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Decidual CD4+ T (dCD4 T) cells are crucial for the maternal-fetal immune tolerance 
required for a healthy pregnancy outcome. However, their molecular and functional 
characteristics are not well elucidated. In this study, we performed the first analysis of 
transcriptional and alternative splicing (AS) landscapes for paired decidual and periph-
eral blood CD4+ T (pCD4 T) cells in human early pregnancy using high throughput 
mRNA sequencing. Our data showed that dCD4 T cells are endowed with a unique 
transcriptional signature when compared to pCD4 T  cells: dCD4 T  cells upregulate 
1,695 genes enriched in immune system process whereas downregulate 1,011 genes 
mainly related to mRNA catabolic process and the ribosome. Moreover, dCD4 T cells 
were observed to be at M phase, and show increased activation, proliferation, and cyto-
kine production, as well as display an effector-memory phenotype and a heterogenous 
nature containing Th1, Th17, and Treg cell subsets. However, dCD4 T cells undergo a 
comparable number of upregulated and downregulated AS events, both of which are 
enriched in the genes related to cellular metabolic process. And the changes at the 
AS event level do not reflect measurable differences at the gene expression level in 
dCD4 T cells. Collectively, our findings provide a comprehensive portrait of the unique 
transcriptional signature and AS profile of CD4+ T  cells in human decidua and help 
us gain more understanding of the functional characteristic of these cells during early 
pregnancy.

Keywords: decidual cD4+ T cells, early human pregnancy, transcriptome, alternative splicing, high-throughput 
mrna sequencing
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KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; FDR, false discovery rate; NES, 
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inTrODUcTiOn

The maternal-fetal interface (MFI) is regarded as the interface 
between the extraembryonic tissues of developing conceptus 
and the uterine mucosa, and the immune cells at the MFI are 
the maternal immune cells that populate the decidua (1–3). 
During the first trimester of healthy pregnancy, natural killer 
(NK) cells, macrophages, and T cells are the most abundant leu-
kocytes in human decidua, whereas dendritic cells (DCs), B cells 
and NKT cells are rare (3). Since these decidual leukocytes are 
reported to play a key role in facilitating tolerance to the semi-
allogeneic fetus and therefore maintaining a successful pregnancy, 
a deeper understanding of the molecular and functional features 
of these cells will provide novel insights into the pathogenesis 
of pregnancy-related complications and poor postnatal health 
(3–5). In first-trimester human decidua, approximately 70% of 
leukocytes are decidual NK (dNK) cells, which display a pheno-
type of CD56brightCD16dim and play important roles in promoting 
neo-angiognesis and trophoblast invasion, remodeling of spiral 
arteries, and directing placentation (6–9). Whole-genome tran-
scriptome analysis revealed that dNK cells upregulate expression 
of many genes related to inhibitory receptors, growth factors, cell 
cycle, and cytokines/chemokines, but downregulate expression 
of the genes involved in activating receptors and costimulatory 
factors as compared with peripheral blood NK cells (10, 11).

Unlike dNK cells, decidual T cells are less abundant and do not 
have a trophic function. However, they are thought to play rather 
important roles in immune regulation and allograft tolerance at 
the MFI (3, 12, 13). In early human pregnancy, about 10–20% of 
decidual leukocytes are CD3+ TCRαβ+ T cells, and approximately 
30–45% of them are CD4+ T  cells, that display an activated/
memory CD25dim cell surface phenotype (3, 14–16). More than 
20 years ago, Saito and colleagues observed that in the first tri-
mester of human normal pregnancy, decidual CD4+ T (dCD4 T) 
cells express the T-cell-activation antigens CD69, HLA-DR, inter-
leukin-2 receptor-alpha (IL-2Rα), and IL-2Rβ at a significantly 
higher level than do peripheral blood CD4+ T (pCD4 T) cells, 
indicating that dCD4 T cells are regionally activated at an early 
stage of pregnancy (17). Furthermore, recent studies showed that 
dCD4 T cells in early pregnancy express higher levels of the T regu-
latory (Treg)-cell markers CD25 and FOXP3, the proliferation- 
associated antigen Ki-67, programmed cell death-1 (PDCD1, 
also called PD-1), and T-cell immunoglobulin mucin-3 (Tim-3) 
than their peripheral blood counterparts (13, 18–20). However, 
the complexity of dCD4 T cells has not been well elucidated, and  
a thorough understanding of the molecular and functional fea-
tures of these cells would shed light on their eventual roles during 
early pregnancy.

Upon encountering antigens presented by antigen-presenting 
cells (APCs) and being driven by a set of transcriptional regulators 
and cytokines, naive CD4+ T helper (Th) cells are able to differenti-
ate into distinct effector subsets, including Th1, Th2, Th17, and 
Treg cells (5, 21, 22). Th1, Th2, and Th17 cells are characterized 
by their production of IFN-γ, IL-4, and IL-17, respectively. Their 
differentiation is controlled by the following lineage-specific 
“master” transcription factors: T-box-binding transcription fac-
tor (T-bet) for Th1, GATA-binding protein 3 (GATA3) for Th2, 

and RAR-related orphan receptor gamma (RORγ) for Th17 cells; 
whereas Treg cells are defined and driven by expressing the 
forkhead transcription factor FOXP3 (5, 13, 21, 22). Although 
growing evidences suggest that Treg cells in the decidua contribute 
to maternal-fetal immune tolerance and pregnancy maintenance, 
the role and necessity of other decidual Th-cell subsets in a normal 
pregnancy is still largely unknown or remains controversial (3, 16, 
23, 24).

In eukaryotic organisms, alternative splicing (AS) is a crucial 
and ubiquitous mechanism that regulates gene expression and 
generates transcript/protein diversity by producing two or more 
distinct mRNA transcripts from the same precursor mRNA 
(pre-mRNA) using different splice sites (25, 26). Nearly 75% of 
all human genes and 94% of human multiexonic genes undergo 
AS, with a bias toward genes expressed in the nervous and 
immune systems, and toward developmental stage-specific and 
tissue-specific expression (27–29). Moreover, AS plays a crucial 
role in shaping the T-cell response to stimulation (30), and in the 
process of CD4+ T-cell activation (31) and differentiation (32). In 
CD4+ T cells, many genes with known functions in immunobiol-
ogy have been reported to undergo AS changes during immune 
responses, including genes coding for cell surface and adapter 
proteins (e.g., CD45, CD96, CTLA-4), transcriptional regulators 
(e.g., GATA3, FOXP3, HIF1α), RNA-processing (e.g., AUF-1, 
CELF2, EIF4G2) and intracellular signaling/transport molecules 
(e.g., AKAP9, CLK2, MAP3K7), and cytokines (e.g., IL4, TIR8) 
(25, 30, 33, 34). As yet, little is known about the genome-wide AS 
profile of CD4+ T cells in human decidua as compared to those 
in the peripheral blood.

In this study, we compared the transcriptional profile and AS 
landscape between paired decidual and peripheral CD4+ T cells 
from healthy women at the first trimester of pregnancy using 
high-throughput mRNA sequencing (mRNA-Seq), which can 
generate quantitative measurements of gene expression and AS 
events, as well as provide greater accuracy and sensitivity than 
microarrays (35, 36). Our findings are the first to show that dCD4 
T cells upregulate genes related to immune system process and 
downregulate genes involved in mRNA catabolic process, whereas 
AS is not a major contributor to these changes. Our results thus 
provide new insights into the molecular traits of CD4+ T cells in 
human decidua during early pregnancy.

MaTerials anD MeThODs

subjects
This study was approved and performed in compliance with the 
Medical Ethics Committee of the International Peace Maternity 
and Child Health Hospital of China Welfare Institute (Shanghai, 
China). Twelve healthy pregnant women with no history of 
spontaneous abortion, preterm labor or preeclampsia in their 
previous pregnancies were recruited for this study. Their blood 
samples and decidual tissues were obtained while they were 
undergoing elective surgical abortion at the department of 
Obstetrics and Gynecology in the International Peace Maternity 
and Child Health Hospital of China Welfare Institute affiliated 
to Shanghai Jiao Tong University School of Medicine. Informed 
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consent was obtained from all participants in written form before 
enrollment. Venous blood was collected in EDTA-anticoagulant 
tubes (BD Vacutainer, USA) immediately before termination of 
pregnancy, and the autologous decidual tissues were collected 
and stored in sterile ice-cold phosphate-buffered saline (PBS). 
Samples from three pregnant women (mean age, 26 years; range, 
22–28 years) with mean Gestational Day 50 (range, Days 44–58) 
were used for mRNA-Seq analysis; those from other five women 
(mean age, 30 years; range, 22–39 years) with mean Gestational 
Day 45 (range, Days 38–50) were used for validation of the 
mRNA-Seq data by flow cytometry staining, whereas samples 
from the last four women (mean age 34 years, range 30–39; mean 
Gestational Day 45, range 43–50) were applied for determination 
of CD4+ T-cell functional status (Figure S1 in Supplementary 
Material).

separation of Mononuclear cells
Separation of decidual mononuclear cells (DMCs) from decidual 
tissues was performed according to the procedure of non-
enzymatic leukocytes separation, as described previously (5, 13, 
37–39). Briefly, vacuum-aspirated abortion tissues were washed 
in sterile PBS; the decidual tissue was separated macroscopically 
from the fetal tissue and placenta, and then cut into small pieces 
(<1 mm3) using ocular scissors and filtered through a 74-µm nylon 
mesh filter to obtain a single cell suspension. Both DMCs and 
peripheral blood mononuclear cells (PBMCs) were isolated and 
purified by density gradient centrifugation using Lymphoprep™ 
(AS1114546, Axis-shield).

Monoclonal antibodies (mabs) 
and reagents
Fluorescein-conjugated anti-human mAbs, including anti-CD3 
FITC (clone: UCHT1), anti-CD4 V500 (RPA-T4), anti-CD8 
APC/Cy7 (SK1), anti-CD56 PE (B159), and anti-CD279 (PD-1) 
PE (EH12.1, also known as EH12) were purchased from BD 
Pharmingen. Meanwhile, the other anti-human mAbs including 
anti-CD3 APC (HIT3a), anti-CD8a PerCP/Cy5.5 (HIT8a), anti-
CD38 FITC (HIT2), anti-CD63 FITC (H5C6), anti-CD69 APC 
(FN50), anti-CD122 (IL-2Rβ) APC (TU27), anti-CD183 (CXCR3) 
PE/Cy7 (G025H7), anti-CD183 (CXCR3) APC (G025H7), 
anti-CD192 (CCR2) APC/Cy7 (K036C2), anti-CD196 (CCR6) 
PE (G034E3), anti-CD197 (CCR7) PE (G043H7), anti-CD276 
(B7-H3) PE (DCN.70), anti-CD45RO FITC (UCHL1), anti-
CD197 (CCR7) PE/Cy7 (G043H7), anti-IFN-γ APC/Cy7 (4S.B3), 
anti-IL-4 PE/Cy7 (MP4-25D2), anti-IL-17A FITC (BL168), and 
anti-FOXP3 PE (206D) were purchased from BioLegend.

Flow cytometry
Cell surface and intracellular staining were performed as previ-
ously described (5, 40–42). Surface staining of the isolated mono-
nuclear cells (PBMCs and DMCs) was realized by incubating the 
cells directly with different cocktails of anti-human mAbs in 
100 µL PBS containing 3% (v/v) fetal bovine serum at room tem-
perature for 30 min. For intracellular detection of IFN-γ, IL-17A, 
IL-4, and Foxp3, the isolated mononuclear cells were stimulated 

with 81 nM phorbol-12-myristate-13-acetate (PMA) and 1.34 µM 
ionomycin for 4  h in the presence of brefeldin (10.6  µM) and 
monensin (2  µM) (eBiosciences, USA); cells were stained first 
for surface markers and then for intracellular cytokines (IFN-γ, 
IL-17A, IL-4) and Foxp3 by using Foxp3 staining buffers (eBiosci-
ence, USA) following the manufacturer’s recommendation. The 
immunostained cells were collected and analyzed on a BD FACS 
Canto II flow cytometer (BD Biosciences, USA), and data were 
processed using the FlowJo 7.6.1 software.

Purification and rna isolation  
of cD4+ T cells
The decidual and peripheral blood CD4+ (dCD4 and pCD4) 
T cells were purified from the DMCs and PBMCs, respectively, 
by sorting on a FACS Aria II (BD Biosciences, USA) based 
on the surface expression of CD56, CD3, and CD4 markers 
(CD56−CD3+CD4+), always achieving a purity greater than 95%. 
Total RNA of freshly sorted CD4+ T cells was extracted using the 
Trizol Reagent (Invitrogen, USA) and was purified by RNeasy 
Micro Kit (Cat No.: 74004, Qiagen, Germany). RNA purity and 
concentration were determined using a NanoPhotometer® spec-
trophotometer (IMPLEN, USA) and Qubit® RNA Assay Kit in 
Qubit® 2.0 Flurometer (Life Technologies, USA), respectively. 
The RNA integrity was evaluated by the RNA Nano 6000 Assay 
Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, 
USA) (43).

library Preparation, clustering,  
and mrna-seq
Library preparation, clustering, and mRNA-seq were performed 
as previously described (43). We used 200 ng of RNA per sample 
(three samples of both pCD4 and dCD4 T cells) as input material 
for the RNA sample preparations. cDNA libraries were constructed 
using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina® 
(NEB, USA), according to the manufacturer’s instructions. The 
products were purified using the AMPure XP system and library 
quality was determined on the Agilent Bioanalyzer 2100 system. 
We carried out clustering of the index-coded samples on a cBot 
Cluster Generation System using a HiSeq 2500 PE Cluster Kit 
(Illumia, USA), following the manufacturer’s recommendations. 
After cluster generation, the prepared libraries were sequenced 
on an Illumina Hiseq 2500 platform and 125 bp paired-end reads 
were produced.

sequence alignment and gene  
expression analysis
Sequenced reads were aligned to the human reference genome 
(hg19 version) using the STAR software package (44). Exons 
from all isoforms of a gene were merged to create one meta-gene. 
The number of reads falling in the exons of this meta-gene was 
counted using HTSeq-count, and differential expression analysis 
was performed using DESeq (45). Differences in gene expression 
with a P-value < 0.05 (paired test) were considered significant. 
The complete data have been deposited in NCBI Gene Expression 
Omnibus with accession number GSE97395.
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as analysis
rMATS (v3.2.1 beta) was used to identify and assess differential 
expression of AS events (46). We used the hg19 genome as our 
reference genome, and transcripts annotation from the NCBI 
Reference Sequence (47) for AS events annotation. The “exon 
inclusion level” (Ψ) value was estimated by the percentage of the 
density of exon inclusion reads among the sum of the densities 
of exon inclusion reads plus exon skipping reads, as described 
previously (46, 48). Differential AS events were accepted if they 
could achieve the threshold of |ΔΨ| > 0.05 and a false discovery 
rate (FDR) of < 0.05, which were divided into two sets: upregu-
lated AS sets were those with an FDR < 0.05 and a ΔΨ > 0.05, 
and downregulated AS sets were those with an FDR < 0.05 and 
a ΔΨ < −0.05.

heatmap, gene Ontology annotation, 
Kegg Pathway, and gene set  
enrichment analysis (gsea)
Heatmap analysis of differential genes was performed using R. 
Functional annotations, including Gene Ontology (GO) annota-
tion and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis of interesting genes, were carried 
out using the DAVID Bioinformatics Resources (http://david.
ncifcrf.gov/home.jsp). P-values  <  0.05 were considered as the  
significance threshold. GSEA was performed by using the GSEA-P 
software, MSigDB 1.0, as described previously (49).

resUlTs

Distinct Transcriptional signatures 
between human dcD4 and pcD4 T cells
To elicit the genome-wide transcriptional and AS differences 
between pCD4 and dCD4 T cells, three healthy women at the first 
trimester of normal pregnancy were recruited, and fluorescence-
activated cell sorting (FACS) was performed to isolate and 
purify CD4+ T cells (CD56−CD3+CD4+) from the decidua and 
autologous peripheral blood (Figures S1 and S2 in Supplementary 
Material). Polyadenylated [poly(A)+] RNA samples of both cell 
populations from each donors were sequenced using Illumina 
Hiseq 2500 platform, which yielded a total of 213 million 2 × 125-
bp paired-end reads, ranging from 30 to 40 million reads per 
sample (Figure  1A). After aligning all sequenced reads to the 
human reference genome, between 88 and 94% of reads per sam-
ple were mapped uniquely on the hg19 reference (Figure  1A). 
Multi-loci mapping and unmapped reads were excluded from 
further analyses.

For mRNA-Seq datasets, the read count is demonstrated to be 
linearly related and represent a good approximation to the abun-
dance of the target gene (45, 50). In the present study, the number 
of reads was counted using HTSeq-count and differential expres-
sion analysis was performed using DESeq (45). Data showed that 
there were 2,706 differentially expressed genes between dCD4 
and pCD4 T cells, with most of them (62.6%, 1,695 genes) being 
upregulated and the remaining 1,011 genes (37.4%) being down-
regulated in dCD4 T cells as compared with autologous pCD4 
T cells (Figures 1B,C; Table S1 in Supplementary Material).

dcD4 T cells Upregulate the Molecules 
related to immune system Process
Functional enrichment of the upregulated genes in dCD4 T cells 
by GO annotation of Biological Process (BP) revealed that these 
genes are most significantly enriched in the category of immune 
system process (P = 4.97E−53), followed by response to stimulus/
stress, regulation of immune system process, immune response, 
regulation of response to stimulus, positive regulation of immune 
system process, cell activation and the defense response categories 
(Figure 1D). GSEA has been used widely as a knowledge-based 
approach to interpret genome-wide expression profiles (49). 
GSEA using GO categories of BP showed that the gene set of 
immune response was most positively enriched in dCD4 versus 
pCD4 T  cells (Normalized Enrichment Score  =  2.2944), fol-
lowed by immune system process, defense response, response to 
external stimulus, adaptive immune response, immune effector 
process, regulation of immune system process, and inflammatory 
response (Figures 1E,F; Figure S3 in Supplementary Material). 
In addition, KEGG pathway and GSEA analyses revealed that the 
upregulated genes in dCD4 T cells were dramatically enriched 
in the terms related to antigen processing and presentation 
(P = 2.06E−15 with KEGG analysis; NES = 2.6970 with GSEA), 
allograft rejection, lysosome, cytokine, and cytokine recep-
tor interaction, Toll-like receptor signaling pathway, and p53 
and MAPK signaling pathways (Figure S4 in Supplementary 
Material).

In order to validate the mRNA-Seq data, we selected 10 
immune response associated molecules and performed flow 
cytometry staining in five other human samples at the first trimes-
ter of normal pregnancy (Figure S1 in Supplementary Material). 
Being almost completely consistent with the mRNA-Seq data, 
we observed that human dCD4 T cells highly upregulate CCR2, 
CCR6, CXCR3, CD38, CD69, CD63, CD122 (encoded by IL2RB), 
CD276, and PD-1 (encoded by PDCD1), but downregulate CCR7, 
as compared with autologous pCD4 T cells (Figure 2; Figure S5 
in Supplementary Material).

Taken together, these data showed that human dCD4 T cells 
upregulate genes mainly related to immune system process, sug-
gesting that these genes might underline an enhanced immune 
function of dCD4 T cells during human early pregnancy.

dcD4 T cells Downregulate genes 
related to mrna catabolic Process  
and the ribosome
In contrast, multiple other categories including nuclear-
transcribed mRNA catabolic process (P  =  9.00E−26 with GO 
annotation), mRNA catabolic process (GO P = 1.41E−25), nuclear-
transcribed mRNA catabolic process (GO P = 1.85E−24), protein 
RNA complex assembly (NES  =  −1.81 with GSEA), ribonu-
cleoprotein complex biogenesis and assembly (GSEA NES  =   
−1.77), establishment and/or maintenance of chromatin archi-
tecture (GSEA NES = −1.72) and the ribosome (P = 5.22E−28 
with KEGG analysis; GSEA NES  =  −3.05), were significantly 
enriched in the downregulated genes in dCD4 T versus pCD4 
T cells by GO annotation, KEGG pathway and/or GSEA analyses 
(Figure  3). These results indicated that human dCD4 T  cells 
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FigUre 1 | Human dCD4 T cells show a distinct transcriptional signature and upregulate genes related to immune system process as compared with autologous 
pCD4 T cells. Three healthy women at the first trimester of normal pregnancy were recruited and their dCD4 and pCD4 T cells were isolated by fluorescence-
activated cell sorting (FACS). (a) Summary of mRNA-Seq data for the purified dCD4 and pCD4 T cells. RNA samples of paired dCD4 and pCD4 T cells from three 
individuals were sequenced on the Illumina Hiseq 2500 platform, yielding approximately 30–40 million 2 × 125-bp paired-end reads per sample, which were then 
mapped to the human reference genome (hg19 version). (B) Number and percentage of the differentially expressed genes (P < 0.05, paired test) that were 
upregulated or downregulated in dCD4 T cells versus their pCD4 T counterparts. (c) Heatmap of differentially expressed genes. Each line represents one gene. 
Each column represents one sample. Different colors represent the expression levels (from blue to red: increased expression). (D) Functional enrichment of the 
upregulated genes in dCD4 T cells by GO annotation of biological process. The top 20 GO terms are listed. (e,F) GSEA plots of GO categories including immune 
response (e), immune system process, adaptive immune response, immune effector process, and regulation of immune system process (F) in dCD4 versus pCD4 
T cells. dCD4 T, decidual CD4+ T; pCD4 T, peripheral blood CD4+ T; No., number; %, percentage; GO, Gene Ontology; GSEA, gene set enrichment analysis; Nom, 
Nominal; NES, Normalized Enrichment Score.
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mainly downregulate the genes related to mRNA catabolic  
process and the ribosome.

enhanced Functionality and subset 
complexity of dcD4 T cells
To further characterize the phenotype and functionality of human 
dCD4 T  cells, we performed GSEA analysis for the GO catego-
ries involved in cell cycle, activation, proliferation, and cytokine 
pro duction. Interestingly, we found that the gene sets related to 
the following categories: M phase of mitotic cell cycle, mitotic 
sister chromatin segregation, M phase (Figure 4A; Figure S6A in 

Supplementary Material); lymphocyte activation, T cell activation, 
regulation of lymphocyte activation (Figure  4B; Figure S6B in 
Supplementary Material); cell proliferation, (positive) regulation 
of cell proliferation (Figure  4C; Figure S6C in Supplementary 
Material); and cytokine production, cytokine secretion and cytokine 
biosynthetic process (Figure  4D; Figure S6D in Supplementary 
Material), were remarkably and positively enriched in dCD4 versus 
pCD4 T cells, indicating that human dCD4 T cells stay in M phase, 
and show increased activation and proliferation, as well as have  
an enhanced functionality represented by cytokines production.

Furthermore, we evaluated the transcript and protein abun-
dances of the representative cytokines and “master” transcription 
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FigUre 2 | Validation of mRNA-Seq data by flow cytometry staining. (a,c,e,g,i,K,M,O,Q) Comparison of the gene expression (measured as the read count) of 
CCR2, CCR6, CCR7, CXCR3, CD69, CD63, IL2RB, CD276, and PDCD1 between paired pCD4 and dCD4 T cells. Each symbol reflects a sample and each line 
reflects samples from the same individual (n = 3 per group). (B,D,F,h,J,l,n,P,r) Representative flow cytometric histograms (left) and cumulative data (right) 
illustrating the comparison of molecular expression of indicated proteins between paired pCD4 and dCD4 T cells (n = 5 per group). The cells were gated in CD4+ 
T cells and the geometric MFI values were calculated using FlowJo 7.6.1 software. pCD4 T, peripheral blood CD4+ T; dCD4 T, decidual CD4+ T; %, percentage; MFI, 
mean fluorescent intensity.

6

Zeng et al. Transcriptome of dCD4 T Cells

Frontiers in Immunology | www.frontiersin.org June 2017 | Volume 8 | Article 682

factors for the Th1, Th2, Th17, and Treg cell commitment, in  
resting or activated dCD4 and pCD4 T cells. Data showed that 
dCD4 T  cells had a higher mRNA expression level of IFNG, 
IL17A, RORC, and FOXP3 at rest, as well as produced more IFN-γ,  
IL-17A, and Foxp3 upon stimulation with PMA and ionomycin 
as determined by intracellular staining; in contrast, the mRNA 
expression of IL4, IL5, IL13, and GATA3 at rest, together with 
IL-4 secretion after stimulation, were at an extremely low level in 
both pCD4 and dCD4 T cells or not different between these cells 
(Figures 4E–L; Figures S7A,B in Supplementary Material). These 
data suggested that human dCD4 T  cells are a heterogeneous 
population containing Th1, Th17, and Treg cell subsets.

Memory is the hallmark of adaptive immune response, and 
memory T  cells are divided into at least two distinct subsets: 
central memory T (TCM) and effector memory T (TEM) cells, 
based on their different effector functions and homing capacities  
(42, 51, 52). TEM cells are the first responders capable of migrating 

into inflamed tissues and possess immediate effector functions, 
whereas TCM cells can home to lymphoid organs where they 
readily proliferate and produce more secondary effectors (42, 51). 
Consistent with previous studies (53, 54), we observed that human 
dCD4 T cells contained a higher percentage of CD45RO+ cells, 
which are regarded as memory T cells, as compared with pCD4 
T cells (Figure S7C in Supplementary Material). Moreover, when 
we compared the proportions of native (TN, CD45RO−CCR7+), 
effector (TE, CD45RO−CCR7−), TCM (CD45RO+CCR7+), and 
TEM (CD45RO+CCR7−) cells between pCD4 and dCD4 T  cells 
using flow cytometry staining (51), we found that dCD4 cells 
significantly increased the proportion of TEM cells but decreased 
TN cells, revealing that human dCD4 T cells mainly consist of TEM 
cells whereas TN cells are almost absent (Figures 4M–O).

Collectively, these results showed that human dCD4 T cells 
during early pregnancy are endowed with enhanced activa-
tion, high proliferation potential, and elevated functionality in 
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FigUre 3 | Functional enrichment analyses for genes downregulated in dCD4 versus pCD4 T cells. (a,B) The top 20 GO and KEGG terms enriched for 
downregulated genes in dCD4 versus pCD4 T cells. (c) GSEA plots of GO/KEGG categories including ribonucleoprotein complex biogenesis and assembly, 
establishment and/or maintenance of chromatin architecture, and ribosome. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;  
GSEA, gene set enrichment analysis; Nom, Nominal; NES, Normalized Enrichment Score.
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terms of cytokine production, as well as with a complex nature 
containing Th1, Th17, and Treg cell subsets and displaying an 
effector-memory phenotype.

genes in dcD4 T cells Undergo a 
comparable number of Upregulated  
and Downregulated as events
Alternative splicing is an important mechanism involved in shap-
ing CD4 T-cell activation, differentiation, and immune response 
to stimulation (30–33). Here, we applied the rMATS (v3.2.1 beta) 
paired model to identify and analyze the differentially expressed 
AS events using the splice junction counts as the input (46). Five 

basic and generally recognized AS modes were investigated, 
including skipped exon (SE), mutually exclusion exons (MXE), 
alternative 5′ splice site (A5SS), alternative 3′ splice site (A3SS), 
and retained intron (RI). A total of 127,147 AS events, belonging 
to 10,281 genes, were found in the dCD4 and pCD4 T cells, with 
512 genes showing evidence of all five AS types (Figures 5A,B). 
SE was the most common type of AS event, accounting for 46.5% 
(59,154 SE events in 9,204 genes) of all splicing events; in contrast, 
RI was the least common (1.8%, 2,284 RI events in 1,158 genes) 
(Figures 5A,B).

Interestingly, compared with pCD4 T cells, comparable num-
bers of upregulated (at the threshold of FDR < 0.05 and ΔΨ > 0.05) 
and downregulated (FDR < 0.05 and ΔΨ < −0.05) splicing events 
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FigUre 4 | dCD4 T cells stay in M phase and show increased activation, proliferation, and cytokine production, as well as contain Th1, Th17, and Treg cell subsets 
and display an effector-memory phenotype. (a–D) GSEA plots of GO categories, including M phase of mitotic cell cycle, mitotic sister chromatin segregation  
(a); lymphocyte activation, T cell activation (B); cell proliferation, positive regulation of cell proliferation (c); and cytokine production and cytokine secretion  
(D). (e,g,i,l) Comparison of the gene expression (measured as the read count) of IFNG, IL17A, IL4, and FOXP3 between in paired pCD4 and dCD4 T cells at rest. 
Each symbol reflects a sample and each line reflects the samples from an individual (n = 3 per group). (F,h,J,K) Comparison of the expression of IFN-γ, IL-17A, IL-4, 
and Foxp3 between paired pCD4 and dCD4 T cells as determined by intracellular staining upon stimulation with phorbol-12-myristate-13-acetate and ionomycin in 
the presence of brefeldin and monensin. Similar results were obtained from four individuals at the first trimester of normal pregnancy. (M–O) Representative flow 
cytometric plots (M), bar graphs (n) and pie charts (O) displaying the proportions of native (TN, CD45RO−CCR7+), effector (TE, CD45RO−CCR7−), TCM 
(CD45RO+CCR7+), and TEM (CD45RO+CCR7−) cells in paired pCD4 and dCD4 T cells. Each symbol reflects a sample and each line reflects the samples from the 
same person (n = 4 per group). pCD4 T, peripheral blood CD4+ T; dCD4 T, decidual CD4+ T; GO, Gene Ontology; GSEA, gene set enrichment analysis;  
Nom, Nominal; NES, Normalized Enrichment Score; UD, undetected.
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were observed in human dCD4 T cells (upregulated events versus 
downregulated events): 2,378 versus 2,083 of SE, 1,809 versus 
1,647 of MXE, 397 versus 404 of A5SS, 511 versus 503 of A3SS, 
96 versus 97 of RI, and 5,191 versus 4,737 of total AS events 
(Figure  5A; Tables S2–S6 in Supplementary Material). These 
differential AS events also occurred in a comparable number of 
genes (genes showing upregulated events versus downregulated 
events): 1,535 versus 1,438 for SE, 904 versus 886 for MXE, 347 
versus 364 for A5SS, 452 versus 439 for A3SS, 88 versus 91 for 
RI, and 2,607 versus 2,547 for all AS events (Figures 5A,C,D). In 
addition, the numbers of genes undergoing SE-, MXE-, A5SS-, 
A3SS-, or RI-upregulation specifically, or of genes undergoing two 

or more types’ upregulation simultaneously, were comparable to 
those undergoing downregulation specifically or simultaneously, 
in dCD4 versus pCD4 T cells (Figures 5C,D).

Both Upregulated and Downregulated  
as events in dcD4 T cells are enriched  
in the genes related to cellular  
Metabolic Process
Functional enrichment analysis of the genes undergoing differ-
ential AS events in dCD4 T cells (at the threshold of |ΔΨ| > 0.05 
and FDR < 0.05, compared with pCD4 T cells; including all five 
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FigUre 5 | dCD4 T cells undergo a comparable number of upregulated and downregulated AS events. (a) Summary of the numbers of five types of AS events, 
differentially expressed events (with upregulated and downregulated events) and the genes they belong to. Column 1 shows the five most common types of AS 
events that were investigated. Columns 2 and 3 show the initial number of AS events found in the combined samples of pCD4 and dCD4 T cells with their frequency 
among total events (column 2), as well as the number of genes these events belong to (column 3). Columns 4 and 5 show the number of differentially expressed 
events (FDR < 0.05 with |ΔΨ| > 0.05 between samples) with upregulated (FDR < 0.05 with ΔΨ > 0.05) and downregulated (FDR < 0.05 with ΔΨ < −0.05) AS 
events in dCD4 T cells versus their autologous pCD4 T counterparts (column 4), as well as the number of genes that these significant events belong to (column 5). 
(B) Venn diagram of genes showing the initial SE, MXE, A5SS, A3SS, and RI in the combined samples (pCD4 and dCD4 T cells). (c,D) Venn diagram of genes 
showing upregulated (c) or down-regulated (D) SE, MXE, A5SS, A3SS, and RI events in dCD4 T cells with respect to pCD4 T cells. AS, alternative splicing; SE, 
skipped exon; MXE, mutually exclusion exons; A5SS, alternative 5′ splice site; A3SS, alternative 3′ splice site; RI, retained intron; %, percentage; No., Number;  
Sig., Significant; up, upregulated; down, downregulated; FDR, false discovery rate.
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AS types) highlighted the categories related to cellular metabolic 
process (P =  4.12E−43 with GO annotation), cellular nitrogen 
compound metabolic process (P  =  3.85E−40), cellular mac-
romolecule metabolic process (P = 1.18E−38), ubiquitin medi-
ated proteolysis (P  =  4.00E−10 with KEGG analysis), valine, 
leucine, and isoleucine degradation (P = 7.69E−09), and the spli-
ceosome (P = 5.95E−07) (Figure S8 in Supplementary Material). 
Furthermore, enrichment analysis of genes containing upregulated 
AS events (at the threshold of ΔΨ > 0.05 and FDR < 0.05, com-
pared with pCD4 T cells; including all five AS types) highlighted 
the categories related to cellular metabolic process (P = 2.78E−28 
with GO annotation), cellular nitrogen compound metabolic  
process (P = 1.08E−27), cellular macromolecule metabolic process 
(P = 6.77E−25), ubiquitin mediated proteolysis (P = 2.07E−05 
with KEGG analysis), RNA degradation (P  =  2.54E−05), and 
the spliceosome (P =  2.60E−06), which were also significantly 
enriched for the genes containing downregulated AS events  
(at the threshold of ΔΨ < −0.05 and FDR < 0.05; P = 4.94E−25, 
3.21E−24, 9.60E−26, 9.64E−10, 5.47E−04, and 1.68E−04, 
res pectively) in human dCD4 T  cells (Figure  6). Additionally, 
enrichment analysis of the genes undergoing only upregulated or 

only downregulated AS events, or the genes showing evidence of 
both upregulated and downregulated AS events simultaneously, 
also highlighted the term related to cellular metabolic process 
(Figures S9–S10 in Supplementary Material). Similar results 
were observed when dividing AS events into SE, MXE, A5SS, 
A3SS, and RI, respectively (Figures S11–S20 in Supplementary 
Material). Therefore, these data revealed that both upregulated 
and downregulated AS events in dCD4 T  cells are remarkably 
enriched in the genes related to cellular metabolic process.

changes at the as event level Do not 
imply Measurable Differences at the gene 
expression level in dcD4 T cells
Finally, the overlap between the sets of genes undergoing dif-
ferential splicing-level and expression-level changes in dCD4 
T  cells was observed to be very low: 748 genes in the overlap 
versus 2,706 genes showing expression-level changes and 3,959 
genes showing splicing-level changes (Figure  7A). Meanwhile, 
the overlap between sets of genes undergoing splicing-level and 
expression-level upregulation or downregulation in dCD4 T cells 
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FigUre 7 | Changes at the AS event level do not imply measurable differences in the gene expression level in dCD4 T cells. (a) Venn diagram of genes undergoing 
significant splicing-level and expression-level changes in dCD4 T cells with respect to pCD4 T cells. (B) Venn diagram of genes undergoing splicing-level 
upregulation and down-regulation, as well as expression-level upregulation and downregulation, in dCD4 T cells with respect to pCD4 T cells. AS, alternative 
splicing; up, upregulated; down, downregulated.

FigUre 6 | Functional enrichment analysis of the genes undergoing upregulated or downregulated AS events in dCD4 T cells. (a–D) The top 20 GO (a,c) and 
KEGG (B,D) terms enriched for genes undergoing upregulated [(a,B), FDR < 0.05 with ΔΨ > 0.05 between samples] or downregulated [(c,D), FDR < 0.05 with 
ΔΨ < −0.05 between samples] AS events (SE, MXE, A5SS, A3SS, and RI are combined together) in dCD4 versus pCD4 T cells. AS, alternative splicing;  
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, false discovery rate; SE, skipped exon; MXE, mutually exclusion exons;  
A5SS, alternative 5′ splice site; A3SS, alternative 3′ splice site; RI, retained intron.
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was also very low: 122 genes in the overlap versus 1,695 genes 
showing expression-level upregulation and 2,607 genes show-
ing splicing-level upregulation; 117 genes in the overlap versus 

1,011 genes showing expression-level downregulation and 2,547 
genes showing splicing-level downregulation (Figure 7B). These 
results indicated that changes at the AS event level do not result 
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in measurable differences at the gene expression level in human 
dCD4 T cells.

DiscUssiOn

T cells possess a particular capacity to capture membrane mol-
ecules from APCs through a process termed trogocytosis (55–58). 
Zhou et al. revealed that presentation of captured peptide-MHC-
II ligands by CD4+ T cells has a stimulatory effect on naive T cells, 
and these cells with acquired peptide-MHC-II molecules become 
effector CD4+ T cells that manifest a better recall response (56). 
In the present study, human dCD4 T cells in early pregnancy were 
found to significantly upregulate the genes involved in immune 
response (Figure  1) and antigen processing and presentation 
(Figure S4 in Supplementary Material), with an upregulation 
of most MHC-II molecules including HLA-DMA, DMB, DOA, 
DPA1, DPB1, DQA1, DQA2, DQB1, DQB2, DRA, DRB1, DRB5, 
and DRB6 (Figure S21 in Supplementary Material), suggesting 
that human dCD4 T cells have acquired MHC-II molecules and 
become effector cells that provide a better immune response than 
pCD4 T cells during early pregnancy.

Since the first trimester of pregnancy is believed to be a pro-
inflammatory phase, the presence of immune cells in the decidua, 
which are active, functional and carefully controlled rather than 
being suppressed, is important for a healthy pregnancy outcome 
(59, 60). Indeed, human dCD4 T cells were reported to express 
multiple T-cell-activation surface markers during early pregnancy, 
such as the early activation antigen CD69, late activation anti-
gen HLA-DR and very late antigen 1 (also known as ITGA1 
and CD49a), indicating that these cells are regionally activated  
(17, 61–66). Consistent with that, our data from genome-wide 
transcriptional profiling showed that the genes related to T-cell acti-
vation are highly enriched, with most of them being upregulated in 
dCD4 T cells (Figure 4B; Figure S6B in Supplementary Material), 
such as CD25, CD38, CD69, CD122, ITGA1 (CD49a), LAT2, 
CD40LG, and HLA-DRs (Figure 2; Figure S21 in Supplementary 
Material), suggesting that human dCD4 T cells are more active 
than their counterparts in the peripheral blood. In addition, dCD4 
T  cells expressed a high level of proliferation-associated gene 
MKI67 (encoding antigen Ki-67) (Figure S21G in Supplementary 
Material), and were found to be at M phase and show increased 
proliferation and functionality in terms of cytokine production 
(Figure  4). However, the mechanisms beyond this enhanced 
profile of human dCD4 T  cells during early pregnancy remain 
poorly understood and require further investigation.

Herein, human dCD4 T cells were observed to highly upregulate 
both transcript and protein levels of chemokine receptors CXCR3 
and CCR6 (Figure 2), which are preferentially expressed on Th1 and 
Th17 cells, respectively (67, 68). CXCR3+CCR6+CD4+ cells were 
reported to be enriched in conventional Th1 and Th17 cells, as well as 
Th1/17 cells that are characterized by their capacity to co-produce 
IFN-γ and IL-17, with conventional Th1 cells being dominantly 
enriched (69). Our co-expression analysis revealed that both 
CXCR3+CCR6+ and CXCR3+CCR6− cells are increased in dCD4 
versus pCD4 T cells (Figure S22 in Supplementary Material), indi-
cating that dCD4 T cells probably contain more Th1, Th17, and/
or Th1/17 cells. Indeed, we found that human dCD4 T cells can 

produce more IFN-γ, IL-17A, and even Foxp3, but not IL-4, upon 
stimulation with PMA and ionomycin (Figures 4E–M). However, 
the cells co-producing IFN-γ/IL-17A (IFN-γ+IL-17A+, Th1/17 
cells), IFN-γ/IL-4 (IFN-γ+IL-4+), IFN-γ/Foxp3 (IFN-γ+Foxp3+), 
IL-17A/IL-4 (IL-17A+IL-4+), IL-17A/Foxp3 (IL-17A+Foxp3+), or 
IL-4/Foxp3 (IL-4+Foxp3+), were very few or undetectable in both 
pCD4 and dCD4 T cells (Figure S22 in Supplementary Material). 
Therefore, our data showed that human dCD4 T cells are a het-
erogeneous population containing conventional Th1, Th17, and 
Treg cell subsets, whereas the cells co-producing IFN-γ, IL-17A, 
or Foxp3 are almost absent. These findings are suggestive of a 
potential role of these subsets in a successful pregnancy.

At present, a large body of evidence has demonstrated that 
decidual Treg cells contribute to creating a local tolerant micro-
environment and maintaining a successful pregnancy; however, 
the role and importance of other Th subsets in the decidua is 
still largely unknown or remains controversial (3, 16, 23, 24, 70). 
Consistent with our results (Figures 4E–L), it was reported that 
IFN-γ and IL-17, secreted by human decidual Th1 and Th17 cells, 
play an important role in vascular remodeling (71) and tropho-
blast invasion (23), and that Th2 cytokines are not prerequisite 
to maintain a normal pregnancy. Nonetheless, a study using 
chemokine receptor expression profiles showed that while Tregs 
cells are significantly enriched in the decidua of early pregnant 
women, Th17 cells are nearly absent (13). Moreover, our results 
are in contrast with the hypothesis that there is a suppressed Th1- 
and Th17-type immunity associated with a predominant Th2-
type immunity during normal pregnancy (60, 71–73). Whether 
the presence of Th1 and Th17 cells in decidua is required or not 
for a healthy pregnancy outcome needs further investigation.

T-bet is the “master” transcription regulator that directs Th1-
cell lineage commitment through transactivation of IFN-γ (74). 
However, previous studies showed that rapid IFN-γ production 
by memory CD4+ T cells occurred in the absence of T-bet expres-
sion (75); the level of T-bet peaked only and briefly when Ifng+ 
CD4 TE expanded (76). Moreover, in the memory phase, only a 
small percentage of Ifng+ T cells maintained a T-bethi phenotype 
(76); and downregulation of T-bet was required for the develop-
ment of tissue-resident memory T  cells in epithelial sites (77). 
Consistent with these findings, we observed that when human 
dCD4 T cells produced a higher level of IFN-γ and displayed a 
memory phenotype (Figure 4), there was no difference in TBX21 
(encoding T-bet) expression between pCD4 and dCD4 T  cells 
(Figure S23 in Supplementary Material).

In eukaryotic organisms, most pre-mRNAs tend to undergo 
AS, which is a ubiquitous and vital mechanism to control gene 
expression at the co- and post-transcriptional level, resulting in 
production of multiple distinct mRNA transcripts and proteins 
with diverse cellular functions (25, 78). Blencowe and colleagues 
performed the first analysis of AS complexity in human tissues 
using high-throughput mRNA-Seq datasets (consisting of 17–32 
million 32-bp-long reads), estimating that there are approximately 
100,000 AS events in major human tissues, with an intermediate- 
to high-abundance (35). After aligning all the sequenced reads 
(approximately 30–40 million 2 × 125-bp paired-end-long reads) 
to the human reference genome (hg19 version), between 88 and 
93% of reads per sample were uniquely mapped (Figure  1A), 
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and a total of 127,147 AS events, belonging to 10,281 genes, 
were also found in human dCD4 and pCD4 T cells during early 
pregnancy (Figure  5A). Furthermore, our data revealed that 
SE is the most common type of AS event (46.5%), whereas RI 
is the least common (1.8%) in human dCD4 and pCD4 T cells 
(Figure 5A). These results are consistent with the observations in 
human hematopoietic progenitor cells (26), human embryonic 
kidney 293 T and Ramos B  cells (79), and human epithelial 
(PC3E) and mesenchymal (GS689) prostate cancer cell lines (46); 
however, these results differ from the findings in Physcomitrella 
(80), Arabidopsis (81), rice (82), filamentous fungus Trichoderma 
longibrachiatum (83) and Verticillium dahliae (84), where RI is 
the most prevalent mechanism, and also differ from the observa-
tion in bovine longissimus muscle (36) where A3SS is the primary 
AS mode.

Using quantitative AS microarray profiling, recent studies 
have shown that the majority of the genes undergoing dif-
ferential AS-level changes are different from the set of genes 
showing differential expression-level changes during Jurkat 
T-cell activation (33), and many more genes are affected through 
AS modulation than being affected by expression-level modula-
tion in CD4+ T cells upon CD28 co-stimulation (85). Similarly, 
the overlap between the sets of genes undergoing differential 
splicing-level and expression-level changes in dCD4 T cells was 
observed to be very low in our study (Figure 7A). Functional 
enrichment analysis revealed that the set of genes with changes 
in both expression and AS levels (748 genes in the overlap) is 
enriched in immune system process, which is distinct from 
the observation in the genes undergoing only AS-level change 
(3,211 gene, enriched in cellular metabolic process) but similar 
with those genes showing only expression-level change (1,958 
genes, enriched in immune system process) (Figure S24 in 
Supplementary Material). Since the upregulated genes in dCD4 
T cells were also significantly enriched in immune system process 
(Figure 1), we speculated that AS might play a key role in regu-
lating the expression of these upregulated genes. However, our 
data showed that the overlap between sets of genes undergoing 
splicing-level and expression-level upregulation was very low: 
122 genes in the overlap versus 1,695 genes showing expression-
level upregulation and 2,607 genes showing splicing-level  
upregulation (Figure  7B). Moreover, although dCD4 T  cells 
expressed a higher level of IFNG, CXCR3, RORC, IL17A, CCR6, 
FOXP3, IL-10, PDCD1, and CCR7 (Figures 2 and 4; Figures S5, 
S7, and S23 in Supplementary Material), which are important 
genes for CD4+ T-cell differentiation, function or recruitment, 
the total and differentially expressed AS events in these genes 
were surprisingly few (IFNG, CXCR3, RORC, PDCD1, CCR7) 
or undetectable (IL17A, IL-10) in both pCD4 and dCD4 T cells, 
or not different between these cell populations (CCR6, FOXP3) 
(Table S7 in Supplementary Material). These data indicated that 
AS does not make a major contribution to regulate gene expres-
sion of these key molecules, and that changes at the AS event 
level do not imply measurable differences at the gene expression 
level in human dCD4 T cells.

In summary, we have examined the transcriptional and AS sig-
natures of paired dCD4 pCD4 T cells from healthy women at the 
first trimester of normal pregnancy. Our data revealed that dCD4 

and pCD4 T cells show a distinct transcriptional signature: dCD4 
T cells upregulate genes involved in the immune system process, 
but downregulate genes related to mRNA catabolic process and 
the ribosome; human dCD4 T cells stay in M phase, and show 
increased activation, proliferation, and cytokine production, as 
well as contain Th1, Th17, and Treg cell subsets and display an 
effector-memory phenotype. However, dCD4 T  cells undergo 
a comparable number of upregulated and downregulated AS 
events, both of which are enriched in the genes related to cellular 
metabolic process. Moreover, the changes at the AS event level do 
not reflect measurable differences at the gene expression level in 
dCD4 T cells. This study thus provides a comprehensive frame-
work of the transcriptional and AS landscapes of human dCD4 
T  cells, which deepens our understanding of the characteristic 
and functionality of these cells during early pregnancy.
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