi H, Bras M, Formaglio P, Melki MT, Charbit B, Herbeuval JP, et  al. 
HMGB1 is involved in IFN-alpha production and TRAIL expression 
by HIV-1-exposed plasmacytoid dendritic cells: impact of the crosstalk 
with NK Cells. PLoS Pathog (2016) 12:e1005407. doi:10.1371/journal.
ppat.1005407 

112. Kwak MS, Lim M, Lee YJ, Lee HS, Kim YH, Youn JH, et al. HMGB1 binds 
to lipoteichoic acid and enhances TNF-alpha and IL-6 production through 
HMGB1-mediated transfer of lipoteichoic acid to CD14 and TLR2. J Innate 
Immun (2015) 7:405–16. doi:10.1159/000369972 

113. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-
Harris H, et al. High mobility group 1 protein (HMG-1) stimulates proin-
flammatory cytokine synthesis in human monocytes. J Exp Med (2000) 
192:565–70. doi:10.1084/jem.192.4.565 

114. Han KH, Ryu JW, Lim KE, Lee SH, Kim Y, Hwang CS, et  al. Vascular 
expression of the chemokine CX3CL1 promotes osteoclast recruitment and 
exacerbates bone resorption in an irradiated murine model. Bone (2014) 
61:91–101. doi:10.1016/j.bone.2013.12.032 

115. Shiraishi K, Ishiwata Y, Nakagawa K, Yokochi S, Taruki C, Akuta T, et  al. 
Enhancement of antitumor radiation efficacy and consistent induction of the 
abscopal effect in mice by ECI301, an active variant of macrophage inflamma-
tory protein-1alpha. Clin Cancer Res (2008) 14:1159–66. doi:10.1158/1078-
0432.CCR-07-4485 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Diegeler and Hellweg. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1155/2014/453497
https://doi.org/10.1093/jrr/rrv007
https://doi.org/10.1080/2162402X.2015.1101206
https://doi.org/10.1007/s00411-010-0341-x
https://doi.org/10.1016/j.cyto.2012.08.022
https://doi.org/10.3892/ijo.2015.3159
https://doi.org/10.1016/j.canlet.2015.04.013
https://doi.org/10.1093/carcin/bgw007
https://doi.org/10.1093/carcin/bgw007
https://doi.org/10.1016/j.jcyt.2016.08.006
https://doi.org/10.4161/cbt.7.2.5255
https://doi.org/10.1016/j.cyto.2013.07.003
https://doi.org/10.1080/2162402X.2015.1027473
https://doi.org/10.1186/1756-9966-31-47
https://doi.org/10.1016/j.ijheh.2012.04.004
https://doi.org/10.1016/j.ijheh.2012.04.004
https://doi.org/10.3109/09553002.2012.636138
https://doi.org/10.3109/09553002.2012.636138
https://doi.org/10.1084/jem.20111739
https://doi.org/10.4049/jimmunol.173.1.307
https://doi.org/10.4049/jimmunol.173.1.307
https://doi.org/10.1016/j.molimm.2004.07.023
https://doi.org/10.1016/j.molimm.2004.07.023
https://doi.org/10.1371/journal.ppat.1005407
https://doi.org/10.1371/journal.ppat.1005407
https://doi.org/10.1159/000369972
https://doi.org/10.1084/jem.192.4.565
https://doi.org/10.1016/j.bone.2013.12.032
https://doi.org/10.1158/1078-0432.CCR-07-4485
https://doi.org/10.1158/1078-0432.CCR-07-4485
http://creativecommons.org/licenses/by/4.0/

	Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities
	Introduction
	Radiation-Induced Bystander Effects
	Action of Immune Cells after Tumor Irradiation
	Activation of CTLs
	Activation of NK Cells
	Involvement of DCs
	Involvement of Tregs
	Bystander and Abscopal Effects

	Cytokines and Chemokines
	The Tumor Milieu
	Impact of Irradiation of Tumor Cells on Cytokine Expression
	Impact of Irradiation of Immune Cells on Cytokine Expression
	Release of DAMPs
	Bystander Cytokine Expression
	Chemokines and Lymphocyte Recruitment
	Abscopal Effects

	Conclusion
	Author Contributions
	Funding
	References


