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Proinflammatory cytokines, such as TNF, IL-6, and IL-1, play pathogenic roles in  multiple 
diseases and are attractive targets for biologic drugs. Because proinflammatory  cytokines 
possess non-redundant protective and immunoregulatory functions, their systemic 
neutralization carries the potential for unwanted side effects. Therefore, next-generation 
anti-cytokine therapies would seek to selectively neutralize pathogenic cytokine signal-
ing, leaving normal function intact. Fortunately, the biology of proinflammatory cytokines 
provides several such opportunities. Here, we discuss various applications of bispecific 
antibodies targeting cytokines with specific focus on selective TNF neutralization  targeted 
directly to the surface of specific populations of monocytes and macrophages. These 
bispecific antibodies combine an anti-TNF VHH with VHHs or scFvs directed against 
abundant surface molecules on myeloid cells and serve to limit the bioavailability of TNF 
produced by these cells. Such reagents may become prototypes of a novel class of 
anti-cytokine biologics.

Keywords: tNF, iL-6, macrophages, single-chain antibodies, vHH

Many currently used therapeutic antibodies represent antagonists or inhibitors of signaling cascades 
that are known to be pathogenic in a particular disease state. Examples include anti-cytokine therapies 
and immune checkpoint inhibitors, both of which have resulted in major advances in the treatment 
of autoimmune diseases and cancer. One common problem with many of such inhibitors, when 
applied systemically, is incomplete discrimination of “pathogenic” signaling from “physiological” 
signaling, the latter being beneficial for the patient. Therefore, most current therapies have unwanted 
side effects resulting from collateral damage to beneficial or protective signaling cascades. This 
problem can be potentially addressed through additional specificity conferred by more sophisticated 
inhibitory antibodies that target their cognate antigens only in a particular organ or cell lineage.

Therapeutic bispecific antibodies have showed efficacy in both experimental animal models and 
in clinical trials (1), finding applications in cancer immunotherapy (2) as well as in treatment of 
autoimmune diseases (3) and hemophilia (4). Examples include: (i) bispecific T-cell engagers (5) 
that redirect the activity of CD3+ cytotoxic T lymphocytes against CD19+ leukemias and lympho-
mas (6) and EpCAM+ solid tumors (7); (ii) bispecific NK-cell engagers that redirect the activity 
of CD16+ natural killer cells against CEA+ solid tumors (8); (iii) bispecific molecules composed 
of a CD19-binding moiety and an anti-CD47 immune checkpoint inhibitor, allowing for selective 
CD47 blockade on malignant B cells (9); (iv) bispecific molecules composed of an a β-secretase 
(BACE-1)-inhibiting moiety and an anti-transferrin receptor “trojan” moiety to facilitate permeation 
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of the blood–brain barrier (10); and (v) bispecific molecules 
composed of an anti-HIV gp41 glycoprotein moiety and an 
anti-CD89 moiety, designed to facilitate virus clearance by blood 
neutrophils (11). Several designs of bispecific antibodies have 
been employed, including chemically conjugated monoclonal 
antibodies, quadroma-produced antibodies, or genetically fused 
recombinant single-chain Fvs (12). The lattermost molecules lack 
the Fc region and thus have very short serum half-lives. Recently, 
an interesting solution to the problem of rapid clearance of 
these molecules was proposed in the form of RNA delivery (13). 
Overall, more than a dozen bispecific antibodies have now been 
evaluated in clinical trials.

Several bispecific antibodies targeting cytokines have been 
described (14), allowing for dual cytokine blockade (15–18) as 
well as targeted cytokine neutralization on cytokine-producing 
cells (19) or at particular anatomical sites, such as inflamed joints 
(20). One important target in anti-cytokine therapy of autoim-
mune diseases is TNF, and many systemic anti-TNF biologics 
are approved for clinical use. There are several experimental 
reagents that have added a second specificity to an existing anti-
TNF moiety. For example, a bispecific antibody directed against 
TNF and IL-17A was shown to be effective for the treatment 
of psoriasis (21). A TNF inhibitor with additional specificity 
to ROS-modified collagen allowed for targeted TNF inhibition 
in arthritic joints (20). Coppieters et  al. (22) reported a highly 
efficient bispecific antibody that was able to bind TNF as well 
as an abundant serum protein (albumin), thus resulting in a 
significant increase of the antibody’s half-life in vivo. Two differ-
ent inhibitors of TNFRI signaling, each with a second specificity 
to serum albumin for half-life extension in vivo, are effective in 
mouse models of Crohn’s disease and arthritis (23–25). Other 
studies have achieved longer half-lives and increased poten-
cies of anti-TNF inhibitors by various types of dimerization or 
oligomerization (26–28) allowing the demonstration of their 
biological activity in mouse disease models. Although this was 
not directly determined, it may be assumed that all of these TNF 
inhibitors, including bispecifics, neutralized TNF produced by 
multiple cellular sources in a systemic fashion.

In our studies employing conditional gene targeting, we found 
that TNF produced by myeloid cells is pathogenic in several 
experimental mouse disease models (29–32). Assuming that 
TNF from other immune and non-immune sources may possess 
beneficial functions (33–35), we wanted to design an approach to 
pharmacologically limit TNF production only by myeloid cells. 
To this end, we designed, produced, and evaluated bispecific anti-
bodies that bind TNF with one arm and engage surface molecules 
abundantly expressed on myeloid cells through another arm. Two 
such potential surface markers—F4/80 (EMR1, the product of the 
Adgre1 gene) and CD11b (Mac-1a, Integrin αM, the product of 
the Itgam gene; expressed by myeloid cells, NK, and some other 
cells) can be employed.

The discovery of heavy-chain-only antibodies in Camelidae 
(36) led to the development of new technologies based on the 
ability to generate modular, high affinity binders (VHHs) specific 
to almost any protein. One particular aspect that drew our atten-
tion was the usefulness of VHHs in creating bispecific reagents, 
as two or even three VHHs can be easily combined in a single 

polypeptide chain by the methods of genetic engineering (19) and 
expressed in prokaryotic systems. In order to specifically target 
TNF produced by myeloid cells, we have initially utilized a single-
chain antibody to murine F4/80, which is exclusively expressed 
on myeloid cells with abundant expression on the surface of all 
mature macrophages (including microglia), Langerhans cells, 
and to a lesser degree on blood monocytes (37). We subsequently 
generated a novel VHH by immunizing a Bactrian camel with 
recombinant murine F4/80 and genetically fused it to an anti-
hTNF VHH (19). Because of the specificity of this reagent to 
human TNF, all subsequent in vitro and in vivo experiments were 
performed using human TNF knock-in mice (38). Collectively, 
for all these bispecific antibodies, a term myeloid cell-specific 
TNF inhibitor (MYSTI) has been coined. Figure 1 outlines the 
design, purification, and experimental protocols for evaluation 
of these anti-TNF bispecific VHH-based reagents.

Using flow cytometry, we found that MYSTI (exemplified 
here by MYSTI-2) binds to the surface of murine macrophages, 
competes with another anti-F4/80 reagent for this binding 
(Figures  2A,B), and attracts exogenously added human TNF 
to the surface of macrophages (Figure 2C). We then performed 
experiments to prove that endogenously produced TNF can also 
be retained on the cell surface. To this end, bone marrow-derived 
macrophages from humanized TNF knock-in (hTNF KI) mice (38) 
were incubated with MYSTI-2, or with control TNF-neutralizing 
antibodies lacking anti-F4/80 targeting module (referred here as 
systemic TNF inhibitor or STI), then washed and activated with 
LPS. As shown in Figure 2D, the amount of biologically active 
hTNF released into culture medium is significantly lower in the 
presence of MYSTI as compared to STI, suggesting that MYSTI 
indeed retained hTNF on the surface of macrophages and may 
limit its systemic release in vivo.

To get a better insight into the fate of hTNF and of MYSTI after its 
binding to the surface of macrophage, we utilized confocal micros-
copy, as outlined in Figures  1C–F. As expected, FITC-labeled 
MYSTI could stain these cells and was detected on the surface 
of activated macrophages as early as 15  min following incuba-
tion and—interestingly—up to 18 h later although in diminished 
amounts, consistent with our previous results (Figure 2E, top row 
and data not shown). In contrast, STI briefly stained activated 
macrophages after 15 min of incubation, while upon subsequent 
washing, such staining rapidly disappeared (Figure 2E, bottom 
row and data not shown). Since we did not detect binding of STI 
to unstimulated macrophages (data not shown), we hypothesized 
that such staining is due to recognition of transmembrane TNF 
(tmTNF) on the surface of activated macrophages. MYSTI was 
able to bind and retain human TNF produced by macrophages 
from hTNF KI mice (as indicated by the arrows in Figure  2E, 
top row) and exogenously added human TNF (Figure. 2F). We 
also detected rapid internalization of MYSTI (Figure 2F) starting 
from approximately 30  min of incubation with macrophages. 
Both unbound (Figure  2F, left) and TNF-bound (Figure  2F, 
right) bispecific antibodies were internalized, suggesting that 
internalization does not require TNF recognition by MYSTI. 
Exogenously added TNF, labeled by a secondary PE-conjugated 
antibody, could be detected on the surface of macrophages for at 
least 1–2 h (Figure 2F and data not shown).

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGUre 1 | Schematic representation of bispecific anti-cytokine antibodies exemplified by myeloid-specific TNF inhibitors (MYSTI). (A,B) Generation of FITC-labeled 
bispecific antibody composed of anti-hTNF VHH and anti-F4/80 VHH (MYSTI, A) and control antibody composed of the same anti-hTNF VHH and irrelevant VHH 
[Systemic TNF Inhibitor, STI, (B)]. Briefly, antibodies were expressed and purified as previously described (19) and were subsequently labeled with FITC. Calculated 
F/P ratio was approximately four FITC molecules per protein molecule. (c–F) Schematic representation of MYSTI (c–e) and STI (F) binding to macrophages 
analyzed by flow cytometry and confocal microscopy. FITC-labeled MYSTI binds specifically to F4/80 on the surface of macrophages and can bind and retain 
exogenously added hTNF or hTNF produced by activated cells as detected by anti-hTNF phycoerythrin (PE)-labeled antibody (Miltenyi Biotec). This resulted in 
surface staining of macrophages both with FITC and PE (c). MYSTI can be quickly internalized by macrophages resulting in intracellular FITC staining only  
(D), or when hTNF was added exogenously—double staining for both FITC and PE (e). STI did not bind to macrophages, as suggested by the absence of FITC or 
PE staining (F). Red dotted line indicates the position of tmTNF cleavage by TACE (ADAM17). Adapted from (19).
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Based on the encouraging finding that MYSTI, an antibody 
with two VHH domains, may be sufficiently long-lived on the 
surface of cytokine-producing cells, we evaluated these reagents 
in vivo. In LPS/D-Gal lethal toxicity model, pathogenic TNF is 
known to be produced by myeloid cells (39) and animals become 
moribund within 6–8  h (19). In this model, administration of 
MYSTI at 3  mg/kg completely protected mice, while the same 
dose of the control reagents (such as STI that contained exactly 
the same TNF-binding and neutralizing VHH module) failed to 

do so (19). Moreover, the results suggest that MYSTI retained 
its protective ability even at 1–1.5 mg/kg dose and modification 
with FITC did not affect its properties (Figure 2G and data not 
shown), thus allowing us to further investigate its fate in  vivo. 
As an additional control, we used Infliximab as a systemic TNF 
inhibitor control, which also protected mice against LPS/D-
Gal-induced hepatotoxicity at the dose of 1.5  mg/kg (data not 
shown); however, differences in molecular weight and avidity 
should be taken in account when comparing full-length systemic 
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FiGUre 2 | Characterization of MYSTI and STI interaction with macrophages in vitro and in vivo. (A) MYSTI, but not STI, competes with anti-F4/80 antibody for 
binding sites resulting in reduced staining for F4/80. Staining of macrophages with anti-F4/80 antibody in the presence of indicated concentrations of MYSTI  
(top panel) or STI (bottom panel). Red dotted line splits F4/80− and F4/80+ cells on the left and on the right, respectively. Briefly, bone marrow-derived macrophages 
were simultaneously incubated with anti-F4/80 antibody (clone BM8 that competed for binding to F4/80 with anti F4/80 VHH, used in MYSTI) and indicated amounts 
of MYSTI or STI. All cells were gated as ViabilityDye−CD11b+. (B) Staining of macrophages with anti-F4/80 only or in the presence of MYSTI or STI. Data indicate 
that MYSTI selectively binds to F4/80. (c) MYSTI, but not STI, binds to the surface of macrophages and retains exogenously added hTNF. Surface staining of 
macrophages with MYSTI or STI and hTNF. Top row represents unstained or single stained cells as controls. Bottom row represents staining of macrophages with 
MYSTI-FITC and hTNF (left), STI-FITC and hTNF (middle), and a summarizing histogram of hTNF staining (right). Briefly, bone marrow-derived macrophages were 
subsequently incubated with MYSTI or STI followed by recombinant human TNF and with anti-hTNF antibody incubations. All cells were gated as VD−CD11b+.  
(D) MYSTI, but not STI, prevents hTNF release into the culture medium by LPS-stimulated macrophages. BMDM from hTNFKI mice were cultured with MYSTI or STI 
antibodies or PBS, washed once, and stimulated with 100 ng/ml of LPS from E. coli. Release of hTNF into culture medium was measured 4 h following induction 
with LPS using Ready-Set-Go ELISA kit (eBioscience). **p < 0.01; ***p < 0.001 in one-way ANOVA. (e) Dynamics of MYSTI and STI staining on LPS-activated 
macrophages as revealed by confocal microscopy. Briefly, macrophages were activated with 100 ng/ml of LPS for 3 h, followed by incubation with FITC-labeled 
MYSTI or STI for 15 min, then washed, and fixed at indicated time points. Fixed cells were consequently permeabilized and stained with anti-hTNF Ab labeled with 
PE. Starting from 30 min of incubation, MYSTI could be detected both on macrophage surface and inside the cells, while weak binding of STI was observed only 
after 30 min of incubation. Arrows show co-staining of MYSTI and anti-hTNF. Scale bars—10 µm. (F) MYSTI is internalized by macrophages. Confocal microscope 
images of macrophages stained with MYSTI (green), anti-hTNF (red), and counterstained with DAPI (blue). Briefly, cells were consequently incubated with 
MYSTI-FITC, recombinant hTNF, and anti-hTNF labeled with PE and then fixed. On each of the two images, top left part represents DAPI staining, top right— 
MYSTI-FITC, bottom left—anti-hTNF-PE, and bottom right—merged picture. Arrows show internalized MYSTI bound (right image) or not bound to hTNF (left image). 
Scale bars—20 µm. (G) FITC-labeled MYSTI retains its ability to protect mice in the model of LPS/D-Gal-induced hepatotoxicity. Briefly, mice were injected i.p. with 
1.5 mg/kg, STI, or PBS and after 30 min were injected with lethal dose of LPS/D-Gal.
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TNF-inhibitors with MYSTI. Additionally, MYSTI was active in 
anti-collagen antibody transfer arthritis model (data not shown). 
Another potential target for the “second specificity” is CD11b for 
which a VHH was recently reported (40). However, expression of 
this molecule is not strictly restricted to myeloid cells (41, 42) and, 
additionally, F4/80 appears to be expressed at significantly higher 
levels, as compared to CD11b [according to mass spectrometric 
database (43)].

cONcLUDiNG reMArKs  
AND FUtUre PersPectives

The remarkable success of anti-cytokine therapy in treating auto-
immune and other diseases suggests that bispecific antibodies 
targeting pro-inflammatory cytokines, such as TNF or IL-6, will 
be developed and used. VHH technology has provided attrac-
tive antigen-binding modules for such bifunctional antibodies 
that simplify their engineering, expression, and purification. 
The central issue here is the nature of the “second specificity.” 
These may include additional anti-cytokine moieties or binding 
modules directing these reagents to either specific organs or cell 
types. Our own studies explored the possibility of targeting anti-
cytokine antibodies to the surface of specific TNF-producing 
cell types, as we believe that some cells represent predominantly 

pathogenic sources of cytokine, at least in a particular disease 
or disease state. We continue to evaluate the features of selective 
TNF inhibitors with a focus on their in vivo ability to bind and 
neutralize TNF produced by myeloid cells, but not by other cell 
types. We aim to expand this concept to other pro-inflammatory 
cytokines, such as IL-6, using VHHs generated against human 
IL-6 (44), although the safety of myeloid-specific IL-6 inhibitors 
needs to be assessed with regards to IL-6’s role in the develop-
ment of lymphocytes (45). This approach is a pharmacological 
analog of inducible cell type-restricted gene ablation in  vivo, 
with the advantage that the effects of antibodies are reversible 
and more relevant for preclinical evaluation. Although ongoing 
studies are mostly performed in animal models, one may expect 
that some of these VHH-based multispecific biologics will be 
eventually approved for human therapy, as has already happened 
for several such reagents utilizing more conventional antigen-
binding modules, such as scFv.
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