
August 2017 | Volume 8 | Article 9921

Review
published: 21 August 2017

doi: 10.3389/fimmu.2017.00992

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Massimo Gadina,  

National Institute of Arthritis  
and Musculoskeletal and Skin 

Diseases, United States

Reviewed by: 
Silvia Brunelli,  

University of Milano-Bicocca, Italy  
Juerg Hamacher,  

Lindenhof Hospital, Switzerland

*Correspondence:
Olivier Boyer 

olivier.boyer@chu-rouen.fr

Specialty section: 
This article was submitted  

to Inflammation,  
a section of the journal  

Frontiers in Immunology

Received: 23 June 2017
Accepted: 03 August 2017
Published: 21 August 2017

Citation: 
Aussy A, Boyer O and Cordel N 

(2017) Dermatomyositis and 
Immune-Mediated Necrotizing 

Myopathies:  
A Window on Autoimmunity and 

Cancer. 
Front. Immunol. 8:992. 

doi: 10.3389/fimmu.2017.00992

Dermatomyositis and immune-
Mediated Necrotizing Myopathies:  
A window on Autoimmunity and 
Cancer
Audrey Aussy1, Olivier Boyer1* and Nadège Cordel1,2

1 Normandie University, UNIROUEN, INSERM, U1234, Rouen University Hospital, Department of Immunology,  
Rouen, France, 2 Unit of Dermatology and Internal Medicine, Pointe-à-Pitre University Hospital, University of the French West 
Indies, Fouillole, Pointe-à-Pitre, Guadeloupe

Autoimmune myopathies (myositides) are strongly associated with malignancy. The link 
between myositis and cancer, originally noticed by Bohan and Peter in their classifi-
cation in 1975 (1), has been evidenced by large population-based cohort studies and 
a recent meta-analysis. The numerous reports of cases in which the clinical course 
of myositis reflects that of cancer and the short delay between myositis and cancer 
onset support the notion that myositis may be an authentic paraneoplastic disorder. 
Thus, cancer-associated myositis raises the question of cancer as a cause rather 
than a consequence of autoimmunity. Among myositides, dermatomyositis and more 
recently, although to a lesser extent, immune-mediated necrotizing myopathies are the 
most documented forms associated with cancer. Interestingly, the current diagnostic 
approach for myositis is based on the identification of specific antibodies where each 
antibody determines specific clinical features and outcomes. Recent findings have 
shown that the autoantibodies anti-TIF1γ, anti-NXP2 and anti-HMGCR are associated 
with cancers in the course of myositis. Herein, we highlight the fact that the targets of 
these three autoantibodies involve cellular pathways that intervene in tumor promotion 
and we discuss the role of cancer mutations as autoimmunity triggers in adult myositis.
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iNTRODUCTiON

The link between autoimmunity and cancer has become a topic of unceasing interest over the 
past decade. Although it is increasingly evident that the risk of cancer is augmented in patients 
affected by several types of autoimmune diseases (AID), the nature of the interplay between 
autoimmunity and cancer remains elusive (2–4). One important question here recalls the old egg-
and-chicken dilemma: is the autoimmune background in AID a seedbed for cancer development 
or, alternatively, may cancer cause autoimmunity?

Rheumatic AID such as systemic lupus erythematosus, rheumatoid arthritis, or Sjögren 
syndrome promote cancer development after several years of chronic inflammation and also 
exposure to immunosuppressive drugs (2, 5, 6). In the case of lupus for instance, the broadness of  
cancer type spectrum is striking, including hematological—mostly virus induced—malignancies 
but also numerous kinds of solid tumors such as vulva, lung, thyroid, and liver cancer (7). Here, 
the risk of cancer cannot only be ascribed to the sole autoimmune status but also presumably to 
iatrogenic immunosuppression.
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FigURe 1 | Clinical and histological features of dermatomyositis (DM).  
(A) Gottron’s sign: erythematous scaly papules over the 
metacarpophalangeal joints. (B) «V sign» in a white European male patient 
with DM. (C) Poikiloderma (i.e., erythema, atrophy, variable pigmentary 
changes) on the upper trunk of an African Caribbean female patient with DM. 
(D) Typical centripetal flagellate erythema affecting the upper trunk of a male 
patient with DM. (e,F) Periungual erythema and telangiectatic capillary loops 
in patients with DM. (g–i) Histological feature of a Gottron’s papule.  
(g) Slight hyperkeratosis, basal cell vacuolar degeneration, upper dermal 
edema, and perivascular inflammatory cell infiltrate with enlarged capillaries 
(HES staining, ×20). (H) DM interface dermatitis with vacuolar changes of the 
basal cell layer, perivascular inflammatory cell infiltrate with capillary 
dilatation, endothelial cell turgescence, and pigmentary incontinence  
(HES staining, ×40). (i) Positive alcian-blue staining attesting dermal mucin 
deposits (×20).
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This view is counterbalanced by the examples of paraneo-
plastic neurological syndromes, systemic sclerosis, and myosi-
tis. Paraneoplastic neurological syndromes with anti-neuronal 
autoantibodies (aAbs) include a most illustrative example,  
i.e., anti-Hu encephalitis associated with small cell lung carci-
noma (SCLC) (8). Anti-Hu aAbs recognize the HuD autoan-
tigen normally restricted to neurons but ectopically expressed 
on SCLC cells (9). Expression of the immunogenic HuD 
molecule by SCLC elicits the production of anti-Hu aAb and 
CD8+ cytotoxic T cells, explaining the parallel clinical course of 
neurological symptoms and SCLC evolution and demonstrat-
ing the direct link between cancer and tissue-specific AID 
(10). Cancer-induced breakage of tolerance can also be caused 
by tumoral somatic mutations, as recently highlighted by the 
case of systemic sclerosis associated with anti-polymerase III 
(POL3) aAbs. The immunogenic peptides generated by POLR3 
gene mutations induce a POL3-specific CD4+ T  cell response 
with production of specific antibodies that secondarily target 
wild-type POL3 by epitope spreading (11).

This present review focuses on the forms of myositides, i.e., 
dermatomyositis (DM) and immune-mediated  necrotizing 
 myopathies (IMNMs) which have been identified as 
 associated  with  cancer and represent a paradigm of cancer-
associated AID.

DM, RiSK OF CANCeR, AND DiAgNOSTiC 
CONTRiBUTiON OF AUTOANTiBODieS

Autoimmune myopathies or myositides constitute a heter-
ogeneous group of severe acquired myopathies. They are 
 char acterized clinically by symmetrical proximal muscle wea-
kness, associated or not with systemic features, and histologically 
by various levels of myofiber necrosis/regeneration and interstitial 
mononuclear infiltrates. Clinical and histopathological patterns 
define different diseases: polymyositis, DM, overlap myositis, 
sporadic inclusion-body myositis, and IMNM (12–17).

Dermatomyositis affects both adults and children among 
all ethnic groups with an unbalanced 1/2-sex-ratio in favor of 
women. Its annual incidence varies from 1.9 to 7.7 cases per 
million inhabitants according to data in the literature with a 
peak of frequency in 40–60-year-old adults and in 5–14-year-
old children (13, 18). The appearance of specific cutaneous 
manifestations is typical of DM and is among its diagnostic 
criteria. Cutaneous manifestations typically consist of erythe-
matous scaly papules over the metacarpophalangeal knuckles 
(Gottron’s papules) (Figure 1A); a symmetrical reddish-violet 
periorbital edema that predominates on the upper eyelids 
(heliotrope erythema) but may affect the rest of the face; lupus-
like erythema which involves low neck (V sign) (Figure  1B), 
shoulders (shawl sign), extensor surfaces of the limbs, dorsal 
side of hands and fingers and scalp; poikiloderma of the upper 
trunk (Figure 1C); and centripetal flagellate erythema affecting 
the trunk and or proximal extremities (Figure 1D). Cutaneous 
manifestations of DM also include non-specific lesions such as 
(i) vascular lesions, i.e., periungual erythema with telangiectatic 
capillary loops, nail fold dilated capillaries visible to the naked 

eye, cuticular hypertrophy (Figures 1E,F), vasculitis, cutaneous 
necrosis, or Raynaud’s phenomenon, which are more prevalent 
in the course of juvenile dermatomyositis and (ii) several other 
dermatological features such as pruritus (present in 30% of 
DM), photosensitivity, mucinosis, and calcifications, which 
are more frequent in children rather than in adults, i.e., 30–70 
versus 10%. Dermatological particularities of DM have been 
reported in several ethnic groups. In Afro-Caribbeans, edema 
of the face is usually predominant whereas in Eurasians, the 
Wong-type DM which mimicks a pytiriasis rubra pilaris seems 
to be more frequent (19).

Specific lesions of DM are histologically characterized by 
an interface dermatitis with basal layer vacuolar changes that 
are associated in various degrees with hyperkeratosis, epider-
mal atrophy, basement membrane thickening, upper dermal 
edema, pigmentary incontinence, mucine deposits, and light 
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FigURe 2 | Muscle biopsy of dermatomyositis. (A) Perifascicular atrophy.  
(B) Area of contiguous necrotic myofibers (arrow) corresponding to a 
microinfarct. (C) Punch-out vacuoles within myofibers (arrows) assessing 
focal myosinolysis. (D) Ubiquitous myofiber reexpression of MHC-class I with 
perifascicular reinforcement. (e) Neural cell adhesion molecule (NCAM) 
immunostaining showing large areas of positive myofibers indicating muscle 
ischemia. (F) Platelet endothelial cell adhesion molecule (PECAM) 
immunostaining for endothelial cells showing marked endomysial capillary 
drop out. (g) Complement activation assessed by the presence of 
membrane attack complex deposits at the level of endomysial capillaries 
(arrows). Frozen sections, light microscopy; hematoxylin-eosin  
(A–C), immunoperoxydase technique (D–g), HLA-ABC (D),  
CD56/NCAM (e), CD31/PECAM (F), and C5b-9 (g).
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perivascular CD4+ T  lymphocyte infiltrate of the superficial 
dermis (Figures 1G–I) (20).

Dermatological features usually precede muscle weakness  
by 3–6 months but may appear several years before. However, 
muscular manifestations may be absent, defining the amyo-
pathic form of DM with an associated cancer rate, which is 
theoretically the same as classic DM (21, 22).

Diagnosis of DM is supported by serum creatine kinase (CK) 
elevation, which mirrors muscle lysis and by electromyographic 
data, but diagnosis is confirmed by muscle biopsy except for 
amyopathic DM. Histological examination of muscle tissue 
(Figure 2) typically shows perifascicular atrophy, necrotic and 
regenerative muscle fibers, septal and/or perivascular inflam-
matory cell infiltrate, and endomysial microangiopathy with 

membranolytic attack complex C5b-9 capillary staining that 
may also be present in cutaneous lesions. Although these capil-
lary injuries have long been considered as indirect evidence of 
an initial endothelial target in DM, recent scientific findings 
 demonstrate that capillary lesions might be non-specific in 
 relationship to ischemia-reperfusion injury of perimysial arcade 
arteries (23). The role for interferons in DM pathogenesis is 
 increasingly evident, since a typical interferon type 1 pathway 
signature was found in both muscle (24) and skin (25), with a 
correlation with disease activity (26).

The outcome of DM is variable with benign forms highly 
responsive to treatment and severe forms associated with car-
diac or lung involvement and/or malignancies. In juvenile DM, 
cancer association is uncommon. Nonetheless, a poor prognosis 
may be due to the intensity of vasculitis and vascular damage 
that involves the skin and the digestive system. Calcifications 
on the areas around joints may also lead to severe functional 
impairment in children.

Interestingly, several dermatological manifestations of DM 
such as cutaneous necrosis, skin vasculitis or pruritus, or histo-
logical patterns such as leucocytoclastic vasculitis are reported 
to be associated with cancer whatever the ethnic group (27, 28). 
Conversely, several features seem to protect against cancer such 
as Afro-Caribbean ethnicity (29).

Globally, myositides are rare diseases and epidemiologic 
data remain scarce. Studies are limited by their retrospective 
character and small population size. Yet, since its first descrip-
tions (30, 31), the association between cancer and myositis has 
been confirmed by several studies published between 1975 
and 2012, reporting a global malignancy rate from 6.7 to 32% 
(32–35). Importantly, several studies also point to cancer as 
the main cause of death in cancer-associated myositis patients  
(34, 36, 37). Yet, it may be difficult to distinguish between 
cancer on the one hand, and myositis exacerbation and its 
complications on the other hand, as the actual cause of death. 
Most observations highlighted the short delay between the 
onset of myositis and the discovery of cancer. In some cases, 
cancer even preceded myositis, reinforcing the view that 
myositis might be the consequence rather than the cause of 
cancer and even leading to individualizing “cancer-associated 
myositis” in one classification in 2005 (14). Cancer risk is par-
ticularly established in DM. A recent meta-analysis confirmed 
adult (but not juvenile) DM as a risk-factor of cancer, with a 
standardized incident ratio (SIR) for occurrence of cancer of 
5.5 [4.3–6.7], mostly peaking at 1 year around DM diagnosis 
(38). A limitation to previous studies, including those reviewed 
in this meta-analysis, is that the classification of myositis was 
essentially based on the widely used Bohan and Peter classi-
fication which tends to classify IMNM, overlap myositis, and 
polymyositis in a single category (1). Whereas this classifica-
tion remains popular for its practical value in DM, progress 
in the definition of clinical, pathological, and serological 
patterns has led to newer classifications that are useful for the 
diagnosis of inclusion-body myositis (12), overlap myositis 
(14), or IMNM (13). In the light of these different existing 
classifications for myositis, a new unifying classification would 
provide a much-awaited tool.
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The detection of myositis-specific aAbs (MSA) has proved 
most helpful in classifying the different forms and predicting 
the outcome of myositis. Indeed, in clinical practice, MSA 
define particular clinical ± histological patterns (39). In DM, 
anti-Mi-2 are classically associated with absence of cancer, 
sensitivity to treatment and, overall, good prognosis (40–42). 
Anti-melanoma differentiation antigen 5 (MDA-5) identi-
fies a subgroup of DM patients with interstitial lung disease, 
necrotizing cutaneous lesions, skin ulcerations, and tender 
palmar papules while muscle signs are minimal (43–45). 
Anti-SAE (small ubiquitin-like modifier activating enzyme) 
has a low prevalence (1–4%) and patients have classic cutane-
ous signs of DM. Interestingly, a significant but low rate of 
cancer has been reported in this group (46–48). Anti-TIF1γ 
(transcriptional intermediary factor 1 gamma) is the leader of 
cancer-associated aAbs, with a rate of associated malignancy 
ranging from 60 to 80% of patients (49, 50). Anti-NXP2 
(nuclear matrix protein 2) is another biomarker of risk of 
malignancy in adult patients, with a 30% rate of cancer among 
DM patients (51, 52).

Besides DM, IMNM is another form of myositis recently 
suggested to be associated with malignancy (53–55). IMNM 
may be subdivided in three groups: seronegative, anti-HMGCR 
(3-hydroxy-3-methylglutaryl-coenzyme-A-reductase), and anti- 
SRP (signal recognition particle). In contrast to anti-SRP positive 
patients, one study has recently suggested that, among IMNM, 
seronegative and anti-HMGCR positive patients have a signi-
ficantly higher risk of cancer (56).

CANCeR-ASSOCiATeD MYOPATHieS 
ACCORDiNg TO AUTOANTiBODieS

DM with Anti-TiF1γ, the Leader in  
Cancer-Associated Myositis
Anti-TIF1γ was first described in 2006 as an antibody directed 
against a 155  kDa protein, especially in patients with DM  
(49, 57). This protein was rapidly identified as TIF1γ. Anti-
TIF1γ aAbs scored positive in 20–30% of adult DM and 
30–40% of juvenile DM with some differences according to 
geographical origin (39, 58). HLA DQA1*0301 was associ-
ated with anti-TIF1γ DM (49). The high prevalence of cancer 
was largely confirmed with a rate from 18 up to 80% of adult 
patients especially in the 2 years surrounding DM (22, 52, 59). 
A meta-analysis performed by Trallero-Araguás and colleagues 
estimated a 78% sensitivity and 89% specificity of these anti-
bodies for diagnosing an associated cancer (50). Since 2001, 
age has been recognized as a risk factor for cancer among DM 
patients (33). Recently, two publications strengthened the role 
of advancing age in the increasing risk of cancer among adult 
anti-TIF1γ positive DM patients (60, 61).

No study found any predominance of one type of cancer; 
those occurring in adults with DM were generally comparable 
to those in the general population, stratified by age and sex 
(breast, lung, colorectal, bladder) as well as to some more rare 
cancers such as gastric or thymus cancer (59). Anti-TIF1γ DM 
associates classic but severe cutaneous signs with moderate 

muscular symptoms, frequent dysphagia but decreased systemic 
features compared to other DM (60). The specific clinical and 
histopathological features of anti-TIF1γ DM are summarized in 
Table 1. Regarding juvenile DM, no increased risk of cancer is 
observed (62). The median age of DM is 6.8 years of age. Anti-
TIF1γ juvenile DM more often presents chronic or polycyclic 
courses associated with more severe prognosis and profuse 
cutaneous involvement (63).

DM with Anti-NXP2, the Second Actor  
in Cancer-Associated Myositis
A novel aAb directed against a 140  kDa protein was found 
in a 1997 cohort of juvenile DM and named anti-MJ (64).  
The 140 kDa protein was next identified as NXP2, also known as 
MORC3 (84). Anti-NXP2 aAbs are present in 22–25% of juvenile 
DM patients and in 1–17% of adults with DM, depending on the 
method of detection (61, 70). Forms of myositides other than 
DM may occasionally be associated with anti-NXP2 (67, 84).  
Cancer was detected in 24–37.5% of adults who scored posi-
tive for anti-NXP2 in several retrospective series (60, 61, 67).  
As for anti-TIF1γ DM, no specific type of tumor was mentioned. 
Clinical manifestations are partially distinct from anti-TIF1γ  
DM (Table 1). Indeed, classic cutaneous features are less severe 
but there is a higher prevalence of calcinosis (70). In addition, 
muscular involvement is constant and more severe. Similarities 
between anti-TIF1γ and anti-NXP2 include dysphagia and 
prevalence of peripheral edema (61, 70). Interstitial lung disease 
has only been reported in one cohort (85) and Raynaud’s phe-
nomenon is found in 20% of cases (64, 85).

In children, the median age at onset has been calculated 
at 5.8  years of age (58). Two series found an increased risk of 
calcinosis in children and a high prevalence of severe muscular 
involvement with functional disabilities, muscle cramps, and 
dysphagia but no cancer (Table 1) (39, 51).

iMNMs, New PLAYeRS iN CANCeR-
ASSOCiATeD MYOSiTiS?

Immune-mediated necrotizing myopathies are a recently 
described entity, based on specific histological pattern with 
poor inflammatory infiltrate and presence of significant 
necrotizing and regenerative fibers (13, 72). As mentioned 
above, three IMNM subsets have been identified according to 
serologic status: anti-SRP, anti-HMGCR, or negative serology. 
Anti-HMGCR and seronegative IMNMs seem to be associated 
with a higher risk of cancer, with a SIR score of 2.79 and 8.35, 
respectively (56). Between 13 and 36% of anti-HMGCR positive 
patients have an associated cancer (56, 68, 69). A genetic study 
found that HLA-DRB1*11:01 is associated with a higher risk 
of anti-HMGCR IMNM in both white American and African 
American adult populations, whereas HLA-DRB1*07:01 seem 
to be associated with a risk of anti-HMGCR myositis in small 
series of children (86, 87).

Anti-HMGCR aAbs were discovered in 2010 in a group 
of patients who developed myositis after exposure to statins, 
without resolution by stopping statins (65, 66). Histological 
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TABLe 1 | Characteristics of anti-TIF1γ, anti-NXP2, and anti-HMGCR myositis.

Anti-TiF1γ dermatomyositis (DM) Anti-NXP2 DM Anti-HMgCR immune-mediated necrotizing 
myopathy

Year of discovery of 
the aAb

2006 (49, 57) 1997 (64) 2010 (65, 66)

Frequency of cancer 
association in adults

60–80% (22, 52, 59) 24–37.5% (60, 61, 67) 12.9–36% (56, 68, 69)

Clinical features

Skin involvement Extensive cutaneous signs Mild skin involvement Generally not
Poikiloderma Frequency of calcinosis
Psoriasis-like lesions
Scaly erythema of the scalp
No calcinosis

Muscular involvement Mild weakness Mild to severe weakness Mild to severe weakness
Myalgia

Frequency of distal weakness Inconstant dysphagia
Frequent dysphagia Myalgia, muscle atrophy

Frequent dysphagia mild to severe

Other characteristics Peripheral edema Peripheral edema High frequency of statin exposure (65, 66, 71)
Decreased risk of Raynaud phenomenon, 
arthralgia, and interstitial lung disease (60)

Low frequency of interstitial lung  
disease (61, 70)

Histological pattern Dense C5b-9 deposits on capillaries Perivascular inflammation Necrosis
Presence of vacuolated fibers Perifascicular atrophy Muscle fiber regeneration
Overexpression of MHC class I Necrosis in patient with peripheral  

edema (70)
Atrophic fibers

Perifascicular atrophy Little or no inflammatory infiltration  
C5b-9 deposition (13, 72)Necrotic/regenerating fibers (59)

Target of the aAbs

Name Transcriptional intermediary  
factor 1 gamma

Nuclear matrix protein 2 or 
microrchidia 3 (MORC3)

3-hydroxy-3-methylglutaryl-coenzyme-A-reductase

Protein expression Ubiquitous Ubiquitous Ubiquitous
Immune cells at high level Liver

Subcellular locations Nucleus Nucleus Endoplasmic reticulum
Cytosol in part Peroxisome

Role TGFβ pathway Chromatin remodeling Limiting enzyme for cholesterol synthesis and other 
mevalonate-dependent pathways (81–83)Mitosis DNA repair

Embryonic development Epigenetic regulation
DNA repair Cell regulation
Erythropoiesis Activation of p53
Innate immunity Calcium homeostasis
(73–76) Bone remodeling (77–80)
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features corresponded to IMNM (88–90). While the association 
with statins was confirmed in recent studies, it involved a wide 
range between 37 and 94% of patients (56, 91). Thus, statins 
are not necessarily required to develop anti-HMGR myositis. 
Clinically, patients present severe and acute muscle weakness, 
dramatically elevated CK level, but extra-muscular disorders 
are uncommon (65, 66, 71). Anti-HMGCR aAbs have also been 
identified in the sera of juvenile myositis, without exposure 
either to statins or cancer. Clinical features in children may 
wrongly shift toward muscular dystrophy (92).

TARgeTS OF CANCeR-ASSOCiATeD 
AUTOiMMUNe ReSPONSe iN MYOSiTiS

Intriguingly, all three aAb targets in cancer-associated myositis 
are involved to some extent in cancer pathogenesis.

TiF1γ, encoded by the TRIM33 gene
TIF1γ, also known as ecto, RETfused7, or TRIM33, was dis-
covered in 1999 and identified as the third member of the TIF1 
protein (after TIF1α and TIF1β) (73). These three proteins 
belong to the TRIM (tripartite motif) protein family defined by 
a particular RING-finger domain (93). TIF1 proteins are a sub-
family characterized by several domains from 3′ to 5′, including 
the RING-finger domain, 1 or 2B-boxes, a coiled-coil domain, 
a plant homeodomain (PHD), and a bromodomain (94). They 
are involved in multiple critical biological processes. TIF1γ is 
particularly known for being involved in embryonic develop-
ment, hematopoiesis, mitosis and cycle regulation, DNA repair, 
innate and adaptive immunity, osteoblast differentiation, viral 
transcription, and oncogenesis in case of dysregulation. TIF1γ 
can exert its role as an E3-ubiquitin ligase, as a histone-binding 
protein or by sumoylating proteins.
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The main interacting pathways of TIF1γ are the TGF-β 
cano nical (Smad4-dependent) and non-canonical (Smad4-
independent) pathways (95–97). In the canonical pathway, TIF1γ 
acts either as a repressor (via ubiquitination), a competitor or a 
partner of Smad4, depending on the cellular context (96). In the 
canonical TGF-β pathway, the activation of the TGF-β receptor 
leads to the recruitment of RSmad (Smad 2 or 3) and phospho-
rylation allows the formation of a RSmad/Smad4 complex, which 
next enters the nucleus to activate the transcription of targeted 
genes. During mammalian embryonic development, TIF1γ 
plays a major role in patterning and polarizing embryonic cells 
before gastrulation by inhibiting Nodal/Smad4 signaling, which 
promotes endodermic proliferation (98). Later in embryonic 
development, Smad4 and TIF1γ cooperate or act redundantly 
to promote both proliferation and differentiation of neural 
stem cells and palate development (99, 100). It has been shown 
that TIF1γ participates in the differentiation of stem cells in 
collaboration with Smad4, by direct interaction with histone 
via PHD–bromodomain leading to the assembling of Smad4/
Smad2–3 complex on targeted genes (101). In adult tissues, TIF1γ 
promotes the terminal differentiation of mammary gland and 
lactation by antagonization of Smad4 (102), supports both osteo-
blast proliferation and differentiation under stimulation of bone 
morphogenetic proteins (BMP) via the activation of a particular 
RSmad complex (Smad1/5) (103), regulates granulopoiesis in 
mice (104), and participates in the development of iNKT  cells 
(105). During erythropoiesis, Smad4 and TIF1γ competitively 
bind to phosphorylated SMad2/3 (RSmad) in response to TGF-β  
to promote the proliferation and maturation of erythroblasts 
(106, 107). Otherwise, TIF1γ is involved in the balance bet ween 
lymphoid and myeloid lineage and protects hematopoietic stem 
cells from aging (108), through TAL1 and PU1 DNA-binding 
protein, whose transcriptional activity depend on TGF-β 
(109, 110). TIF1γ has many other functions in cells, mediated 
by different pathways and functions. Regarding the innate 
immune system, TIF1γ directly represses the transcription of 
the interferon-b gene (ifnb) at late phase of macrophage activa-
tion (74). Also, it binds multiple chromatin sites in monocyte to 
promote production of macrophage, binds other chromatin sites  
in mature macrophage to regulate the responses after toll-
like receptor (TLR) activation by lipo-polysaccharide (LPS) 
(111), and is directly involved in proteasome activation via the 
 ubiquitination of DHX33 (112). TIF1γ also has many roles in 
cell homeostasis; TIF1γ is strongly involved in antiprolifera-
tive cellular effect by (i) mediating ubiquitination and then the 
degradation of LIM-domain-binding protein which is involved 
in the transcription of cycle activator genes (113) and (ii) interac-
tion with APC/C (anaphase-promoting complex/cyclosome) to 
promote the alignment and stability of chromosomes during 
mitosis and to prevent abnormal metaphase–anaphase transition 
(75, 76). Moreover, TIF1γ is largely involved in DNA repair by 
recruiting different proteins promoting chromatin relaxation 
and repair (114, 115). Next, TIF1γ is a strong tumor suppres-
sor by preventing β-catenin degradation (116), epithelial-to- 
mesenchymal transition (117, 118), and by regulation of the 
chromatin (119, 120). The role of TIF1γ as a tumor suppressor has 
been directly shown in chronic myelomonocytic leukemia (121), 

pancreatic tumor (122–124), hepatocellular carcinoma (125), 
renal cell carcinoma (126), and non-small cell lung cancer (127), 
where TIF1γ decreased expression or inactivation promotes 
proliferation and probably epithelial-to-mesenchymal transition 
(97–104). Paradoxically, overexpression of TIF1γ is involved  
in oncogenesis notably in breast cancer, where TIF1γ interferes 
with TGF-β to promote poorer prognosis (128). Moreover,  
hyper-expression of TIF1γ has been shown in a significant pro-
portion of colorectal adenocarcinomas (129).

NXP2, encoded by the MORC3 gene
MORC3 (microrchidia3) is a nuclear protein which belongs 
to a highly conserved nuclear matrix protein family which has 
recently been identified (77). Four MORC members have been 
identified and are characterized by three common structural 
domains (ATPase domain, Zinc finger domain, and coiled-coil 
domain) involved in chromatin remodeling and epigenetic 
regulation (77). MORC3 includes two other domains, a nuclear 
matrix binding site and an RNA binding site, essential for 
the regulation of transcription (78). Its mRNA expression is 
relatively ubiquitous but the expression of MORC3 protein is 
particularly elevated in immune cells (78, 79). MORC3 plays 
several critical roles in cell regulation, illustrated by an early 
death at birth or day 1 in MORC3 knockout mice (130). MORC3 
promotes the activation of p53, a tumor suppressor inducing cel-
lular senescence in response to oncogenic factors and supports 
the architecture of the nucleus (78, 130). The ATPase domain 
of MORC3 interacts with the coiled-coil domain to form 
homodimers that can bind DNA (131). Zinc finger is implicated 
in the nucleus localization and binds MORC3 to histone (132). 
These two mechanisms seem to be involved in DNA repair and 
epigenetic regulation (77, 80). MORC3 interacts with ROR1,  
a tyrosine kinase involved in pre-B cell receptor signaling path-
way promoting cell proliferation (133). Finally, MORC3 plays  
a role in the transduction of calcium homeostasis regulator  
and is involved in bone remodeling (134).

HMgCR, encoded by the HMGCR gene
HMGCR is a limiting enzyme from the cholesterol biosynthetic 
chain, catalyzing the reduction reaction of HMGCoA to meva-
lonate (81). This enzyme has a large transmembrane domain 
in the endoplasmic reticular membrane and the harbored 
cytosolic N and C terminal domain. The catalytic domain is in 
the C-terminal domain (82, 83). This catalytic domain is the 
target of both statins and specific autoantibodies. Interestingly, 
it has been recently shown that its functions were indirectly 
crucial in many pathways. Indeed, HMGCR positively regu-
lates the growth and migration of glioblastoma cells and could  
play a role in the metastatic capacities of tumoral cells, as well 
as other enzymes involved in lipidic metabolism (135). The 
role of HMGCR and the mevalonate pathway in oncogenesis 
has been suspected for two decades and cases of tumors have 
been reported to exhibit higher level and activity of HMGCR 
(136, 137). In 2010, Clendening et  al. (138) confirmed this 
hypothesis by showing that the dysregulation of HMGCR 
promotes transformation of normal breast epithelial cells and 
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FigURe 3 | Hypothetical model of specific antitumoral response as a trigger of dermatomyositis through the example of TIF1γ. According to this model, TIF1γ  
(or NXP2, or HMGCR) is modified in the tumor (gene mutation, overexpression, ectopic expression, posttranslational modification), leading to the development of  
a TIF1γ- (or NXP2-, or HMGCR-) specific T and B cell antitumor response. Secondarily, breakage of tolerance results from cross-reactivity and/or epitope spreading, 
promoting a response against muscle and skin.
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growth of transformed cells (138). Moreover, different levels of 
HMGCR are associated with different response to radiotherapy 
in bladder cancer (139) and upregulation of HMGCR is also 
known to promote proliferation and migration of malignant 
cells in both glioblastoma and gastric cancer (135, 140). In vitro 
inhibition of HMGCR performed by specific miRNA limits 
proliferation, invasion, and metastasis process of breast cancer  
cells (141).

TiF1γ, NXP2, AND HMgCR: TARgeTS  
OF AN ANTiTUMORAL ReSPONSe?

In the model proposed by Joseph and colleagues in systemic 
sclerosis, the immune response directed against POL3 was 
initially an antitumor immune response. Oncogenesis results 
from random and additive mutations on several genes some 
of which are involved in mitotic checkpoint, DNA repair, or 
differentiation, under the effect of viruses, oncogenes, or 
radiation. Later, tumoral cells can over-express, ectopically 
express, or express mutated forms of distinct proteins. The 
immune system may recognize these newly synthetized forms 
as neoantigens, which may ultimately lead to T cell and B cell 
responses (142, 143).

In many human cancers, TIF1γ is considered as a tumor 
suppressor by inhibiting the TGF-β pathway. HMGCR also 
seems to be involved to some extent in oncogenesis through 
its role in metabolic pathways. Today, NXP2 is not directly 
known to be involved in cancer but it interacts with the well 
documented p53 tumor suppressor. Therefore, the targets of 
these three MSA appear to be proteins involved in cellular 
pathways that intervene in tumor promotion. Thus, it is reason-
able to hypothesize that somatic mutations of TIF1γ, NXP2, or 
HMGCR genes in tumors may provoke a specific antitumoral 
immune response which may secondarily extend to the target 
organs of myositis (muscle, skin) by cross-reactivity and/or  
a process of epitope spreading (Figure  3). It is tempting to 
speculate that absence of cancer in some myositis patients may 
result from an efficacious antitumoral immune response: in 
this view, myositis might be the immunological price to pay 
for tumor eradication.

The hypothesis developed herein implies that the above-
mentioned antitumoral response provokes/sustains myositis.  
How this response could promote myositis is unclear. Indeed, the 
three TIF1γ, NXP-2, and HMGCR proteins are ubiquitously 
expressed, raising the question of how they could be muscle/
skin-specific. In this regard, it should be remembered that most 
if not all MSAs, associated with cancer or not, are specific for 
ubiquitously expressed, intracellular proteins such as t-RNA 
synthetases, MDA-5, and signal recognition particles.

Some elements support the direct pathogenicity of aAbs in 
some forms of myositis. For instance, aAb level correlates with 
clinical evolution in IMNM (72, 144–146). The pathogenic 
effect of aAbs is particularly real for anti-HMGCR aAb. Indeed, 
Arouche-Delaperche and colleagues recently demonstrated that 
anti-HMGCR aAbs promoted muscle atrophy and impaired 

regeneration and expression of inflammatory cytokines (147). A 
similar effect could be expected for anti-TIF1γ and NXP2 aAbs. 
TIF1γ has been shown to be over-expressed in  regenerating 
muscle (148), which could explain the recognition of TIF1γ in 
muscle by aAb.

THe THeRAPeUTiC DiLeMMA OF 
CANCeR-ASSOCiATeD MYOSiTiS

Most myositis clinical trials exclude patients with cancer, 
limiting the spectrum of our therapeutic knowledge. While 
beneficial for treating myositis, immunosuppression is of dif-
ficult use in the presence of cancer. Reciprocally, myositis alters 
the patient’s condition and complicates the therapeutic strategy, 
i.e., administering antitumoral drugs or performing surgery. 
Guidelines will be required to help manage patients in this 
context. The hypothesis of myositis triggered by cancer, rather 
than the opposite, supports a therapeutic strategy of performing 
an active antitumoral treatment compatible with the patient’s 
myositis status. Among new cancer therapies, immune check-
point inhibitors may expose the patient to an exacerbation of 
autoimmunity that may yield a myositis flare. Since aAbs may 
be directly involved in myositis pathogenesis, therapeutic trials 
evaluating plasma exchanges are welcome.

CONCLUSiON

Taken together, available data point to a unicist view of cancer- 
associated myositis, in which AID may result from an antitumoral 
response. This response may be triggered by mutations, overex-
pression, or posttranslational modification of the auto antigen in 
tumor. Elucidating these mechanisms will provide strong clues 
to better understand the potential role of cancer as a cause of 
autoimmunity.
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