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A modified vaccinia Ankara-based HIV-1 vaccine clade B (MVA-B) has been tested for 
safety and immunogenicity in low-risk human immunodeficiency virus (HIV)-uninfected 
individuals and as a therapeutic vaccine in HIV-1-infected individuals on combined 
antiretroviral therapy (cART). As a therapeutic vaccine, MVA-B was safe and broadly 
immunogenic; however, patients still showed a viral rebound upon treatment interrup-
tion. Monocytes are an important part of the viral reservoir and several studies suggest 
that they are partly responsible for the chronic inflammation observed in cART-treated 
HIV-infected people. The CD300 family of receptors has an important role in several 
diseases, including viral infections. Monocytes express CD300a, c, e, and f molecules 
and lipopolysaccharide (LPS) and other stimuli regulate their expression. However, 
the expression and function of CD300 receptors on monocytes in HIV infection is still 
unknown. In this work, we investigated for the first time the expression of CD300 mole-
cules and the cytokine production in response to LPS on monocytes from HIV-1-infected 
patients before and after vaccination with MVA-B. Our results showed that CD300 recep-
tors expression on monocytes from HIV-1-infected patients correlates with markers of 
HIV infection progression and immune inflammation. Specifically, we observed a positive  
correlation between the expression of CD300e and CD300f receptors on monocytes 
with the number of CD4+ T cells of HIV-1-infected patients before vaccination. We also 
saw a positive correlation between the expression of the inhibitory receptor CD300f and 
the expression of CD163 on monocytes from HIV-1-infected individuals before and after 
vaccination. In addition, monocytes exhibited a higher cytokine production in response 
to LPS after vaccination, almost at the same levels of monocytes from healthy donors. 
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Furthermore, we also described a correlation in the expression of CD300e and CD300f 
receptors with TNF-α production in response to LPS, only in monocytes of HIV-1-infected 
patients before vaccination. Altogether, our results describe the impact of HIV-1 and of 
the MVA-B vaccine in cytokine production and monocytes phenotype.

Keywords: human immunodeficiency virus, monocytes, cD300, cD300c, cD300f, therapeutic vaccine, 
lipopolysaccharide, hiV-1 vaccine

inTrODUcTiOn

The development of combined antiretroviral therapy (cART) has 
significantly improved the clinical outcome in human immuno-
deficiency virus (HIV)-infected patients. However, long-term 
cART poses considerable side effects and costs, and stopping 
the treatment generally causes rapid viral rebounds, mostly 
due to the latent viral reservoirs (1, 2). For this reason, several 
strategies are being studied in order to achieve a permanent 
control of HIV replication inducing an effective antiviral T cell 
response. Among the most immunogenic approaches for induc-
ing HIV-specific CD8+ T cell responses have been poxvirus vec-
tor boost vaccines (3, 4). Recently, a modified vaccinia Ankara 
vector expressing HIV-1 antigens clade B (MVA-B) was tested 
as a therapeutic vaccine. MVA-B was first tested with healthy 
volunteers (RISVAC02), which demonstrated that this vaccine 
was safe, well tolerated (5) and induced polyfunctional and 
durable T cell responses in most individuals (6). Importantly, it 
has also been tested as a therapeutic vaccine in a phase-I clini-
cal trial in HIV-1-infected individuals on cART (RISVAC03), 
and the vaccination with MVA-B vaccine was also safe and 
broadly immunogenic. Nevertheless, HIV-1-infected patients 
still showed a viral rebound upon treatment interruption, and 
vaccination did not affect the viral reservoir even in combina-
tion with disulfiram, a drug able to reactivate latent HIV-1  
(7, 8). The viral rebound after removal of cART has been linked 
to the fact that vaccination with MVA-B tips the balance between 
activation and regulation toward regulation of the response of 
HIV-specific CD8+ T cells (9). Nevertheless, in order to design 
more effective therapeutic vaccines, more studies are required 
to completely understand the effects on the host of the MVA-B 
vaccination.

Although latently infected CD4+ T cells comprise the major-
ity of the HIV reservoir, monocytes (mainly CD16+ monocytes) 
provide an important part of this reservoir and also perpetuate 
HIV replication through ongoing cell-to-cell transfer of virions 
and efficient infection of CD4+ T cells, even in the presence of 
cART (10). In addition, recent studies suggest that monocytes 
are also responsible for the chronic inflammation in cART-
treated HIV-infected people (11). In fact, it has been described 
that monocytes of chronically HIV-infected subjects differ 
from monocytes of healthy people in subsets distribution (12), 
expression of different markers (e.g., CD163) (13), and cytokine 
production (e.g., IL-6) (11). All these findings emphasize the 
importance of studying the mechanisms that regulate the activa-
tion of monocytes in HIV-infected patients.

The human CD300 molecules (a, b, c, d, e, f, g, h) are type 
I transmembrane proteins that, with the exception of CD300g 

which is expressed on endothelial cells, are found in both 
lymphoid and myeloid cell lineages. CD300a and CD300f are 
inhibitory receptors while CD300b, CD300c, CD300d, CD300e, 
and CD300h are activating receptors (14–16). Inhibitory recep-
tors contain a long cytoplasmic tail with immunoreceptor 
tyrosine-based inhibitory motifs (ITIMs) which are required 
for the inhibitory signaling. Activating receptors have a short 
cytoplasmic tail with a charged transmembrane amino acidic 
residue, that allows their association with adaptor proteins 
containing immunoreceptor tyrosine-based activating motifs 
and other activating motifs which induce activation signals  
(14, 16). CD300 molecules have an important role in several 
diseases, including viral infections (14, 16, 17). In the context 
of HIV infection, there are few publications describing the role 
of CD300 family. In HIV-infected patients, the expression of the 
CD300a inhibitory receptor is down-regulated on B lymphocytes, 
which may help to explain the hyperactivation and dysfunction 
of B cells observed in these individuals (18). Another important 
detail about CD300a involvement in the pathogenesis of HIV 
infection is given by the description of a positive correlation 
between mRNA levels of CD300a and the expression of BATF, a 
transcription factor that inhibit T cell function, in HIV-specific 
CD8+ T cells (19).

At least, monocytes express four members of this fam-
ily: the CD300a and CD300f inhibitory receptors, and the 
CD300c and CD300e activating receptors. Among others, 
age and lipopolysaccharide (LPS) regulate the expression of 
these receptors (14, 16, 20). However, in HIV infection, the 
expression and function of CD300 receptors on monocytes 
is still unknown. In this work, we have analyzed the expres-
sion of CD300 molecules on monocytes from chronically 
HIV-1-infected patients and calculated the correlation with 
markers of HIV-1 infection progression (CD4+ T cell count) 
and immune inflammation (CD163 expression). Moreover, 
we investigated the effect of the vaccination with MVA-B in 
the cytokine production of monocytes stimulated with LPS 
in HIV-infected subjects and we studied the correlation with 
the CD300 family of molecules expression. Our results may 
contribute to a better knowledge of monocytes dysfunction in 
HIV-1 infection and the influence of the MVA-B therapeutic 
vaccine in these cells.

PaTienTs anD MeThODs

Patients and samples
Samples were obtained from HIV-1-infected patients enrolled 
in the RISVAC03 clinical trial (NCT01571466) (8). RISVAC03 
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TaBle 1 | Clinical data of HIV-1-infected patients.

Patient Undetectable 
Vl (years)

cD4+ T cells nadir 
(cells/mm3)

cD4+ T cells 
before arT 
(cells/mm3)

cD4+ T cells 
baseline (cells/mm3)

age sex Weight 
(kg)

coinfection 
hepatitis c 

virus

Time of known hiV 
infection (years)

101 9 179 368 541 49 M 74 No 14
103 1 290 489 530 50 M 69 No 10
107 2 274 274 866 41 M 68 No 12
108 2 396 396 823 33 M 73 No 12
109 4 645 688 1,179 39 M 65 No 6
110 12 376 376 1,238 40 F 56 No 15
111 3 296 396 632 44 M 78 No 6
112 2 507 680 794 39 M 60 No 3

VL, viral load; ART, antiretroviral therapy; HIV, human immunodeficiency virus.

3

Vitallé et al. Monocytes Phenotype and Function in Response to MVA-B

Frontiers in Immunology | www.frontiersin.org July 2017 | Volume 8 | Article 836

is a double-blinded randomized phase-I trial in which cART-
treated HIV-1-infected individuals received four intramuscular 
injections of MVA-B vaccine at weeks 0, 4, 16, and 36, combined 
with disulfiram for 3 months after the last dose of the vaccine. 
Specifically, in this study we have analyzed available frozen 
peripheral blood mononuclear cells (PBMCs) from eight HIV-
1-infected patients before (week 0) and after last vaccination 
(week 48). Clinical data of HIV-1-infected patients are shown in 
Table 1. Frozen PBMCs from seven healthy donors (HD) avail-
able from the phase-I trial RISVAC02 (NCT00679497) (5) were 
also studied. Only cells from non-vaccinated healthy individuals 
were analyzed. The means of the percentages of viable cells after 
thawing were: 69.4 ± 4.55% (HD), 70.0 ± 3.33% (HIV-infected 
patients before vaccination), and 67.3  ±  3.59% (HIV-infected 
patients after vaccination). This study was approved by the 
Research Ethics Committee of Hospital Clìnic, Barcelona, 
Hospital Germans Trias i Pujol, Badalona and Hospital Gregorio 
Marañón, Madrid, Spain. All subjects that participated in 
RISVAC02 and RISVAC03 clinical trials provided written and 
signed informed consent (5, 8).

Flow cytometry analysis
The following anti-human fluorochrome conjugated antibodies 
were used for flow cytometric analysis: PE-Cy7 mouse anti-
CD14 (clone MφP9), PerCP-Cy5.5 mouse anti-HLA-DR (clone 
G46-6), PE mouse anti-IL-1α (clone 364-3B3-14), and FITC 
rat anti-IL-6 (clone MQ2-13A5) from BD Biosciences; FITC 
mouse anti-CD16 (clone B73.1), BV421 mouse anti-CD163 
(clone GHI/61), and APC mouse anti-TNFα (clone Mab11) 
from Biolegend; PE mouse anti-CD300a (clone E59.126) from 
Beckman Coulter; eFluor660 mouse anti-CD300c (clone TX45) 
from eBioscience; and APC mouse anti-CD300e (clone UP-H2) 
and PE mouse anti-CD300f (clone UP-D2) from Miltenyi Biotec. 
To test the viability of the cells, the 633–635 nm excitation LIVE/
DEAD Fixable Near-IR Dead Cell Stain Kit (Life Technologies) 
was used. Frozen PBMCs from HD and HIV-1-patients were 
thawed, washed, and incubated at 37°C for 1–2  h in R10  
(10% FBS and 1% Penicillin/Streptavidin in RPMI-1640 medium) 
medium with 10U of DNase (Sigma-Aldrich), in a concentration 
of 2 × 106 cells/ml. Afterward, cells were stained first with the 
LIVE/DEAD kit in order to detect dead cells, and then, they were 
incubated with different fluorochrome conjugated antibodies. 

Both steps were carried out for 30  min on ice protected from 
the light. PBMCs were fixed with 4% of paraformaldehyde 
(Sigma-Aldrich) for 15 min at 4°C and washed two times with 
PBS. A FACSCanto II flow cytometer (BD Biosciences) was used 
for sample acquisition and data was analyzed with FlowJo 10.0.7 
software (TreeStar).

lPs stimulation and intracellular cytokine 
staining (ics)
Peripheral blood mononuclear cells from HD and HIV-1-
infected patients were cultured (106 cells/ml) in R10 medium with  
1  ng/ml of LPS (Sigma) for 5  h at 37°C, in the presence of 
GolgiStop protein transport inhibitor containing monensin, 
following manufacturer’s indications (BD Biosciences). After 
the stimulation, PBMCs were stained with LIVE/DEAD kit, 
followed by incubation with different fluorochrome conjugated 
antibodies for extracellular staining. In order to accomplish the 
ICS, cells were first permeabilized with Cytofix/Cytoperm Plus 
Kit following the manufacturer’s protocol (BD Biosciences) and 
then they were incubated with different fluorochrome conjugated 
antibodies for the detection of cytokines. Sample acquisition and 
data analysis were carried out as described before.

Data representation and statistical 
analysis
GraphPad Prism software (version 6.01) was used for graphical 
representation and statistical analysis. Data were represented 
in dot plot graphs and bar graphs showing the mean with 
SEM, and pie chart graphs. Values obtained from different 
subject groups were compared with non-parametric tests; the 
comparison between HD and HIV-1-infected patients’ data was 
made with the unpaired Mann–Whitney test; and differences 
between HIV-1-infected patients before and after vaccination 
were evaluated with the Wilcoxon matched-pairs signed rank 
test. Correlation analyses were done using the same software. 
In the case of cytokine production data, percentages of poly-
functional, mono-functional, and non-functional cells were 
obtained by a Boolean gate analysis with FlowJo software and 
the representation of these data were done using GraphPad 
Prism software.
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resUlTs

cD300 receptors expression on 
Monocytes from hiV-1-infected Patients 
correlates with Markers of hiV infection 
Progression and immune inflammation
We first determined the expression of CD300a, CD300c, CD300e,  
and CD300f molecules on monocytes from HD and chronically 
HIV-1-infected subjects that are receiving cART at baseline, 
i.e., just before starting the RISVAC03 clinical trial. Monocytes 
were electronically gated based on their forward and side 
scatter properties, and the expression of CD14 and CD16; con-
cretely, classical (CD14++ CD16−), intermediate (CD14++ 
CD16+), and non-classical (CD14+ CD16++) monocytes 
were analyzed (Figure S1A in Supplementary Material). As it 
has been described before (10, 12), the percentages of inter-
mediate and non-classical monocytes were slightly increased in 
HIV-1-infected patients in comparison with HD (Figure S2 in 
Supplementary Material). The expression of four members of 
the CD300 receptor family was tested: the inhibitory receptors 
CD300a and CD300f, and the activating receptors CD300e and 
CD300c. We did not observed significant differences in the 
expression of CD300 receptors on monocytes of HIV-1-infected 
patients compared with HD (Figure  1A), not even when we 
separately analyzed each monocyte subpopulation (Figure S3 
in Supplementary Material). In spite of that, we observed a ten-
dency, although not statistically significant, of CD300c expres-
sion to decrease on monocytes of HIV-1-infected subjects [HD 
median fluorescence intensity (MFI) = 2,717 ± 630.4 vs HIV 
MFI = 1,596 ± 465.5] (Figure 1A), especially in non-classical 
monocytes (data not shown).

Next, we investigated the association between CD300 recep-
tors expression and patients’ clinical features. Clinical data, which 
consists mainly of CD4+ T cell numbers, are shown in Table 1. 
CD300a and CD300c receptor expression on monocytes did not 
correlate with the number of CD4+ T cells at baseline (data not 
shown); however, the expression of CD300e (p < 0.05, r = 0.7820) 
and CD300f (p < 0.05, r = 0.7592) receptors was positively cor-
related with the CD4+ T cell numbers (Figure 1B).

Afterward, the expression of the CD163 receptor was analyzed 
and calculated the correlation with CD300 molecules expression 
in monocyte subpopulations. CD163 is a scavenger receptor, 
expressed exclusively on monocytes and macrophages, that has 
been investigated as a potential inflammation marker in differ-
ent infectious diseases (13). In fact, sCD163 plasma levels are 
elevated in chronically HIV-1-infected patients and this has been 
related to a higher risk of comorbid disorders (11). We saw that 
CD163 expression of classical (HD MFI = 1,025 ± 106.7 vs HIV 
MFI = 1,744 ± 243.8) and intermediate (HD MFI = 1,079 ± 175.3 vs  
HIV MFI  =  1,200  ±  158.2) monocytes was higher in HIV-
1-infected subjects than in HD; unlike non-classical mono-
cytes, which exhibited a very low expression in both groups 
(Figure 1C). Correlation analysis showed that in monocytes of 
HD, CD163 and CD300 receptors expression were not associated 
(data not shown). In contrast, there was a positive correlation 
between CD163 and CD300c expression (p < 0.05, r = 0.7234) on 

monocytes of HIV-1-infected subjects, and also between CD163 
and CD300f expression (p <  0.01, r =  0.9559) in intermediate 
monocytes of HIV-1-patients (Figure 1D).

effects of MVa-B Vaccination on 
Monocytes from hiV-infected subjects
The safety and immunogenicity of the MVA-B vaccine in chronically  
HIV-1-infected patients and healthy people has been previously 
tested (6–8). This vaccine improves the magnitude of HIV-specific 
T  cell responses (6, 7), although it does also tilt the balance 
between activation and regulation of T  cell specific responses 
toward regulation (9), somehow explaining the viral rebound 
after removal of cART in patients that has received the vaccine. 
However, the effects of vaccination in other immune cells have 
not been studied. Considering that monocytes play an important 
role in chronic inflammation characteristic of HIV-1-infected 
subjects (11), we studied the phenotype and cytokine production 
of monocytes in HIV-1-infected patients after vaccination with 
MVA-B and we compared them with monocytes from the same 
patients before vaccination.

First, the expression of CD163 and CD300 surface receptors 
was determined in HIV-1-infected patients before and after 
the vaccination with MVA-B. The percentages of monocyte 
subpopulations in vaccinated HIV-1-infected individuals were 
very similar to the percentages found before the vaccination 
(Figure S2 in Supplementary Material). The expression of CD300 
molecules was determined and we observed that the expression 
pattern in monocytes of HIV-1-infected patients before and after 
vaccination was almost identical (Figure 2A, left panel). CD163 
expression on monocytes was not significantly different when 
compared before and after vaccination. However, on intermediate 
monocytes (HIV before vaccination MFI = 1,103 ± 153.4 vs HIV 
after vaccination MFI = 793.6 ± 173.8), CD163 tended, although 
not statistically significant, to be down-regulated in patients 
after vaccination, while in classical and non-classical monocytes 
CD163 expression was very similar before and after vaccination 
(Figure  2A, middle panel). Lastly, we analyzed the correlation 
between the expression of CD300 receptors and CD163 receptor, 
and no significant values were observed in any case, except for 
a positive correlation between the levels of CD300f and CD163 
(p < 0.05, r = 0.9275) on intermediate monocytes, as it was found 
before vaccination (Figure 2A, right panel).

Afterward, PBMCs from HD and HIV-1-infected patients, 
before and after vaccination, were stimulated with 1  ng/ml of 
LPS for 5 h, followed by ICS in order to study IL-6, IL-1α, and 
TNFα production in monocytes. These were gated according to 
their forward and side scatter properties, and they were defined 
as CD14++ HLA−DR+. In our hands, monocyte subpopulations 
were not distinguished due to the down-regulation of CD16 
receptor after LPS stimulation (data not shown). Positive cells 
for each cytokine were determined based on non-stimulated 
cells. First, we checked the level of cytokine production by the 
stimulated cells by MFI of cytokine staining, a value known to be 
correlated with the amount of cytokine produced by cells (21).  
We observed that monocytes from HIV-1-infected subjects pro-
duced less IL-6 and TNFα than monocytes from HD in response 
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FigUre 1 | CD300 receptors expression in human immunodeficiency virus (HIV)-1-infected patients. (a) Dot plot graph presenting the median fluorescence 
intensity (MFI) of CD300a, CD300c, CD300e, and CD300f receptors expression on monocytes from healthy donors (HD) and HIV-1-infected patients. Each dot 
corresponds to an individual and the mean with the standard error of the mean (SEM) is shown. (B) Correlation between CD4+ T cell number at baseline of the 
study and the MFI of CD300f and CD300e receptors expression on monocytes from HIV-1-infected patients is represented; the linear regression is shown. (c) Dot 
plot graph representing the MFI of CD163 receptor expression on classical, intermediate, and non-classical monocytes from HD and HIV-1-infected individuals. 
Each dot corresponds to an individual and the mean with SEM is shown. (D) Correlation between the MFI of CD163 and CD300c receptors expression on total 
monocytes and CD163 and CD300f receptors expression on intermediate monocytes from HIV-1-infected patients; the linear regression is shown. *p < 0.05, 
**p < 0.01.

5

Vitallé et al. Monocytes Phenotype and Function in Response to MVA-B

Frontiers in Immunology | www.frontiersin.org July 2017 | Volume 8 | Article 836

to LPS. Interestingly, monocytes of vaccinated HIV-1-infected 
patients produced higher levels of IL-6, IL-1α, and TNFα in 
response to LPS after vaccination. Although IL-6 levels in vac-
cinated patients remained lower than in HD, TNFα production 
in vaccinated subjects reached the same levels as those from HD 
(Figure  2B). Moreover, analysis showed that the percentage of 
triple positive (IL-6+IL-1α+TNFα+) monocytes in response to 
LPS was higher in vaccinated HIV-1-infected subjects compared 
with the percentage of triple positive monocytes from the same 
patients before vaccination. On the other hand, the percentage 

of only double positive (IL-6-IL-1α+TNFα+) monocytes was 
higher in patients before the vaccination. These results indicate 
that monocytes of HIV-1-infected subjects were more poly-
functional in response to LPS stimulation after vaccination than 
before vaccination. As expected, although differences were not 
significant, probably due to the small sample, it was observed 
a higher percentage of non-cytokine (IL-6−IL-1α−TNFα−) 
producing monocytes from patients before vaccination than in 
monocytes after vaccination and from HD (HD = 7.63% vs HIV 
no vaccinated = 9.23% vs HIV vaccinated = 6.45%) (Figure 2C). 
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FigUre 2 | Continued  
Phenotypical analysis and cytokine production of monocytes from HIV-1-infected patients after vaccination with MVA-B vaccine. (a) Dot plot graph (left panel) 
displaying the median fluorescence intensity (MFI) of CD300a, CD300c, CD300e, and CD300f receptors expression on monocytes from HIV-1-infected patients 
before (HIV before vaccination) and after (HIV after vaccination) vaccination. Each dot corresponds to an individual and the mean with SEM is shown. Dot plot graph 
(middle panel) representing the MFI of CD163 receptor expression on classical, intermediate, and non-classical monocytes from HIV-1-infected individuals before 
and after vaccination. Each dot corresponds to an individual and the mean with SEM is shown. The correlation between the MFI of CD163 receptor and the MFI of 
CD300f on intermediate monocytes of HIV-1-infected patients is represented (right panel); the linear regression is shown. (B) Dot plot graphs showing the MFI of 
positive monocytes for each cytokine; the mean with SEM is represented (left). Contour plots representing the percentage of positive monocytes for each cytokine 
after stimulation with lipopolysaccharide. Data from a representative healthy donor (HD) and an HIV-1-infected patient before and after vaccination are shown (right). 
(c) Boolean gate analysis representing the percentages of monocytes producing IL-6, IL-1α, and TNFα, in HD and HIV-1-infected patients before and after 
vaccination. Bar graphs showing the mean with SEM and pie charts are represented. *p < 0.05, **p < 0.01.
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In conclusion, monocyte cytokine production in response to 
LPS in HIV-1-infected patients was higher after vaccination and 
resembled that observed in HD.

relationship between cD300 receptors 
expression and cytokine Production by 
Monocytes of hiV-1-infected Patients 
Before and after Vaccination
The last step of the work was to investigate if the expression levels 
of CD300 molecules could have a correlation with the increased 
functionality found after the MVA-B vaccination in monocytes 
of HIV-1-infected individuals. We performed correlation analysis 
between CD300 receptors expression and cytokine production in 
response to LPS. The expression of CD300 molecules was not 
correlated with the percentage of IL-6+ monocytes in any case. 
In contrast, the expression of CD300e and CD300f correlated 
with IL-1α and TNFα production. The correlation with IL-1α 
production was only observed in monocytes from HD (data not 
shown); however, the expression of CD300e (p < 0.05, r = 0.7505) 
and CD300f (p < 0.01, r = 0.8873) was positively correlated with 
TNFα production in monocytes of HIV-1-infected patients before 
vaccination (Figure 3B). The percentages of TNFα+ monocytes 
of HD and vaccinated patients were not correlated with the MFI 
of CD300e and CD300f (Figures  3A,C). In fact, as it can be 
observed in the graphical representation (Figure 3), monocytes 
from HIV-1-infected patients are more similar to those from 
HD than to the monocytes from the same patients before vac-
cination. Taking altogether, we could propose that the monocyte 
phenotype and functional pattern in response to LPS stimulation 
of HIV-1-infected patients after vaccination with MVA-B are 
more similar to those found in monocytes from HD than from 
monocytes from HIV-1-infected subjects before vaccination.

DiscUssiOn

Monocytes have been described as one of the cell types involved 
in the chronic inflammation characteristic of cART-treated HIV-
1-infected people, which is currently the cause of death of the 
majority of HIV-1-patients (11). High numbers of circulating 
intermediate and non-classical monocytes have been associated 
with inflammation and immune activation during HIV infection 
(10). Furthermore, inflammatory mediators (e.g., IL-6) secreted 
by monocytes predict serious non-AIDS events in virologically 
suppressed HIV-infected subjects (11). Three main mechanisms 

have been proposed to explain the monocyte activation and con-
sequently, the inflammation found in cART-treated HIV-infected 
patients: the microbial translocation, which augments LPS levels 
in plasma, the residual HIV viremia, and coinfection with human 
cytomegalovirus or some herpesviruses (11).

Since the CD300 family of receptors are able to modulate 
monocytes function (20, 22–24), our first objective was to inves-
tigate the CD300 receptors expression in monocytes from cART-
treated chronically HIV-1-infected patients. Our results revealed 
that the expression pattern of CD300 molecules in monocytes 
from HD and in monocytes from HIV-1-infected people were not 
significantly different. However, we observed that the expression 
of CD300c tended, although not statistically significant, to be 
down-regulated in monocytes from HIV-1-infected patients, in 
comparison with monocytes from HD. This could be explained in 
part with the increase of the percentage of non-classical monocytes 
in HIV-1-infected patients, which express lower levels of CD300c 
than classical monocytes (Figure S3 in Supplementary Material) 
(20). It is important to keep in mind that many immunological 
abnormalities observed during the course of HIV infection can 
be reversed by cART, and therefore it is possible that the expres-
sion of CD300 molecules is altered in non-cART-treated patients 
with detectable viremia. More studies with blood samples from 
viremic patients are needed to obtain a more complete picture on 
the expression of the CD300 molecules during HIV infection. We 
did found a significant correlation between the expression of the 
activating receptor CD300e and the inhibitory receptor CD300f 
in monocytes with CD4+ T cell count in patients whose viremia 
is controlled by undergoing cART. These results may suggest that 
the levels of expression of CD300e and CD300f on monocytes 
could potentially be used as biomarkers of disease progression 
in combination with the well know predictive value of CD4+ 
T cell count (25, 26). Prospective studies with larger cohorts will 
confirm the predictive value of CD300e and CD300f expression 
on monocytes from HIV-infected patients.

We have not seen a significant increase in the expression of 
CD163 on monocytes from HIV-infected patients compared with 
monocytes from HD. Somehow, our results are different from 
those reported by others (13). We believe that this discrepancy is 
due to the low number of patients we have studied, since it is pos-
sible to observe a tendency, although not statistically significant, to 
increase CD163 cell surface expression on monocytes from HIV-
infected individuals. Interestingly, there was a positive correlation 
between the expression of CD300f and CD163 in intermediate 
monocytes, a subset with a significant role in inflammation (27). 
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FigUre 3 | Correlation analysis of TNFα production with the expression of CD300 receptors in human immunodeficiency virus (HIV)-1-infected patients before and 
after vaccination with MVA-B. Representation of the correlation between the percentage of TNFα positive monocytes and the median fluorescence intensity of 
CD300f and CD300e receptors expression, in healthy donors (a) and HIV-1-infected patients before (B) and after (c) vaccination with MVA-B; the linear regression 
is shown in each graph. *p < 0.05, **p < 0.01.
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The positive correlation between the expression of CD300f and 
CD163 was maintained after vaccination. These results also sug-
gest that the expression of CD300f, along with other markers, 
could be used as a biomarker of inflammation in HIV-infected 
patients. Human and mouse CD300f is commonly considered 
an inhibitory receptor because of the presence of ITIMs motifs 
in its intracellular tail (14). Several publications have shown its 
inhibitory role on monocyte cell lines (28–30). However, it has 
also been demonstrated that CD300f is able to deliver activat-
ing signals through motifs reported to bind the p85α regulatory 

subunit of PI3K (YxxM) (31–33). In vivo models in mice have 
shown that CD300f both inhibits and promotes the development 
of autoimmune diseases and allergic and inflammatory responses 
(34–39). This dual role of CD300f somehow may depend, not 
only on the cell type this intriguing receptor is expressed, but 
also on its described association with other receptors and adaptor 
proteins (33, 38, 40, 41). It would be of great interest to determine 
the signaling pathways of CD300f on monocytes during HIV 
infection, and determine if this receptor has different roles in 
monocytes from HD and HIV-1-infected patients.
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Several therapeutic vaccines have been tested with the  
objective of controlling viral replication and to avoid viral 
rebound after treatment interruption in chronically HIV-1-
infected patients (42, 43). MVA-B is an immunogenic vaccine 
which induces a T cell response in HIV-1-infected patients (7, 
8). As expected, we did not observe any significant differences 
in the expression of CD300 molecules in monocytes of HIV-1-
infected patients before and after vaccination. The most intrigu-
ing finding of this study was that the response of monocytes to 
LPS stimulation from patients after vaccination was different 
from the response before the vaccination, and at the same time 
similar to the response of monocytes from HD. Monocytes 
from non-vaccinated HIV-1-infected patients produced less 
cytokines in response to LPS than HD. This is in agreement 
with previous findings showing that HIV impairs TNFα pro-
duction by human macrophages in response to Toll-like recep-
tor 4 stimulation (44). Furthermore, this lower production of 
cytokines could also be due to the fact that monocytes when 
are chronically stimulated in vivo during chronic HIV infection 
become refractory to further stimulation with LPS in vitro (45), 
and it has been published that ART-treated infected patients 
exhibit higher levels of LPS in plasma than HD (46).

Vaccination with MVA-B induced higher levels of IL-6, 
IL-1α, and TNFα by monocytes in response to LPS. In fact, 
monocytes of vaccinated subjects exhibited a functional pat-
tern more similar to the one of HD than to non-vaccinated 
HIV-1-infected patients. Furthermore, when we investigated if 
the expression of CD300 receptors might be correlated with the 
cytokine production levels, we also observed that the results 
were comparable between HD and HIV-1-infected patients 
after vaccination, and not between patients before and after vac-
cination. For example, the expression of CD300e and CD300f 
was positively correlated with TNFα levels in monocytes of 
HIV-1-infected subjects before vaccination, but not after vac-
cination or in monocytes of HD. We do not know the causes of 
this increase in the production of pro-inflammatory cytokines 
by monocytes in response to LPS after vaccination and if our 
results have some role in the lack of efficacy of the MVA-B vac-
cine as shown by a viral rebound after treatment interruption. 
It is possible that tipping the balance between activation and 
regulation toward regulation of the response of HIV-specific 
CD8+ T cells is not the only factor responsible for the lack of 
efficacy of the MVA-B vaccine. On the one hand, and consider-
ing our results showing lower CD163 expression on monocytes 
after vaccination, it seems that the administration of MVA-B 
vaccines may favor a less inflammatory environment. However, 
on the other hand, monocytes after vaccination have the poten-
tial to produce higher levels of pro-inflammatory cytokines and 
therefore could help to explain the lack of efficacy of the vaccine 
due to higher inflammation (10, 47–49). Also, it is important 
to remember that these patients have received disulfiram along 
with the MVA-B vaccine. Although the effect of disulfiram in 
monocytes of HIV-1-infected patients is unknown, several 
publications suggest that this drug have a role in decreasing 
the production of inflammatory mediators by monocytes. For 
example, it has been described that this compound diminishes 
the number of inflammatory cells and TNFα levels in the 

aqueous humor, in rats with endotoxin-induced uveitis (50). 
Furthermore, diethyldithiocarbamate, the active compound 
produced in vivo from disulfiram, impairs the release of oxygen 
metabolites and prostaglandins of human monocytes, two major 
pathways related to inflammatory processes (51). Undoubtedly, 
further research is required to delineate the role of monocytes 
in the efficacy of therapeutic vaccines.

In conclusion, our results have shown that vaccination with 
MVA-B, in addition to induce a specific T cell response, has also 
an effect on monocytes phenotype and their ability to produce 
cytokines after stimulation with LPS. We acknowledge that the 
number of patients included in this study is low and that it is 
very possible that a higher number of patients will provide 
more robust results. Clearly, more studies would be required to 
determine if the MVA-B mediated effect on monocytes favors the 
efficacy of the vaccine, or by the contrary is counterproductive. 
However, we believe that the results obtained with this work may 
form the basis of future studies to determine the functionality and 
phenotype of monocytes from patients enrolled in clinical trials 
testing therapeutic vaccines.
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