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Immunotherapies based on natural killer (NK) cells are among the most promising 
therapies under development for the treatment of so far incurable forms of leukemia 
and other types of cancer. The importance of NK cells for the control of viral infections 
and cancer is supported among others by the findings that viruses and tumors use 
a multitude of mechanisms to subvert and evade the NK cell system. Infections and 
malignant diseases can further lead to the shaping of NK cell populations with altered 
reactivity. Counter measures of potential therapeutic impact include the blocking of inhib-
itory interactions between NK cell receptors and their cellular ligands, the enhancement 
of activating receptor signals, and the infusion of large numbers of ex vivo generated 
and selected NK cells. Moreover, the specific cross-linking of NK cells to their target 
cells using chimeric antigen receptors or therapeutic bi-/trispecific antibody reagents 
is a promising approach. In this context, NK  cells stand out by their positive effects 
and safety demonstrated in most clinical trials so far. Based in part on results of the 
recent EC-sponsored project “NATURIMMUN” and considering additional published 
work in the field, we discuss below new developments and future directions that have 
the potential to further advance and establish NK cell-based therapies at the clinics on 
a broader scale.

Keywords: immunotherapy, natural killer cells, immune evasion, cell therapy, checkpoint inhibitors, chimeric 
antigen receptors, bispecific antibodies

iNtrODUctiON

Natural killer (NK) cells have been classically defined as part of the innate immune system providing 
immediate reactivity against their main targets, virally infected and tumor cells (1). This view has 
been substantially extended over the recent years based on the findings that NK cells are calibrated 
to provide self-tolerance, can develop a memory, and play a role in the regulation of the adaptive 
immune response (2–5). Furthermore, NK cells have turned out to be part of a larger family of 
innate lymphoid cells (ILCs) that include ILC1–3 (6).

Natural killer reactivity, including cytokine secretion and cytotoxicity, is controlled by a balance 
of several germ-line encoded inhibitory and activating receptors such as killer immunoglobulin-
like receptors (KIRs) and natural cytotoxicity receptors (NCRs) (1, 5, 7, 8). Evidence for the 
anticancer efficacy of NK cells comes from allogeneic or haploidentical hematopoietic stem cell 
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(HSC) transplantations that have been used in combination with 
chemotherapy in the treatment of different forms of leukemia 
(9). This has shown that NK cells formed from the transplant not 
only are efficient in killing of allogeneic leukemia cells but are 
also instrumental in reducing the incidence of graft versus host 
disease due to their killing activity for dendritic cells (10). Taken 
together with clinical NK infusion trials in leukemia patients, 
which have shown exciting antitumor activities and generally 
safety of the procedure (11–13), it appears that NK cells could 
be the cells of choice in cellular therapies of leukemia not dis-
playing the critical graft versus host activities of T lymphocytes. 
Although it is currently less clear whether NK  cells will be 
similarly active in solid cancers, this is a further important area 
of interest.

iMMUNe evAsiON MecHANisMs  
AND sHAPiNG OF tHe NK ceLL 
cOMPArtMeNt

Given the importance of NK cells, it is not astonishing that viruses 
and tumors use a wide array of mechanisms to avoid recogni-
tion by NK cells. A paradigm is represented by the Herpes virus  
family. Many mechanisms such as expression of viral ligands for 
inhibitory receptors have been described (14). Important is fur-
ther the downregulation of human stress-induced ligands recog-
nized by the activating NKG2D receptor present on the majority 
of NK cells. Normally, these stress ligands appear on the cell sur-
face whenever a cell is virally infected or undergoes oncogenic 
transformation. Whereas internalization and miRNA-mediated 
downregulation of several stress ligands have been shown pre-
viously (15), additional novel mechanisms have been recently 
identified within the EC-funded project NATURIMMUN. For 
example, in the case of HHV-6B the expression of stress ligands 
is suppressed by proteasomal degradation induced by the virus. 
Consequently, HHV-6B-infected cells can evade immune sur-
veillance by NK  cells (16). These various evasion mechanisms 
of Herpes viruses are reviewed (17) within this research topic 
(“Tailoring NK Cell Receptor-Ligand Interactions: an Art in 
Evolution”).

Extending the importance of NKG2D ligands to tumors, 
Schmiedel et al. have shown within the NATURIMMUN project 
that the stress ligand ULBP2 can be suppressed by an RNA-
binding protein that is frequently overexpressed in tumor cells. 
By binding of this oncogenic protein to ULBP2 mRNA the stabil-
ity of the mRNA is reduced and ULBP2 levels on the cell surface 
are downregulated. In consequence, the tumor cells are protected 
from NK  cell recognition (18). This strongly supports that 
modulation of stress ligands is an important escape mechanism 
used by cancer cells to diminish NK cell recognition. Involving a 
different inhibitory receptor, another unexpected novel evasion 
mechanism could be shown by the same group for colon cancer. 
NK cell killing was inhibited by the presence of fecal bacteria in 
the tumor environment. Bacterial proteins interacted with the 
inhibitory TIGIT receptor on NK cells leading to the inhibition of 
NK cell cytotoxicity (19). Inhibition of NK cells can also occur by 
blocking of NKG2D via soluble forms of the stress ligand MICA 

as shown for neuroblastoma as well as head and neck carcinoma. 
This tumor escape can be overcome in part by highly activated 
NK cells with upregulated NKG2D (20, 21).

Viruses and human cancers can further have profound effects 
on and shape the NK cell compartment. Human cytomegalovi-
rus (HCMV), a herpes family member, can trigger an adaptive 
NK  cell response leading to the expansion of NK  cell subsets 
with specific receptor expression (22–24), e.g., the activating 
NKG2C receptor. The adaptive NKG2C NK  cells have been 
implicated in improved survival of leukemia patients receiving 
a HSC transplant from HCMV-positive donors (23, 25). Given 
the potential higher antitumor reactivity of the NKG2C NK cells, 
this subset is of therapeutic interest and was investigated within 
the frame of the NATURIMMUN project. Obtained results sup-
port that different adaptive NK cell subsets develop in response 
to viral infection and this is influenced by the copy number of 
the NKG2C gene (26).

It has been established that certain forms of leukemia display 
a defective NK  cell compartment (27) rendering these forms 
priority cases for the exploration of NK cell-based therapies. In 
regard of acute myeloid leukemia (AML), we investigated within 
the NATURIMMUN project NK  cells in patients receiving a 
novel maintenance therapy with histamine plus IL-2. In this 
study, AML patients displayed diminished and partly defective 
NK cells. The therapy strongly induced the immunomodulatory 
CD56brightCD16− and CD56brightCD16low NK  cell subtypes and 
contributed to the restoration of the NK cell compartment (28). 
This is in line with the described positive effects of the therapy on 
disease-free survival of AML patients (29, 30). In addition, our 
cooperation partner S. Huenecke describes in this research topic 
that during immune reconstitution after HSC transplantation 
the degree of development of the two CD56bright and the CD56dim 
NK cell subpopulations can serve as prognostic marker for both 
graft versus host disease and viral infections (31).

MODULAtiON OF iNHiBitOrY NK 
recePtOr–LiGAND iNterActiONs  
AND NOveL LiGANDs OF ActivAtiNG 
recePtOrs

Unprecedented rates and durations of clinical responses have 
been recently achieved in cancer patients by the treatment with 
antibody reagents that block inhibitory “checkpoint receptors” 
(32). Whereas these therapies have so far been restricted to the 
blockade of inhibitory pathways acting on T  lymphocytes, the 
inhibition of NK  cells by the interaction of inhibitory NK  cell 
receptors with MHC class I ligands can be regarded as typical 
checkpoint inhibition. In fact, efforts are currently been under-
taken to evaluate blockade of the inhibitory NKG2A/CD94 
receptor and of inhibitory KIRs to elicit NK reactivity to cancer 
cells. The company Innate Pharma has developed first-in-class 
monoclonal antibodies that target inhibitory NK  cell receptors 
and these are currently in preclinical and clinical evaluation (33).

While the ligands for inhibitory NK  cell receptors are well 
established, ligands bound by important activating receptors are 
still incompletely identified. This is the case for the activating 
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FiGUre 1 | NK cell-based immunotherapies. Standard therapy for high-risk leukemia includes high-dose chemotherapy, followed by hematopoietic stem cell 
transplantation. Patients, who do not reach remission or suffer from early relapse thereafter, have a poor prognosis and are in urgent medical need for advanced 
therapies. Current immunotherapeutic developments and phase I/II trials include checkpoint inhibitors for inhibitory NK receptors, infusion of expanded and 
activated autologous or allogeneic NK cells, and targeting of NK cells to cancer cells. The latter can be done by modification of NK cells with CAR or by application 
of multispecific reagents to cross-link NK cells with cancer cells. These immunotherapies should reduce relapse rates and constitute promising additional treatment 
options for high-risk patients. PB, peripheral blood; CBSC, cord blood stem cell; CAR, chimeric antigen receptor; NK, natural killer.
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NKG2C/CD94 receptor, several activating KIRs, and the NCRs. 
In this regard, a group participating in NATURIMMUN has 
studied how HCMV stimulates NK  cells via the activating 
KIR2DS1 receptor. The ligand was identified as a specific class 
I molecule, HLA-C2, which in its normal form is recognized 
by the related inhibitory KIR2DL1 receptor. Possibly, a con-
formational change in normal HLA-C2 triggered by HCMV 
was required for KIR2DS1-mediated NK  cell activation (34). 
Other participants in NATURIMMUN have developed assay 
systems and have work in progress to identify virally induced 
and potentially tumor ligands for the activating NKG2C recep-
tor (Pupuleku et al., manuscript in preparation for this research 
topic) and the NCRs The clarification of the molecular nature 
and mechanism of action of the corresponding activating ligands 
on virally infected and tumor cells will allow novel pathways of 
NK cell activation to be triggered.

GeNerAtiON OF LArGe-scALe 
tHerAPeUtic NK ceLLs AND 
tecHNOLOGY tO tArGet AND crOss-
LiNK NK ceLLs tO cANcer ceLLs

Exploiting and strengthening the NK  cell response is a highly 
promising approach for future successful immunotherapies of 
cancer. This could be achieved by infusion of ex vivo expanded 
and activated NK cells, by genetic modification of NK cells with 
chimeric antigen receptors (CAR), by multivalent reagents cross-
linking NK  cells to cancer cells, or by a combination of these 
methods (Figure 1).

In regard of ex vivo expansion of peripheral donor NK cells 
several groups have developed corresponding technologies and  
some were or are being applied in clinical trials of NK  cell  
infusions (11, 12, 35). Important for broader availability of these 
therapies are commercial sources of the necessary equipment 
and reagents and further development of automated systems for 

production of GMP-compliant clinical-grade NK cells. A pio neer 
in this regard is the company Miltenyi Biotec. In part as partici-
pant of NATURIMMUN, this company has further developed a 
protocol to expand peripheral NK cells using irradiated autolo-
gous peripheral blood mononuclear cells as feeder cells. NK cell 
isolation and expansion were further fully automated for future 
clinical applications (36, 37). NK cells generated by this procedure  
have been evaluated in detail (Delso-Vallejo et al., submitted to 
this research topic).

Another possibility is the generation of therapeutic NK cells 
from umbilical cord blood stem cells (UCBSC), which was pio-
neered by the company Glycostem (38). Within NATURIMMUN, 
NK cells differentiated in this system were characterized in detail 
and the procedure improved to yield more mature NK cells (39). 
Furthermore, an important role of the transcription factor ZNF683/
HOBIT for NK cell differentiation could be shown supporting that 
the factor could be used to modulate NK cell generation [(40), 
this research topic]. This research topic. UCBSC-derived NK cells 
have been evaluated in a phase I clinical trial in elderly AML 
patients and found to be safe (41). Furthermore, recent evidence 
obtained in NATURIMMUN supports that the cells possess high 
cytotoxicity against metastatic colorectal cancer cells (42, 43)  
and could be used in the therapy of solid cancers [(44), this 
research topic].

An important topic in the field is to harmonize the manufac-
turing of GMP-compliant therapeutic NK cell products, which 
was initiated within NATURIMMUN and has been described 
in a summary of the worldwide experience obtained so far with 
allogeneic adaptive NK cell therapies (12). It is conceivable that 
expanded therapeutic NK  cells could be stored frozen and be 
shipped on demand. These NK cells could, therefore, qualify as 
off-the-shelf-products, and to what extent this will be possible is 
a relevant question for future research.

It has been shown that expanded and cytokine-activated 
NK  cells can be functional in certain cancer types. However, 
evidence suggests that specific targeting and cross-linking of 
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NK cells to cancer cells would strongly enhance their reactivity 
and the applicability of NK cell therapies. A paradigm in the field 
is currently the exciting successes of targeting of T lymphocytes 
to CD19 via genetic CAR modification (45, 46) or corresponding 
bispecific reagents (46). We believe that NK  cells will provide 
important advantages to the use of T lymphocytes based on their 
comparable reactivity but much higher safety. We have achieved 
increased NK  cell cytotoxicity against leukemia cells using  
transduction of NK cells with CAR constructs (47, 48) or by cross- 
linking with trispecific reagents (Kloess et al., submitted to this 
research topic). Furthermore, it is conceivable that procedures to 
achieve redirected primary human NK cells as an “off-the-shelf-
immunotherapy” can be developed. For this, optimizing both the 
respective antigen binding and the triggering of the intracellular 
signaling cascade by the CAR will be desirable (49).

A possibility to target NK cells to cancer cells can be the use 
of monoclonal antibody therapeutics already approved for clini-
cal application. Examples of these are the anti-CD20 antibody 
rituximab (50) for B  cell leukemia and the anti-EGF receptor 
antibody cetuximab (51–53). The latter is in use for the therapy 
of colon carcinoma and head and neck cancer. It displays limited 
efficacy in colon with better activities in head and neck cancer. 
It is possible that synergistic activities could be gained by coap-
plication of NK cell infusions as these antibodies trigger ADCC 
via binding to the low-affinity Fcγ receptor present on NK cells. 
It could be shown within NATURIMMUN that NK cytotoxic-
ity toward EGFR+ colon and cervical cancer cells was strongly 
enhanced by cetuximab (42, 43). This provides a rationale to 
strengthen NK cell immunotherapy through a combination with 
cetuximab for metastatic colorectal cancer patients [(44), this 
research topic].

PrecLiNicAL MODeLs FOr evALUAtiON 
OF HUMAN NK ceLL-BAseD cANcer 
tHerAPies

The preclinical evaluation of NK cell-based therapies in mouse 
models is hampered by the inherent problem that reagents 
designed to trigger human immune cell would not react at all 
or only partially with murine NK cells. Similarly, the evaluation 
of human NK cell infusions in mice does not provide a human 
immune cell compartment necessary for full functioning. This 
problem can be partly circumvented by mouse models with 
humanized immune system (HIS) in combination with xeno-
transplantation models of human cancers.

In this regard, a novel method to boost the inefficient human 
NK  cell development in mice observed after engraftment of 
human HSC was recently developed. Normally, the differentia-
tion of NK cells depends on the interplay with myeloid cells, and 
human myeloid cells are poorly reconstituted in available HIS 
mice due to competition with the murine cells (54). Therefore, 
a new model was developed in the NATURIMMUN project 
using mice that lack the Flt3 receptor (55) and display reduced 
murine myeloid differentiation. In these mice, human dendritic 
cells and consequently human NK  cells could be successfully 
boosted by human Flt3 ligand providing a novel mouse model 

with increased NK cell numbers [(56), this research topic]. This 
will be valuable for future evaluations of immunotherapies 
involving reagents designed for human cells as well as human 
NK cell infusions.

As an exemplary preclinical evaluation, we tested within 
NATURIMMUN the efficacy of NK  cell infusions alone or in 
combination with the clinically approved cetuximab against 
human colon cancer. HIS mice were engrafted with a human 
colorectal carcinoma cell line and treated with cetuximab and 
infusions of PB-derived and UCBSC-derived NK  cells. Then 
the tumor load and survival rate were monitored. Significant 
inhibition of tumor growth and improvement of survival rates 
were observed. These results provide a rationale for NK infusion 
therapies not only for leukemia but also for solid cancer treatment 
[(44), this research topic].

MAiN FUtUre DirectiONs tO  
AcHieve NK ceLL-BAseD cANcer 
iMMUNOtHerAPies ON A  
BrOADer scALe

Collectively, the basic work on NK cells, their receptors, and NK 
evasion mechanisms have provided evidence for the importance 
of the NK cell system in the control of human cancers. Clinical 
trials of NK infusion therapies, performed mostly in different 
forms of leukemia, have uniformly shown safety of infused 
NK cells and in certain cases exciting effects on disease-free sur-
vival (11). This together underlines the feasibility and potential 
efficacy of NK cell-based immunotherapies. However, based on 
the currently available data a number of questions and major 
routes should be further explored in order for NK cell therapies 
to become clinically used on a broader scale. Among those are 
improved methods for the selection of the best donor NK cells 
to be able to optimally exploit the antitumor alloreactivity of 
NK cells (12). Then the question of best activation of NK cells by 
cytokines such as IL-2, IL-12, IL-15, IL-18, and IL-21 needs to be 
settled as reviewed within this research topic (57). In addition, the 
best expansion time points of clinical-scale NK cells have to be 
evaluated regarding both safety and efficacy with the overall goal 
to allow multiple adaptive NK cell application to the respective 
patients. The optimal application of the newly developed NK cell-
directed checkpoint inhibitors needs to be explored. Further 
additional reagents for targeting and cross-linking of NK  cells 
to cancer cells using bi-/trispecific antibody-based reagents 
should be developed to extend the range of targeted cancer cells. 
Similarly, additional CAR constructs for wider targeting should be 
derived and corresponding standard “off-the-shelf- procedures” 
developed for genetic modification of NK  cells. Of special 
importance for NK infusion therapies, available technologies for 
NK cell generation need to be fully automated and harmonized 
protocols developed for large-scale GMP-compliant generation of 
clinical-grade therapeutic NK cells that have been recently clas-
sified as advanced therapy medicinal products in Europe. They 
are regulated accordingly either centralized or under hospital 
exemption by the member states [Regulation (EC) No 1394/2007; 
Directive 2001/83/EC and Regulation (EC) No 726/2004]. Given 
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the accessibility of the tumor cells the primary focus should be on 
leukemia as it is to be expected that progress will be more rapid  
in this area. But in light of the high need of new therapies for solid 
cancers these should also be pursued.

cONcLUDiNG reMArKs

The recent years have seen significant progress in immunothera-
pies of cancer based on novel checkpoint inhibitors and reagents 
and technology to boost T and NK lymphocytes. We propose 
that based on the available knowledge of NK  cells, these cells 
will be much more amenable for therapeutic purposes based 
on their high cytotoxicity and generally demonstrated safety. 
Therefore, we suggest that a concerted effort in the development 
of NK cell-based immunotherapies has high potential to achieve 
novel therapies of hitherto untreatable and relapsed forms of 
leukemia and potentially also solid cancers. The development 
of broadly applicable NK cell-based therapies should extend the 
currently more restricted available T  cell-based therapies and 
could thus boost the long-standing promise of cellular cancer 
therapies.
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