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Antibodies are central in vaccine-mediated protection. For HIV-1, a pathogen that  
displays extreme antigenic variability, B cell responses against conserved determinants 
of the envelope glycoproteins (Env) are likely required to achieve broadly protective 
vaccine-induced responses. To understand antibodies in chronic infection, where 
broad serum neutralizing activity is observed in a subset of individuals, monoclonal 
antibodies mediating this activity have been isolated. Studies of their maturation path-
ways reveal that years of co-evolution between the virus and the adaptive immune 
response are required for such responses to arise. Furthermore, they do so in subjects 
who display alterations of their B cell subsets caused by the chronic infection, condi-
tions that are distinctly different from those in healthy hosts. So far, broadly neutralizing 
antibody responses were not induced by vaccination in primates or small animals with 
natural B cell repertoires. An increased focus on the development vaccine-induced 
responses in healthy subjects is therefore needed to delineate how the immune sys-
tem recognizes different forms of HIV-1 Env and to optimize approaches to stimulate 
antibody responses against relevant neutralizing antibody epitopes. In this review, 
we describe aspects of Env-directed antibody responses that differ between chronic  
HIV-1 infection and subunit vaccination for an increased appreciation of these differ-
ences; and we highlight the need for an improved understanding of vaccine-induced 
B cell responses to complex glycoproteins such as Env, in healthy subjects.
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B CeLL SUBSeTS in nORMAL PHYSiOLOGY

The human adaptive immune system relies on several B-lymphocyte subsets with distinct roles. 
Circulating B  cells can be classified as antigen-inexperienced or antigen-experienced cells. 
Among the former are the immature, transitional B cells and the mature naive B cells. Human 
transitional B cells are divided into T1 (CD10+CD21loCD27-) and T2/3 (CD10+CD21hiCD27−) 
B cells, while the mature naive B cells are defined as CD10-CD20hiCD27− cells. Transitional B cells 
and mature naive B cells express germline-encoded immunoglobulin (Ig) genes of the IgD and/or 
IgM isotypes. In contrast, memory B cells, plasmablasts, and plasma cells are antigen-experienced 
cells that in most cases originate from germinal center reactions. Most antigen-experienced 
B cells have undergone somatic hypermutation (SHM) and class switch recombination to IgG, 
IgA, or IgE (1), but non-switched memory B cells also exist (2). Resting memory B cells persist 
by self-renewal, which proliferate and differentiate into plasma cells upon antigen re-exposure. 
To maintain the lineage following activation, some daughter cells remain as slowly dividing 
memory B cells, while others become terminally differentiated antibody-secreting cells (ASCs). 
Whether this is a stochastic process (3) or mediated by directed asymmetric cell division (4) 
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remains a question of debate. Peripheral ASCs, often referred to 
as plasmablasts, are short-lived and distinct from the long-lived 
plasma cells found in bone marrow (BM) or other anatomical 
niches that support their survival (5, 6).

During late-stage B cell development, immature/transitional 
B cells exit the BM to enter the circulation where they are sub-
jected to peripheral selection. This is at least in part regulated 
by B  cell-activating factor (BAFF), which is present in limited 
quantities, thereby setting a competitive threshold for B cell 
survival (7, 8). The surviving mature naive B  cells migrate to 
secondary lymphoid organs, i.e., the spleen, lymph nodes, and 
mucosa-associated lymphoid tissue. Upon antigen encounter, 
extrafollicular plasma cell responses resulting in the production 
of antibodies that have not undergone SHM may occur. However, 
most B cell responses against protein antigens are T cell depend-
ent and products of germinal center reactions. Here, antigen-
specific B cells undergo hypermutation of the encoded antibody 
sequences to diversify the antigen-specific repertoire and the 
resulting B cells interact closely with follicular dendritic cells and 
follicular helper T (Tfh) cells for selection of high affinity B cell 
clones. The signals that dictate B cell differentiation into memory 
B cells or plasma cells in the germinal center reaction are only 
beginning to be understood (9), including the important roles of 
Tfh cells (10–12). These processes are of high relevance for vac-
cine research as both memory B cells and plasma cells are needed 
for sustained humoral immunity.

B CeLL DYSFUnCTiOn in  
Hiv-1-inFeCTeD inDiviDUALS

During chronic HIV-1 infection, several imbalances in B cell 
subsets develop (Figure 1), affecting the capacity of chronically 
infected individuals to respond to vaccination and handle  
co-infections (13–17). Hypergammaglobulinemia and loss of B 
cell memory are hallmarks of these humoral immunity altera-
tions (18, 19). Dysregulation of B cells is apparent relatively early 
after HIV-1 infection and worsens during disease progression. 
Early introduction of antiretroviral therapy to dampen active 
viremia has positive effects on preserving B cell subsets (20). 
Dysregulated B cell subsets and functions are also observed 

in individuals repeatedly exposed to malaria (19). Thus,  
B cell alterations in both HIV-1- and malaria-infected subjects 
are likely consequences of prolonged inflammatory responses 
that occur under these conditions, rather than caused by direct 
pathogen–B  cell interactions. The specific B cell alterations 
described in chronically HIV-1-infected individuals include 
effects on both antigen-inexperienced cells and antigen-
experienced cells as discussed below.

Antigen-inexperienced Cells
HIV-1-infected individuals display increased frequencies of 
circulating immature transitional B  cells (21). As transitional 
B  cells display increased sensitivity to spontaneous apoptosis, 
this may lead to a decreased pool of mature naive B  cells  
(22, 23). Altered migratory capacity of immature transitional B cells 
was also observed, which could affect the distribution of these  
cells between blood and secondary lymphoid organs in HIV-1-
infected individuals (24). Furthermore, as mentioned earlier, 
peripheral B cell selection is regulated by BAFF, a B cell growth 
factor shown to be elevated in both chronic infection and auto-
immunity (25, 26). BAFF is regulated by type I interferons (27); 
thus, increased BAFF levels in HIV-1 infection may result from 
sustained type I interferon responses due to chronic viremia. A 
potential consequence of increased BAFF levels is that B cell selec-
tion thresholds are altered, which may promote survival of B cells 
that otherwise would be subject to negative selection such as poly-
reactive or auto-reactive clonotypes (28, 29). Whether the naive 
B cell repertoire in HIV-1-infected individuals more frequently 
display features associated with poly- or self-reactivity is not 
known but will be important to investigate, especially in relation 
to the generation of broadly neutralizing antibodies (bNAbs) (30).

Antigen-experienced Cells
HIV-1-infected individuals also display alterations of the memory 
B cell compartment. Activated human memory B cells, defined as 
CD20+/CD21lo/CD27+, and tissue-like memory B cells, defined 
as CD20+/CD21lo/CD27−, are increased during persistent HIV-1 
infection, whereas resting memory B  cells, defined as CD20+/
CD21hi/CD27+, are decreased in frequency (13, 31). Consequences 
of these B cell compartment alterations are observed already 
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early in infection in the form of poor maintenance of serological 
antibody responses to previous vaccination (i.e., measles, tetanus, 
and pneumococcus) (17), as well as impaired responses to new 
vaccinations (32). During the chronic phase of the infection, 
exhausted B cells also appear. Exhausted B cells are characterized 
by a decreased capacity to proliferate in response to stimulation 
(33). The exhausted memory B cell phenotype is reminiscent 
of that of exhausted T  cells with expression of molecules that 
negatively regulate antigen receptor signaling or homing to 
sites of inflammation (34, 35). Furthermore, HIV-1-infected 
individuals display increased frequencies of circulating CD20−/

lo/CD27hi/CD38hi plasmablasts (36) consistent with non-antigen-
specific differentiation of memory B  cells into ASCs resulting 
in hypergammaglobulinemia and decreased numbers of resting 
memory B cells. Thus, the immune system in chronically HIV-1-
infected individuals is different from that of healthy subjects in 
several ways, which likely affects the kinds of antibodies that are 
elicited. Below, we compare and contrast what is known about the 
induction of neutralizing antibody responses in chronic infection 
versus in immunization for an improved appreciation of these 
differences.

THe env TRiMeR AS A neUTRALiZinG 
AnTiBODY TARGeT

The envelope glycoproteins of HIV-1 (Env) are the only virus-
encoded antigens exposed on the external surface of the virus 
particle and thus the sole targets for neutralizing antibodies. 
The HIV-1 Env spike is composed of a trimer of dimers in a 
tightly packed infectious entry unit where the external glyco-
protein gp120 is non-covalently attached to the transmembrane 
protein gp41 (37, 38). The native HIV-1 Env trimer complex 
is meta-stable and readily acquires lower energy forms that 
are highly immunogenic [reviewed in Ref. (39)]. Antibodies 
elicited by these non-native forms of Env are non-neutralizing, 
or only capable of neutralizing sensitive (tier 1) viruses, which 
are distinctly different from circulating neutralization-resistant 
(tier 2) virus variants (38).

The functional Env spike is exceptionally well shielded 
from immune recognition by N-linked glycans that cover 
most of the Env protein surface (40). The sites for N-linked 
glycosylation in the primary Env amino acid sequence vary 
between different virus strains and between different time 
points of viral evolution of a given strain demonstrating the 
plasticity of Env. HIV-1 evolves constantly in response to host 
antibody responses in each chronically infected individual, and 
neutralization-sensitive viruses are readily eliminated in  vivo 
leaving only resistant variants in the circulating pool (41). An 
interesting recent study demonstrated that currently circulating 
HIV-1 variants are more neutralization resistant than variants 
isolated from the beginning of the epidemic, in part due to the 
acquisition of a denser Env glycan shield over time (42). The 
intrinsic neutralization resistance of HIV-1 is a major challenge 
for vaccine development where the goal is to induce antibodies 
capable of neutralizing a broad range of tier 2 isolates to curb 
HIV-1 transmissions worldwide.

neutralizing Antibodies elicited by Chronic 
infection
Env-specific antibodies generated during the first months of 
HIV-1 infection are non-neutralizing or strain-specific neu-
tralizing. Non-neutralizing antibodies are elicited by highly 
immunogenic non-functional forms of Env as mentioned 
earlier. Strain-specific antibodies neutralize the autologous 
virus that elicited them but not contemporary viruses that 
arose subsequently as a result of immune escape from the first 
wave of antibodies (41). About 2–4  years after the acute of 
infection, approximately 20% of infected individuals develop 
cross-neutralizing antibodies (Figure 2) and 1–2% of infected 
individuals develop bNAbs, which exhibit exceptionally potent 
neutralizing capacity against a large proportion of virus isolates 
(43, 44). Isolation and mapping of bNAbs at the monoclonal 
antibody level allows definition of their target epitopes, reveal-
ing sites of vulnerability on the virus that can be targeted by 
epitope-focused vaccine approaches (45–52).

Since chronic HIV-1 infection is characterized by an 
arms race between viral evolution and the adaptive immune 
response, new epitopes are continuously generated, sequentially 
driving the B cell repertoire toward the generation of bNAbs 
(53–55). The extensive antigenic variability in Env results mainly  
from the error-prone HIV-1 reverse transcriptase, which gen-
erates swarms of variants in each infectious cycle from which 
immune escape variants are selected. Despite the high antigenic 
variability of HIV-1 Env, some determinants are conserved as 
mutations in these elements compromise viral fitness. These 
regions are targets for bNAbs and include the primary receptor 
binding site, the CD4bs, certain variable region 2 (V2) deter-
minants in the trimer apex, the base of the V3 region, and the 
gp120–gp41 interface region [reviewed in Ref. (56)]. In the case 
of bNAbs targeting the V3 base, the surrounding N-glycans are 
often part of the epitope (57, 58). The glycan reactivity observed 
in many HIV-1-infected individuals (59) is intriguing since 
antibodies against N-linked glycans is essentially a response 
against self-structures, which is uncommon in healthy subjects. 
Thus, the development of such antibodies in chronic HIV-1 
infection may reflect a relaxation of peripheral check-points 
allowing potentially self-reactive B  cells to escape negative 
selection (60).

Several studies have shown that bNAbs possess a high degree 
of divergence from their corresponding germline antibody 
sequences, indicating extensive SHM of the antibody sequences 
(57, 58, 61). High SHM suggests that multiple rounds of affinity 
maturation and selection in germinal centers have occurred, 
which appears to be required to develop features associated with 
broad HIV-1 neutralization. High levels of SHM are not unique 
to bNAbs but are generally seen in HIV-1 infection (62), as well 
as in other chronic infections and some settings of autoimmunity 
(63). This suggests that extensive SHM is a consequence of pro-
longed antigen exposure and persistent inflammatory responses, 
processes that allow selection of B cells over long periods of time. 
However, it is likely that not all changes introduced by SHM are 
required for bNAb activity as shown for the bNAb VRC01, where 
a subset of the amino acid changes that differed between the 
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mature antibody and the assigned germline VH1-2*02 sequence 
were sufficient to confer bNAb activity (64).

The high degree of divergence of bNAb sequences from their 
germline Ig gene segments complicates the process of infer-
ring the unmutated recombined ancestor sequences for these 
antibodies. Studies of germline-reverted bNAb sequences have 
shown that they rarely bind Env suggesting that they possess 
very low initial affinities to the unmutated BCR (65). However, in 
most cases where this was studied, the Env present in the patient 
at the time of elicitation of the bNAb lineage was not known.  
An exception to this is the identification of antibody CH103, which 
binds the presumed transmitted/founder Env in its germline-
reverted form (55). The lack of Env binding to germline-reverted 
bNAbs may be explained by the fact that some human germline 
variable (V) alleles are missing in the current databases, which 
could affect the processes of germline reversion (66). In support 
of this, it is becoming increasingly clear that there are more 
human antibody V alleles than previously appreciated (67–70). 
An improved understanding of human antibody germline genes 
is therefore needed. We recently reported that next-generation 
sequencing (NGS) coupled with a new computational tool, 
IgDiscover, can accelerate the definition of germline-encoded Ig 
gene segments and allow higher-throughput studies (70).

HIV-1 bNAb sequences stand out not only because of high 
levels of divergence from their germline sequences in terms of 
single nucleotide differences but also because they frequently 
display insertions and deletions (indels) introduced during the 
process of SHM (71). Indels, which are rarely seen in antibod-
ies elicited in healthy subjects, generate further diversity in 

infection-induced Env-specific antibody repertoires, an area 
that is only beginning to be understood. The present increase 
in NGS-based antibody repertoire analysis provides highly 
valuable information about how the human B cell response 
evolves during chronic infections. Another characteristic 
feature of some classes of HIV-1 bNAbs, such as the apex-
targeting antibodies, is their exceptionally long heavy chain 
complementarity-determining region 3 sequences. B  cells 
encoding BCRs with such long HCDRs are rare in the naive B 
cell population but appear to be preferentially selected in Env-
specific responses, at least in a subset of individuals. This feature 
is likely required for the antibodies to penetrate the dense glycan 
shield and bind conserved determinants at the Env trimer apex 
(72, 73). Collectively, these genetic features demonstrate that 
HIV-1 antibodies are highly selected and bNAb specificities 
arise from extensive co-evolution processes between the virus 
and responding B cells.

neutralizing Antibodies elicited  
by Subunit env vaccination
The persistent B cell selection observed during chronic HIV-1 
infection is in stark contrast to the transient response that takes 
place following vaccination with non-replicating subunit vaccines. 
Highly mutated antibodies are not induced by current immuniza-
tion regimens but might be achievable by using heterologous Env 
immunogens administered in a sequential manner to promote 
responses to common determinants on HIV-1 Env. So far, bNAbs 
have not been elicited by immunization of primates with natural 
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immune repertoires. Given that bNAb development in infection 
depends on extensive B cell selection on a constantly changing 
pool of virus escape variants, it is not surprising that conventional 
immunization regimens do not induce bNAb specificities. It is 
also not known if certain precursor populations are lost dur-
ing peripheral B cell selection processes, which are known to 
be under tighter control in healthy vaccine recipients than in  
chronically infected HIV-1 individuals as mentioned earlier.

Immunization studies using early generation Env trimers 
provided valuable information about the B cell response elicited 
in both small animals and in primates. While tier 1-neutralizing  
antibody responses are readily induced, tier 2-neutralizing 
responses are mostly limited to autologous tier 2 responses 
(Figure  2) (74, 75). For a detailed understanding of epitope-
specific antibody responses induced by vaccination, methods 
for antibody specificity mapping and isolation of monoclonal 
antibodies are needed. Such methodologies are under con-
tinuous development to facilitate analyses of vaccine-induced 
responses at a higher level of resolution [reviewed in (76)]. 
Results from immunized non-human primates demonstrate that 
Env vaccine-induced responses consist of many different clono-
types, most of which appear to be modestly expanded (77–79). 
Highly polyclonal B cell responses are also observed in humans 
vaccinated with tetanus toxoid, another protein subunit-based 
vaccine, administered using a homologous prime-boost regimen  
(80, 81). It is perhaps not surprising that vaccine regimens based 
on homologous boosting result in polyclonal B cell responses 
with modest levels of SHM where each clonotype has reached an 
affinity ceiling to the invariant vaccine antigen (82), rather than 
being driven by a constantly changing antigen that repeatedly 
resets the affinity threshold for B cell selection, as is the case in 
HIV-1 infection.

Despite the many contrasts between chronic infection 
and vaccination, dissection of Env vaccine-induced antibody 
responses at the monoclonal level has also revealed similarities 
in terms of the targeted epitopes. For example, antibodies against 
non-neutralizing epitopes in gp41 as well as against tier 1-neu-
tralizing epitopes in variable region 3 (V3) are readily elicited 
in both settings suggesting that these specificities are abundant 
in the naive B cell repertoire in both humans and commonly 
used animal models as shown by monoclonal antibody isolation  
(78, 83, 84). Similarly, CD4bs-directed antibodies capable of 
neutralizing tier 1 viruses, exemplified by the non-broad neu-
tralizing antibody F105, are elicited both in infection (85) and 
in vaccination of non-human primates (86). The availability of 
protocols for efficient cloning of antibodies from non-human 
primates (86, 87) has facilitated such studies and are now widely 
used to dissect vaccine-induced responses in rhesus macaques. 
With the exception of one study (88), less is known about 

epitope-specific antibody responses in immunized rabbits where 
germline Ig genes so far are insufficiently characterized, cur-
rently hampering monoclonal antibody isolation in this model.

While early generation HIV-1 Env vaccine candidates were 
poor mimics of the functional Env spike, recent work has 
resulted in immunogens that better mimic the native viral spike. 
The definition of a native spike structure is that bNAbs epitopes 
are retained while non-neutralizing Ab epitopes are not. Soluble 
trimeric Env immunogens that meet these criteria include the 
BG505 SOSIP trimers and the Native Flexibly Linked (NFL trim-
ers) (89–91) for which high-resolution structures were obtained 
(92–94). Emerging in vivo evaluation of the immunogenicity of 
these trimers, when used in homologous prime-boost regimens, 
demonstrates that they elicit autologous tier 2-neutralizing 
antibody responses but limited neutralization breadth (95). The 
epitopes mediating strain-specific neutralization may be different 
for different HIV-1 strains, or in different host species, as exempli-
fied by the finding that antibodies against the V2 region mediate 
the autologous neutralizing activity induced by clade C 16055 
trimers in NHPs (95), while antibodies against the gp120-gp41 
interface mediate the autologous neutralizing activity induced 
by clade A BG505 trimers in rabbits (88). The role played by 
potential differences in host B cell repertoires in terms of the spe-
cificities induced by a given immunogen remains insufficiently 
understood but will be important to determine to better under-
stand predictability of different animal models for assessment of 
human vaccine candidates. In this respect, it was shown the same 
immunogen that elicits potent autologous neutralizing antibodies 
in rabbits fails to do so in mice (96). Further work is required to 
define similarities and differences in germline antibody genes and 
expressed repertoires between commonly used animal models, 
including small animals, NHPs, and humans.

In conclusion, while much has been learnt from studying 
the development of bNAbs in chronic HIV-1 infection, focused 
efforts are now needed to translate these findings to the setting of 
vaccination. Given the challenge of this goal, achieving this will 
require coordinated vaccine evaluation trials in both well-chosen 
animal models and in humans.
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