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Pemphigus consists of a group of chronic blistering skin diseases mediated by 
autoantibodies (autoAbs). The dogma that pemphigus is caused by keratinocyte 
dissociation (acantholysis) as a distinctive and direct consequence of the presence of 
autoAb targeting two main proteins of the desmosome—desmoglein (DSG) 1 and/or 
DSG3—has been put to the test. Several outside-in signaling events elicited by pem-
phigus autoAb in keratinocytes have been described, among which stands out p38 
mitogen-activated protein kinase (p38 MAPK) engagement and its apoptotic effect on 
keratinocytes. The role of apoptosis in the disease is, however, debatable, to an extent 
that it may not be a determinant event for the occurrence of acantholysis. Also, it has 
been verified that compromised DSG trans-interaction does not lead to keratinocyte 
dissociation when p38 MAPK is inhibited. These examples of conflicting results have 
been followed by recent work revealing an important role for endoplasmic reticulum 
(ER) stress in pemphigus’ pathogenesis. ER stress is known to activate the p38 MAPK 
pathway, and vice versa. However, this relationship has not yet been studied in the 
context of activated signaling pathways in pemphigus. Therefore, by reviewing and 
hypothetically connecting the role(s) of ER stress and p38 MAPK pathway in pem-
phigus, we highlight the importance of elucidating the crosstalk between all activated 
signaling pathways, which may in turn contribute for a better understanding of the role 
of apoptosis in the disease and a better management of this life-threatening condition.

Keywords: pemphigus, autoimmunity, p38 mitogen-activated protein kinase, endoplasmic reticulum stress, 
apoptolysis

iNtrODUctiON

Pemphigus encompasses various chronic autoimmune blistering skin diseases with acute 
stages often controlled by the administration of glucocorticosteroid drugs, especially when 
co-administrated with an adjuvant (1). However, the lack of specificity and the broad effect of 
steroid treatment may impact patient’s homeostasis. The side effects of short- and long-term 
treatments with glucocorticosteroid drugs are well documented and may even include death 
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[reviewed in Ref. (2–6)]. Successful clinical trials with more 
specific drugs have been reported, such as rituximab (anti-
CD20) and protein A immunoadsorption (7, 8). However, 
our limited knowledge of the disease has hampered the 
development of highly specific therapeutic agents that would 
ultimately minimize the use of glucocorticosteroid drugs as 
therapeutic agents.

Historically, pemphigus is identified by pathogenic IgG 
autoantibodies (autoAbs) targeting adhesion molecules of 
keratinocytes. These autoantigens are mainly two desmosomal 
cadherins: desmoglein (DSG) 1 and/or DSG3. Two main forms 
of pemphigus usually associate to autoAb profiles (9–12). In 
pemphigus foliaceus (PF), typically only anti-DSG1 autoAb, 
superficial blistering and erosions are observed. In contrast, 
pemphigus vulgaris (PV) patients may exhibit anti-DSG3 
or anti-DSG3 and anti-DSG1 autoAb, known to specify the 
suprabasal blistering of mucous membranes or a mucocutane-
ous form, respectively [reviewed in Ref. (13, 14)]. While the 
anti-DSG profiles are highly indicative of the clinical form, the 
observation that reduction of disease activity toward a remit-
ting stage may be followed by the maintenance of high anti-
DSG titers remains a conundrum (15). However, the molecular 
mechanisms that comprise anti-DSG autoAb and lead to the loss 
of adhesion between keratinocytes in pemphigus are a major 
puzzle. Here, we review what has been generally proposed for 
pemphigus’ pathogenesis, while suggesting a potentially p38 
mitogen-activated protein kinase (p38 MAPK)-co-shared cen-
tral role for endoplasmic reticulum (ER) stress in the disease.

cONceivABLe MOLecULAr 
MecHANisMs FOr LOss OF ceLL 
ADHesiON iN PeMPHiGUs

Two main explanations, the first one simpler and more intuitive 
and the latter more recently proposed, have been put together 
as our knowledge of the disease has evolved. The simpler model 
proposes that pemphigus pathogenic autoAb inhibit, either steri-
cally or allosterically, the interaction of DSG1 and DSG3 from 
desmosomes of adjacent keratinocytes (trans-interaction), induc-
ing loss of cell adhesion. Such hindrance would take place at the 
extracellular (EC) domains 1 and 2 located in the NH2-terminal 
region of DSGs, where pathogenic autoAb have been shown to 
bind specifically (16–20). Importantly, at least one of these EC 
domains is believed to allow for cis- and trans-interactions neces-
sary for robust binding between adjacent keratinocytes (21).

In clinical terms, this model has been corroborated by the 
main findings that, in a Brazilian endemic form of PF known 
as fogo selvagem, patients in the preclinical stage exhibit IgG1 
autoAb against the EC5 domain of DSG1, and that the onset 
of disease is accompanied by the emergence of IgG4 autoAb 
recognizing the EC1 and EC2 domains of the molecule (22). 
Similarly, mucosal PV is suggested to evolve to mucocutaneous 
PV upon intramolecular epitope spreading of autoAb against 
EC domains of the COOH-terminal region to autoAb against 
EC domains of the N-terminus portion of DSG3, as the former 
autoAb fail to recognize human skin and the latter autoAb 

have affinity for this tissue (23). This intramolecular epitope 
spreading in DSG3 is believed to precede an intermolecular 
epitope spreading from DSG3 to DSG1, an autoAb profile that 
correlates with the mucocutaneous form of PV (9). However, 
that autoAb against the EC C-terminus portion of DSG3 can 
be pathogenic themselves and that PV patients may have anti-
DSG3-N-terminus portion autoAb without showing skin lesions 
suggest another layer of complexity to this model of pemphigus’ 
pathogenesis (23). The fact that some PF and PV patients also 
exhibit IgG or other isotypes of autoAb with specificity to differ-
ent keratinocyte adhesion and/or non-adhesion molecules also 
argues in favor of a more complex pathogenesis [reviewed in 
Ref. (24, 25)]. Moreover, DSG1 and DSG3 have been shown to 
be targeted also by other immunoglobulin isotypes, specifically 
by IgE and IgM autoAb, which may as well play a role in disease 
development [reviewed in Ref. (26, 27)].

The rather simple explanation of pemphigus’ pathogen-
esis through steric hindrance relies on the DSG compensation 
hypothesis, which states that the distribution of DSG1 and DSG3 
in the epidermis determines the site of blistering in pemphigus 
skin. Based on what has been discussed so far, this suggests that 
either DSG1 or DSG3 could solely account for epidermal cohe-
sion. However, a new concept for the pathogenesis of pemphigus  
derives from a series of observations of signaling pathways acti-
vated by PF and PV autoAb [reviewed in Ref. (24)]. Among these 
activated pathways, researchers have described involvement of 
cyclic adenosine monophosphate (cAMP), epidermal growth fac-
tor receptor kinase (EGFRK), heat shock protein 27 (HSP27), c-Jun 
N-terminal kinases (JNK), mechanistic target of rapamycin, phos-
pholipase C, protein kinases A and C, p38 MAPK, tyrosine-protein 
kinase SRC, and other tyrosine kinases (28–36). This new model 
has been termed apoptolysis, referring to the loss of epidermal cell 
adhesion (acantholysis) as a main outcome of the activation of 
keratinocyte intracellular apoptotic enzymes following the binding 
of distinctive autoAb profiles in pemphigus (36, 37).

It is not clear, however, whether apoptosis is a necessary pre-
ceding event for the pathognomonic acantholysis in pemphigus 
patients. In fact, in a large-scale electron microscopy study of 
pemphigus skin and mucosa, no cellular changes compatible 
with apoptosis were observed in lesional or non-lesional tissue 
(38). Moreover, molecular evidences have also argued against 
the role of apoptosis in blistering given the lack of consistent 
TUNEL positivity and detection of apoptotic markers, such as 
cleaved caspase 3, in pemphigus biopsies (39, 40). In a review 
on the topic, Schmidt and Waschke reported that most of the 
experiments suggesting a role for apoptosis in pemphigus were 
based on keratinocyte culture assays and their incubation with 
PV-derived IgG (41). This has been interpreted as a consequence 
of the high levels of Fas ligand present in pemphigus sera, which 
would be a trigger for the extrinsic apoptotic pathway (42). 
Independently of apoptosis being a primary or secondary, or 
even an irrelevant event in pemphigus’ pathogenesis, the signal 
transducing component of the apoptolytic theory is a well-
supported and expected sequence of events, as illustrated below 
by the role of p38 MAPK pathway engagement in pemphigus. 
In summary, the concept of altered signaling involves the fol-
lowing events: (i) phosphorylation of adhesion or non-adhesion 
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FiGUre 1 | The proposed central role of p38 mitogen-activated protein 
kinase (p38 MAPK) in pemphigus’ pathogenesis. The molecular complex 
supposed to be formed by desmoglein (DSG, specifically DSG3, as of the 
gap for data on DSG1), plakoglobin, and p38 MAPK induces keratinocyte 
apoptolysis and a local inflammatory response after binding of pemphigus 
IgG to extracellular domains of DSG. A phosphorylation cascade involving 
p38 MAPK, MAPK activated protein kinase 2 (MK2), and heat shock protein 
27 (HSP27) leads to the collapse of the cytoskeleton and ultimately to 
keratinocyte apoptosis. The central role of p38 MAPK includes the 
production of pro-inflammatory cytokines.
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molecules with desmosome disassembly, (ii) derangement and 
collapse of the cytoskeleton, and (iii) impaired formation of 
new intercellular desmosomes and/or keratinocyte apoptosis 
[reviewed in Ref. (24, 41)].

Although the apoptolysis hypothesis was initially proposed 
based on direct observations, as the DSG compensation 
hypothesis fails to explain the mismatch between the autoAb 
pattern/DSG1 and DSG3 distribution and the morphological 
blistering phenotype observed in PV (24), the apoptolytic 
mechanism considers several other events also observed in PF. 
Initially, cell culture and cell-free assays showed that anti-DSG1 
autoAb derived from PF patients induce keratinocyte dis-
sociation without direct inhibition of DSG1 trans-interaction, 
possibly requiring cell-dependent signaling mechanisms (43). 
Furthermore, PF IgG also activated the p38 MAPK pathway 
and induced blister formation in a murine model of PF (44). 
More recently, a careful inspection of the ultrastructure of PF 
lesional skin revealed: almost detached keratinocytes with 
severe stretching of plasma membranes in pre-acantholytic 
areas; desmosomes still attached but beginning to tear off from 
cell membranes; and full desmosomes torn off from keratino-
cytes (45). This would agree with the third and fourth steps of 
the apoptolytic mechanism, after transduction of apoptolytic 
signals from plasma membranes (step 1), and elevation of 
intracellular calcium and launching of cell death cascades 
(step 2): “collapse and retraction of the tonofilaments … while 
most of desmosomes remain intact” (step 3); and “collapse 
of the cytoskeleton and tearing off desmosomes from the cell 
membrane” (step 4) (37). Another recent finding supporting the 
apoptolysis model, where p38 phosphorylation is presumed to 
have a central role (Figure 1), comes from the observation that 

hampered DSG trans-interaction does not result in keratinocyte 
dissociation when p38 MAPK signaling is inhibited (46). Very 
recently, in fact, it has been shown that blockage of p38 MAPK 
prevents PV-IgG-induced blistering (47) and PF-IgG-induced 
desmosomal changes (48) both in human skin.

More sophisticated studies have corroborated the simpler 
understanding that pemphigus autoAb induce loss of cell 
adhesion through steric hindrance. In another ultrastructural 
inspection of pemphigus skin and mucosa, two interesting 
findings have been reported for the first time in PF: the lack 
of desmosomes surrounding spontaneous blisters; and blister-
ing in the below-granular layers when force was applied (38). 
According to the authors, these observations best fit the non-
assembly depletion hypothesis, which may be considered a 
complementation of the steric hindrance hypothesis (25). It has 
also been verified that, among isolated monoclonal antibodies 
(mAb) of a PF patient, the single DSG1-specific pathogenic 
mAb recognizes exclusively the mature form of DSG1 lack-
ing the N-terminal prosequence, while those non-pathogenic 
mAb were able to bind preferably the precursor form. Among 
all mAb, only the pathogenic mAb showed binding to the 
mature DSG1 region thought to be responsible for DSG 
trans-interaction (49). DSG1 maturation has been known to 
be regulated by furin, a proprotein convertase, via proteolytic 
cleavage of the prosequence (49, 50). Transcription of FURIN 
can be positively regulated by nuclear factor kappa-light-chain-
enhancer of activated B cells (NFκB) (51) and cAMP-responsive 
element-binding protein (52), both of which are activated by 
p38 MAPK signaling pathways (51, 53). ER stress, in turn, 
has been very recently associated to PV’s pathogenesis (54). 
Therefore, considering that ER stress seems to be involved in 
pemphigus’ pathogenesis, while being known as an activator 
of the p38 MAPK pathway, which in turn has been reported to 
lead to ER stress, we focus on the potential connection between 
these pieces by suggesting that they may be linked as a positive 
feedback loop (Figure 2).

p38 MAPK siGNALiNG PAtHWAY iN 
PeMPHiGUs

The importance of the p38 MAPK pathway involvement in pem-
phigus pathogenesis has been consistently reported throughout 
the literature (28, 29, 44, 46–48) and extensively reviewed 
elsewhere (55). The observations that DSG3 and p38 MAPK are 
in close proximity and that plakoglobin, p38 MAPK, and DSG3 
can be co-immunoprecipitated have suggested the existence of a 
signaling complex formed by these molecules and its importance 
for the anchorage of the desmosomal plaque to the keratinocyte 
cytoskeleton (Figure 1) (56). Interestingly, phosphorylation of 
p38 MAPK induced by incubation of cultured keratinocytes 
with PV IgG can take place as early as 15 min, corroborating 
DSG3 and p38 MAPK association (32). However, this same 
study showed that, for the majority of patient-derived PV IgG, 
phosphorylated p38 MAPK did not reach its peaks until after 
240  min from incubation. Such peaks were observed after an 
important reduction of p38 MAPK and increase of EGFRK and 
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FiGUre 2 | A model for a crosstalk between endoplasmic reticulum (ER) stress and p38 mitogen-activated protein kinase (p38 MAPK) pathway in the context of 
pemphigus. Both pemphigus IgG and non-IgG extracellular factors lead to ER stress resulting in C/EBP-homologous protein (CHOP) induction via protein kinase 
R-like ER kinase (PERK) and activating transcription factor 6 (ATF6). ER stress activates p38 MAPK through the inositol-requiring kinase 1 (IRE1)-apoptosis 
signal-regulating kinase 1 (ASK1)-MKK6/7 signaling pathway, and CHOP is activated by p38 MAPK. Pemphigus IgG binding preferentially to mature desmoglein 
(DSG) 1 and/or 3 activates the p38 MAPK pathway, which in turn induces ER stress. Dual-specificity phosphatases (DUSPs), negative regulators of p38 MAPK 
activation, can be targeted by either non-IgG extracellular factors or intracellular regulatory factors, such as RNAs and proteins, with altered expression or structure. 
ER stress and p38 MAPK play a critical role in keratinocyte apoptosis, heat shock protein 27 (HSP27) phosphorylation and transcriptional regulation of cytokines. In 
addition, activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and cAMP-responsive element binding protein (CREB) by p38 MAPK 
signaling pathway positively regulates FURIN transcription, which ultimately facilitates the DSG maturation process. As more mature DSG becomes available on the 
keratinocyte’s plasma membrane, the entire process restarts, characterizing the positive feedback loop.
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SRC phosphorylation at 60 min. Comparable findings had been 
reported previously (30). Meanwhile, it has been documented 
that p38 knockdown seems to prevent loss of desmosomal DSG3 
and exogenous p38 activation appears to induce DSG3 inter-
nalization, both in PV IgG-treated keratinocyte cultures (57). 
Therefore, the late p38 phosphorylation peak has been inter-
preted as a consequence of internalized and processed DSG3, 
which in turn would not be primary for the loss of keratinocyte 
adhesion in PV, but actually an enhancer for blistering through 
DSG3 endocytosis.

Nonetheless, it is conceivable that such late peaks of p38 
phosphorylation represent the activation of distinct pathways 
that converge to p38 MAPK de novo engagement, as in a positive 
feedback loop. In fact, negative feedback mechanisms insure that 
MAPKs are not uninterruptedly active. This task is undertaken 

by dual-specificity phosphatases (DUSPs), proteins with precise 
phosphorylating and dephosphorylating functions and with 
discrete cell-type distribution and subcellular localization (58). 
DUSP1, also known as MAP kinase phosphatase 1 (MKP1), is 
a well-known regulator of p38 MAPK activation, which may in 
turn induce a DUSP1-dependent negative feedback (59, 60). 
Besides the conceivable existence of a positive feedback loop 
downstream of a p38 phosphorylation and dephosphorylation 
cycle by DUSPs, these are themselves potentially associated with 
autoimmune diseases. DUSP1, for example, is underexpressed 
in psoriatic skin lesions in comparison to their normal-
appearing counterparts (61), and this is believed to contribute 
to the inflammatory condition observed in the disease. Such an 
assumption derives from reports indicating reduced produc-
tion of cytokines when inhibiting signaling through MAPKs. 
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The PV-associated interleukin (IL)-8, for instance, seems to 
be downregulated with MKP1-dependent inhibition of p38 
MAPK (62, 63). Finally, given the limited repertoire of known 
p38 dephosphorylators, regulatory RNAs that putatively target 
DUSPs could be comprehensively validated as such. Specifically, 
pemphigus-overexpressed microRNAs (miRNAs) putatively 
targeting DUSPs could be validated in light of their role in 
fine-tuning gene expression at the posttranscriptional level. 
This approach would be of special importance for validating the 
existence of a positive feedback loop, because of the expected 
upregulation of DUSP expression downstream of p38 MAPK 
activation and the potential existence of an abnormal miRNA 
profile in pemphigus keratinocytes. Again, such abnormal 
profile could include upregulated miRNAs that target DUSPs’ 
messenger RNA, therefore interfering with the negative feed-
back between newly synthesized DUSPs and p38 MAPK.

tHe eMerGiNG rOLe OF er stress iN 
PeMPHiGUs

In contrast with the well-established role of p38 MAPK in 
pemphigus, the importance of ER stress in the disease has not 
yet undergone scrutiny. However, a link between ER stress and 
apoptosis has been demonstrated. During ER stress, proapoptotic 
transcription factor C/EBP-homologous protein (CHOP, or DNA 
damage-inducible transcript 3, DDIT3) is induced by PKR-like 
endoplasmic reticulum kinase (PERK) and activating transcrip-
tion factor 6 (ATF6) on ER membranes. Inositol-requiring kinase 
1 (IRE1α) on ER membranes is also activated by ER stress result-
ing in activation of p38 MAPK via apoptosis signal-regulating 
kinase 1 (ASK1) and MKK6/7. p38 MAPK in turn activates 
CHOP (Figure  2) [reviewed in Ref. (64)]. Engagement of p38 
MAPK and JNK pathways were reported to take place initially 
after stimulation of Epstein–Barr virus-transformed B cells with 
anti-CD70—a treatment that leads to ER stress-mediated apop-
tosis of these cells—while inhibition of both pathways blocked 
upregulation of ER stress markers, such as CHOP (65). Also, p38 
MAPK can function as an upstream inducer of ER stress (66, 67). 
This is indicative of the existence of an ER stress response via p38 
MAPK and JNK pathways, suggesting that at least ER stress and 
p38 MAPK might be connected by a two-way route (Figure 2).

Some studies have investigated the involvement of ER stress in 
pemphigus pathogenesis. The ER stress pathway represented by 
the activation of PERK was shown to be engaged when exposing 
cultured keratinocytes to PV serum (68), which had been previ-
ously shown to upregulate PERK (69). Moreover, downregulation 
of PERK expression through small interfering RNA restricted 
the changes in keratinocyte cell cycle and viability typically 
observed after treatment of these cells with pemphigus serum 
(68). Interestingly, PERK phosphorylation can occur indepen-
dently of PV IgG, i.e., when treating keratinocytes with total or 
Ig-depleted PV serum (68). However, by looking at the isolated 
effects of both anti-DSG1 and anti-DSG3 PV autoAb on ER stress 
induction, it was also reported that overexpression of CHOP 
may be anti-DSG1 dependent (54). These apparently conflicting 
results might be interpreted in light of the different intracellular 

signaling events triggered by the heterogeneous autoAb profiles 
of pemphigus patients (36). Moreover, in contrast with DSG3, 
it is unknown whether DSG1 is in association with p38 MAPK 
or not. Thus, the specific signaling complexes formed by both of 
these molecules could also explain such results.

Besides stimulating or being stimulated by the p38 MAPK 
pathway, ER stress could be contributing to the activation of 
HSP27 in pemphigus. Phosphorylation of this protein, known to 
occur in pemphigus and downstream of p38 MAPK and MAPK-
activated protein kinase 2 (MK2, or MAPKAPK2) (70), has been 
reported to be induced by ER stress (71). Although environmen-
tal factors may play an important role in the pathogenesis and 
course of pemphigus, the contribution of viral infections to the 
disease remains unclear (72). Nonetheless, it has been reported 
that a hepatitis B virus envelope protein is capable of activating 
the p38 MAPK and NFĸB pathways in an ER stress-dependent 
manner (73), being therefore an example of how viral factors 
could directly contribute to a connected ER stress induction and 
p38 MAPK activation. Altogether, by adding ER stress to the 
understanding of pemphigus pathogenesis, an entirely new set 
of hypotheses and connections can be made in the context of the 
signaling pathways activated in the disease. Hence, we have put 
together a model in which ER stress has a potential central role 
in pemphigus (Figure 2). In summary, we suggest that ER stress 
may be triggered more directly by non-IgG factors, secondarily 
by anti-DSG1 autoAb—given the anti-DSG1-dependent induc-
tion of ER stress found by Mihailidou and collaborators (54)–or 
indirectly by pemphigus IgG via p38 phosphorylation. Once 
ER stress has been triggered, it can act as positive regulator of 
p38 phosphorylation. In addition, we suggest that pemphigus 
patients may produce factors that also, directly or indirectly, 
downregulate DUSP levels and act in conjunction with ER 
stress, for example, to allow for a secondary, but strong p38 
MAPK engagement.

cONcLUDiNG reMArKs

The existence of consistent data favoring either one of the 
molecular mechanisms explaining the loss of cell adhesion in 
pemphigus is consistent with its intricate pathogenesis. Indeed, 
histopathology may develop as a consequence of anti-DSG 
antibodies, both, impairing DSG trans-interaction through steric 
hindrance and subsequently transducing intracellular signals 
leading to keratinocyte apoptosis. However, non-IgG factors 
may also contribute to histopathology by inducing additional 
pathways, including ER stress, which may in turn activate the 
p38 MAPK signaling pathway of great importance in pemphigus. 
By connecting both, the ER stress and the p38 MAPK pathway, 
we put in perspective a potential positive feedback loop between 
these events in which, in an IgG-dependent manner, p38 MAPK 
activation leads to ER stress, which in turn stimulates p38 phos-
phorylation. We also suggest that, independently of autoAbs, i.e., 
also through factors such as viral particles, cytokines, metabolites, 
and/or regulatory RNAs and proteins, ER stress would primarily 
induce p38 MAPK activation, which would then prompt the 
positive feedback loop through the same intracellular signaling 
cascades. Finally, this is suggestive of a central role for ER stress 
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in pemphigus pathogenesis and, by bringing this to light, we hope 
to inspire researchers in the field to deepen the understanding of 
this life-threatening disease.
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