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The immune system (IS) and the central nervous system (CNS) are functionally coupled, 
and a large number of endogenous molecules (i.e., the chemokines for the IS and the 
classic neurotransmitters for the CNS) are shared in common between the two systems. 
These interactions are key elements for the elucidation of the pathogenesis of central 
inflammatory diseases. In recent years, evidence has been provided supporting the 
role of chemokines as modulators of central neurotransmission. It is the case of the 
chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical 
transmission. This article aims to review the functional cross-talk linking another endoge-
nous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon 
Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmit-
ter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the 
review discusses preclinical data concerning the role of CCL5 as a modulator of central 
glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated 
control of glutamate release at chemical synapses could be relevant either to the onset 
of psychiatric symptoms that often accompany the development of multiple sclerosis 
(MS), but also it might indirectly give a rationale for the progression of inflammation 
and demyelination. The impact of disease-modifying therapies for the cure of MS on 
the endogenous availability of CCL5 in CNS will be also summarized. We apologize in 
advance for omission in our coverage of the existing literature.

Keywords: CCL5, glutamate, nerve endings, multiple sclerosis, experimental autoimmune encephalomyelitis 
mice, release

iNTRODUCTiON

The immune system and the central nervous system (CNS) cross-talk, and this interaction are 
pivotal to the onset and the progression of central neurodegenerative diseases (i.e., Alzheimer’s 
disease and amyotrophic lateral sclerosis), as well as in classic autoimmune-inflammatory disorders 
[i.e., multiple sclerosis (MS)]. Although inflammation probably does not represent an initiating 
factor, new evidence suggests that pro-inflammatory molecules contribute to the derangement of 
chemical synapses favoring disease progression (1). In fact, a number of endogenous molecules (i.e., 
cytokines and chemokines) released by the immunocompetent cells as well as by activated astrocytes 
control chemical transmission at active synapses, affecting the main functions of these cells including 
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FiGURe 1 | The cartoon summarizes the intraterminal pathways involved in 
the facilitation and in the inhibition of glutamate exocytosis in mammals 
glutamatergic nerve endings. CCR1/CCR5 heterodimers couple to G proteins 
leading to phospholipase C (PLC) translocation, hydrolysis of membrane 
phosphoinositides, and production of inosithol triphosphate (IP3) and diacyl 
glycerol (DAG), which in turn mobilize Ca2+ ions and activate phosphorylative 
processes that favor vesicle exocytosis. The involvement of CCR3 in the 
heteromeric assembly of CCRs favors the coupling to inhibitory G proteins 
reducing adenylyl cyclase (AC) activity and low cyclic adenosine 
monophosphate (cAMP) production. These events account for reduced 
vesicular exocytosis.
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transmitter release and second messenger production. These 
endogenous molecules are main transducers of the pathological 
“glial to neuron” cross-talk (1–5).

Chemokines: General Considerations
In mammals, the chemokine (chemotactic cytokines) universe 
comprised of approximately 50 endogenous small (8–14  kDa) 
peptides released by immune cells and 20 receptors (4, 5). 
Chemokines have a tertiary structure highly conserved and 
are subdivided into four groups (namely the CC, the CXC, the 
CX3C, and the C subfamilies) based on the relative positions 
of two conserved cysteine residues near the N-terminus (6). 
Chemokines act at chemokine receptors that are seven trans-
membrane domain Pertussis toxin (PTx)-sensitive, G-protein-
coupled receptors (GPCRs), which depending on the G protein 
involved, trigger enzymatic cascade of events controlling several 
intraterminal pathways, mostly controlling Ca2+ ions mobiliza-
tion, intraterminal phosphorylative pathways, and small Rho 
GTPases signaling (7). First identified for their ability to mediate 
leukocyte chemo-attraction in inflammatory and autoimmune 
diseases (8), chemokines and their receptors are now recognized 
as a promiscuous and redundant system of signaling interactions 
and mutual binding relevant to inflammation, immunity and 
neuropathology. Most of the chemokine receptors bind more 
than one ligand, and several chemokines activate more than 
one receptor, accounting for the numerical mismatch among 
chemokines and relative receptors. In particular, CCR1, CCR3, 
and CCR5 are promiscuous receptors for different chemokines 
including CCL3 (macrophage inflammatory protein 1-alpha), 
CCL5 [Regulated upon Activation Normal T-cell Expressed 
and Secreted (RANTES)], and CCL7 (monocyte chemotactic 
protein-3). All these aspects have been largely documented in 
previous articles (3, 4, 9–19) and will not be further detailed.

CCL5
CCL5 plays a main role in inflammatory diseases and in cancer, 
because of its ability to control the movements of memory 
T lymphocytes, monocytes macrophages, and eosinophils (4–7).  
Evidence has been provided also showing a role of this chemokine 
in CNS diseases secondary to viral infections, such as the acquired 
immuno deficiency syndrome-related dementia, or involving 
neuro-inflammatory processes, such as MS, Alzheimer dementia, 
and Parkinson’s disease (6, 12, 13, 20–23).

CCL5 is a 68-amino-acid protein that binds both pertussis 
toxin (PTx)-sensitive GPCRs (6, 8, 12) and Ptx-insensitive GPCRs 
(24) in the CNS. As to the central role of CCL5, the chemokine 
controls positively the mobilization of cytosolic Ca2+ and second 
messenger production in cultured neurons (25–28), astrocytes 
(29), and microglia (30), but it also activate GPCRs negatively 
coupled to adenylyl cyclase (AC)-mediated signaling, leading to 
the reduction of the endogenous level of cytosolic cyclic adeno-
sine monophosphate (cAMP) (Figure 1) (25, 29).

CCL5 PRODUCTiON iN CNS

The endogenous level of CCL5 is very low, almost undetectable, in 
cerebral spinal fluid (CSF) of healthy individuals, but it increases 

dramatically when human immunodeficiency virus 1 (HIV-1) 
infection occurs (31–35), at the onset and during the progression 
of MS (9, 36–40). Increased central and peripheral CCL5 levels 
are also detected in mice suffering from the experimental autoim-
mune encephalomyelitis (EAE), an animal model reproducing 
most of the spinal cord pathological features of MS in humans 
[(41) and references therein]. Two are the mechanisms determin-
ing the dramatic increase of CCL5 bioavailability in CNS. First, 
the permeabilization of the blood–brain barrier that occurs in 
inflammation favors the entry of CCL5 from the periphery into 
the brain. Second, the concomitant massive local production of 
CCL5 from astrocytes and, to a lesser extent, from microglial cells 
triggered by pro-inflammatory citokines.

Microglia cells coordinate brain innate immunity, rapidly 
expand their population, and then migrate chemotactically 
to sustain inflammation and cells death. Microglia exist in the 
“resting” and the “activated” forms. In the resting state, that is 
an active surveying state, microglia cells in close proximity to 
neurons and astrocytes participate to the central network by 
releasing regulatory agents and by controlling homeostasis. In 
the “active” state, microglia releases pro-inflammatory effectors 
including TNF-alpha and IL-1beta, which diffuse to neighboring 
astrocytes, influencing their functions (42). These factors are the 
principal inducers of chemokine overproductions from astro-
cytes. Microglia filopodia make dynamic contact with astrocytes 
and neurons and have a pivotal role in controlling synaptic plas-
ticity (43–45). The intimate contact of microglia with chemical 
synapses also makes the neuronal control of microglial functions 
possible. Actually, microglia cells are endowed with receptors for 
transmitters (46) the activation of which controls their activation 
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state. Excitatory transmission favors the shift from the “resting”  
to the “activated” state of microglial cells, while inhibitory trans-
mission reduces activation of microglial cells to the “resting” 
condition (47).

Astrocytes are innate immune sentinels that ensheath cerebral 
blood vessels controlling the entry of peripheral cells into the 
CNS parenchyma during infection. Astrocytoma cells as well 
as cultured astrocytes produce CCL5 upon incubation with the 
microglial effectors TNF-alpha or IL-1 beta, through an inflam-
matory-like response mediated by the p55 receptor-dependent 
signaling (42, 48). IFN-gamma from microglial cells, inactive on 
its own (42), seriously amplifies the effect of either TNF-alpha or 
IL-1 beta, worsening the pro-inflammatory signaling.

The expression and the release of CCL5 from astrocytes is 
tightly controlled by several receptor subtypes, including opioid 
receptors (49, 50), group III metabotropic glutamate receptors 
(2), alpha/beta noradrenergic receptors (51–53), and sphingo-
sine-1-phosphate receptor (S1PR) subtype 1 (54), as well as by 
endogenous neurotoxin such as quinolinic acid acting at NMDA 
receptors (55). These receptors represent targets of therapeutics 
for inflammatory autoimmune disease typified by overexpression 
of CCL5.

Differently, data supporting the active production and release 
of the endogenous chemokine from neurons are lacking, suggest-
ing that these cells do not release the chemokine.

eXPReSSiON OF THe CHeMOKiNe 
ReCePTORS TARGeTeD BY CCL5 iN 
GLiAL CeLLS

Once released in the synaptic cleft, CCL5 regulates the function 
of glial cells (microglia and astrocytes) themselves through auto-
crine processes.

The autocrine control of microglia functions is permitted by  
the existence of CCR5 receptors, and, to a less extent, of CCR1 
and CCR3 receptors in these cells, which also permit the chem-
otactic movements of microglial cells during inflammation 
(56). CCR5s are also the receptors functional to HIV-1-induced 
pathogenetic mechanisms (57–59). As to the astrocytes, the exist-
ence of CCR1, CCR3, and CCR5 proteins in these cells has been 
a matter of discussion, and, despite some initial discrepancies 
(60), it was definitively demonstrated that adult astrocytes pos-
sess CCR1, CCR3, and CCR5 (61–63). CCR1, CCR3, and CCR5 
proteins are expressed in cultured fetal astrocytes and in adult 
astrocytes from mammalian brains [(29), but see for a concise 
review Ref. (60)], as well as in astrocytic processes [gliosomes 
(64, 65)] isolated from the cortex and the spinal cord of adult 
mice (Table 1) (66). In particular, in physiological conditions, the 
expression of CCR5 in astrocytes is low but rapidly increases to 
abnormal pathological levels upon stimulation with TNF-alpha 
and by IL-1beta released by neighboring microglial cells, which 
causes persistent adaptation leading to a significant increase in 
the expression of most of the CCR proteins (55). This cascade of 
events occurs during inflammation, so that the overexpression of 
the receptors targeted by CCL5 is an event intimately linked to 
pathological conditions.

CCL5 AND GLUTAMATe ReLeASe FROM 
ASTROCYTeS

In cultured astrocytes from both fetal simian and human brains, 
a significant increase in internal Ca2+ ions mobilization was 
observed upon exposure to CCL5 (29). Since intraterminal Ca2+ 
ions’ mobilization is a prerequisite to transmitter exocytosis also 
in these cells [(77) and references therein] the CCL5-mediated 
control of cytosolic Ca2+ bioavailability might suggest that the 
chemokine could favor/modulate glutamate exocytosis from 
astrocytes. Despite the expectation, however, the spontane-
ous and the depolarization-evoked release of [3H]d-aspartate 
([3H]d-Asp) from gliosomal particles isolated from human brain 
tissue was not modified by CCL5 (29), compatible with the idea 
that activation of these receptors cannot modify the glutamate 
outflow of the excitatory aminoacid. Similarly, exposure of 
human and mouse glial particles [we refer to as gliosomes (64)] 
to CCL5 in the absence or in the presence of a concomitant 
depolarizing stimulus (i.e., 20 mM KCl-enriched solution, KCl 
substituting for an equimolar amount of NaCl) did not signifi-
cantly modify the outflow of glutamate. This is compatible with 
the idea that the amount of Ca2+ ions mobilized in gliosomal 
cytosol by CCL5 acting at its own receptors was insufficient 
to prime vesicle docking and fusion with astrocyte membranes  
(66, 71). So far, data concerning the impact of CCL5 on glutamate 
uptake in microglia and astrocytes are not available and further 
investigations are needed to address these aspects.

CCL5 iN NeURONS

expression of Chemokine Receptors 
Targeted by CCL5 in Neurons
Once released in the biophase, CCL5 also reaches neurons 
through a mechanism of volume diffusion, to modulate neuronal 
functions via paracrine mechanisms, mediated by CCRs express 
in neurons. This regulation eventually occurs when the external 
concentration of the chemokine is high and assures a sufficient 
diffusion of the agent in the synaptic space.

The first report of the existence of chemokine receptors in 
neurons dates to 1997 [(67), Table 1]. In this article, by combining 
immune-histochemical staining with receptor binding studies, 
the authors demonstrated that cultured human neuronal cells 
express CXCR2, CXCR4, CCR1, and CCR5 receptors. The authors 
suggested that these entities represent the binding site for the viral 
envelope protein gp120 of the HIV-1 virus on neuronal plasma-
membranes, allowing a CD4-independent interaction between 
the virus and the neurons. Soon after, in 1998, Meucci et al. (25) 
demonstrated that cultured hippocampal neurons are endowed 
with several chemokine receptors, including CCR1 and CCR5 
subtypes. In line with these observations, in1999, Klein et al. (29) 
provided clear evidence that a subpopulation of neurons in the 
cortex of human and macaque brains are endowed with CCR3, 
CCR5, and CXCR4 receptors. The existence of CCR1, CCR3, 
and CCR5 receptor proteins in neurons was then confirmed by 
other groups (20, 78–81), despite some discrepancies concerning 
their exact location (in the soma, on axonal processes and/or in 
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TABLe 1 | Distribution of CCR1, CCR3, and CCR5 in astrocytes and neurons in the central nervous system (CNS) of mammals.

Cell types CNS region Species mRNA Protein Reference

CCR1 Neurons Cultured neurons Human + (67)
Fetal brain Macacque (68)
Cerebellum Rat (27)
Hippocampus Rat + (25)
Neonatal and adult cerebellum Rat + (69)
Neonatal and adult cerebellum Rat + (70)
Cortical nerve endings Human (71)
Cortical and spinal cord nerve endings Mouse (66, 72)

Astrocytes Neonatal brain Mouse + (73)
Neonatal brain Mouse + + (74)
Fetal brain Human + (75)
Neonatal and adult cerebellum Rat + + (69)
Neonatal and adult cerebellum Rat + + (70)
Spinal cord gliosomes Mouse + (66)

CCR3 Neurons Cerebellar neurons Rat + (27)
Cortical neurons Fetal human + (29)

Fetal macaque + (29)
Cortical nerve endings Human + (71)
Cortical and spinal cord nerve endings Mouse + (66, 72)
Fetal brain neurons Human + (20)

Astrocytes Primary astrocytes Human + + (62)
Fetal and adult astrocytes Human, macaque + + (76)
Spinal cord gliosomes Mouse + (66)
Fetal brain astrocytes Human + (20)

CCR5 Neurons Neonatal DRG Rat + (68)
Cerebellar neurons Rat + (27)
Cortical neurons Fetal human + (29)

Fetal macaque + (29)
Hippocampal neurons Rat + (25)
Embryonic neurons Human + (26)
Cortical nerve endings Human + (71)
Cortical and spinal cord nerve endings Mouse + (66, 72)
Neonatal brain Rat + + (48)
Brain Human + (33)

Astrocytes Cortical astrocytes Fetal human + (29)
Fetal macaque + (29)

Fetal brain neurons Human + (20)
Fetal and adult astrocytes Human + (76)
Spinal cord gliosomes Mouse + (66)
Neonatal brain Rat + + (48)
Brain Human + (33)
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nerve terminals). As to this aspect, a relevant finding was that 
CCR1, CCR3, and CCR5 receptor proteins exist in both human 
and rodent cortical nerve endings, as well as in rodent spinal 
cord terminals, i.e., in those parts of neuron where transmitter 
exocytosis occurs (66, 71, 72).

CCL5 and Glutamate Release from 
Neurons
As observed in astrocytes, CCL5 controls the movement of Ca2+ 
ions in neurons (25, 29) but differently from astrocytes, this effect 
is sufficient to trigger changes in glutamate release efficiency. 
Based on these first observations, as well as on data published 
about a decade later (66, 71), the impact of CCL5 on glutamate 
release was found to represent a complex event, strictly dependent 

on the activity of the neurons themselves and on the region of the 
CNS under study.

When studying the changes in Ca2+ cytosolic bioavailability 
in hippocampal cultured neurons, Meucci et al. (25) showed that 
nanomolar CCL5 favored Ca2+ ion mobilization in resting condi-
tion but significantly reduced the increase in cytosolic Ca2+ that 
follows exposure of neurons to a depolarizing stimulus. Similarly, 
low nanomolar concentrations of the human recombinant CCL5 
(hCCL5) exert opposite control on glutamate release [measured 
as the release of the unmetabolizable marker of glutamate, the 
compound [3H]d-Asp (82–85)] from nerve endings (synapto-
somes) isolated from cortical specimens that were removed from 
consenting patients undergoing neurosurgery to reach deeply 
located tumors (71). In particular, hCCL5 elicited a significant 
increase in the spontaneous release of [3H]d-Asp from these 
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TABLe 2 | Correlation between the composition of CCR oligomers and the CCL5-mediated changes to glutamate release.

Human cortical synaptosomes Mouse cortical synaptosomes Mouse spinal cord synaptosomes

Basal glutamate  
release

12 mM KCl-evoked 
glutamate overflow

Basal glutamate  
release

12 mM KCl-evoked 
glutamate overflow

Basal glutamate  
release

15 mM KCl-evoked 
glutamate overflow

CCR1 ↑ ↓ ↑ ↓ ↑ ↑
CCR3 Not involved ↓ Not involved ↓ Not involved Not involved
CCR5 ↑ ↓ ↑ ↓ ↑ ↑

The table resumes the modulatory action of CCL5 on the release of glutamate (measured as release of preloaded [3H]d-aspartate) correlating these events to the CCR subunits 
involved in the expression of chemokine oligomers targeted by the chemokine.
↓, inhibition of glutamet relesae; ↑, facilitation of glutamate exocytos.
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terminals in basal conditions (i.e., in the absence of a depolarizing 
stimulus).

Facilitation of glutamate outflow relied on the activation 
of PTx-sensitive GPCRs positively coupled to phospholipase 
C (PLC)-mediated events, the activation of which led to the 
hydrolysis of membranes phosphoinositide and the mobilization 
of Ca2+ ions from Xestospongin-C-sensitive, inositol triphosphate 
(IP3)-dependent intraterminal stores located in the endoplasmic 
reticulum. Facilitation of glutamate release, however, turned to 
inhibition when hCCL5 was applied concomitantly to a mild 
depolarizing stimulus (i.e., 12 mM KCl). In this case, inhibition 
relied on the binding of hCCL5 to PTx-sensitive GPCRs negatively 
coupled to the AC/cAMP/protein kinase A (PKA) intraterminal 
enzymatic pathway (Figure 1). Comparable results were obtained 
when studying the impact of hCCL5 on human cortical slices. 
hCCL5 increased the basal release of [3H]d-Asp but significantly 
reduced the tritium overflow elicited by depolarizing stimuli (71).

Human recombinant CCL5-mediated facilitation of the spon-
taneous outflow of glutamate from both isolated nerve terminals 
and slices was prevented by MetRANTES, a broad-spectrum 
antagonist of the CCR1, CCR3, and CCR5 subtypes, confirm-
ing the involvement of these receptors (71). The impacts of the 
chemokine in the different experimental conditions (resting 
versus depolarized condition), however, seemed predictive of 
the existence of receptor subtype oligomers. Since antagonists 
able to discriminate among the different CCR subtypes were 
not available at that time, the pharmacological characterization 
of the receptor(s) accounting for the hCCL5-induced changes 
of glutamate outflow was carried out by pre-incubating human 
synaptosomes with antibodies raised against the N-terminal of 
the CCR1, the CCR3, and the CCR5 receptor proteins. By binding 
selectively to the outer side of the receptor protein, antibodies are 
expected to impede the interaction of the agonist with the orthos-
teric binding site, then mimicking receptor antagonists (86, 87). 
Pre-incubation of synaptosomes with antibodies raised against 
the extracellular NH2 terminals of CCR1 or of CCR5 receptor 
proteins impeded the hCCL5-induced facilitation of glutamate 
outflow from cortical nerve endings, while pre-treatment with 
anti-CCR3 was ineffective. Differently, hCCL5–mediated inhibi-
tion of glutamate exocytosis was prevented by pre-incubating 
synaptosomes with anti-CCR1, anti-CCR3 or anti-CCR5 anti-
bodies, consistent with the view that different CCR oligomers 
account for the opposite effects observed.

The main criticism to the results obtained with human 
nerve terminals concerned the potential confounding factors 

originating from the origin of the human specimens, i.e., the 
brain of patients suffering from cerebral tumors. The receptor 
repertoire involved in the CCL5-mediated control of glutamate 
exocytosis in human specimens could have been altered because 
of the pathological overexpression of CCL5 in glioma cells. The 
effects of hCCL5 in human cortical synaptosomes, however, were 
soon after reproduced in glutamatergic nerve endings isolated 
from the cortex of mice, which represent healthy individuals, 
where the endogenous CCL5 level is expected to be low (88). 
Again, in mouse cortical terminals, the release of glutamate in 
basal condition (i.e., the absence of a depolarizing stimulus) was 
potentiated by CCL5, but the chemokine significantly inhibited the 
glutamate exocytosis evoked by a mild K+ depolarization (12 mM 
KCl) stimulus. The comparable effects observed in human and 
mice terminals allowed to conclude that the effects observed in 
human nerve endings were not influenced by the pathological 
origin of the tissue specimens.

Facilitation of the spontaneous release of glutamate as well 
as inhibition of 12  mM K+-evoked glutamate exocytosis from 
cortical synaptosomes was prevented by the selective CCR1 
antagonist BX513 and by the selective CCR5 antagonist DAPTA, 
compatible with the involvement of CCR1/CCR5 heterodimers 
in the effect observed (66). Furthermore, the CCR3 antagonist, 
the compound SB 328437, failed to affect the CCL5-mediated 
facilitation of glutamate release in basal condition, but it strongly 
prevented the inhibitory effect exerted by the chemokine in 
depolarized nerve terminals. Comparable results could be drawn 
when using antibodies raised against the N-terminal of the CCR1, 
CCR3, and CCR5 receptor proteins, leading to conclude that  
(i) the receptor composition of the chemokine oligomers con-
trolling glutamate release in mouse and human cortical nerve 
endings is largely conserved, (ii) the involvement of CCR3 in 
the oligomer expression dictates the coupling to inhibitory  
G proteins bridging negatively the chemokine receptor complex to 
the AC/cAMP/PKA transducing mechanism (Figure 1; Table 2), 
and (iii) the mouse brain tissue is appropriate to investigate the 
effects of CCL5 on central glutamatergic transmission (66).

CCL5-mediated control of glutamate release in nerve termi-
nals was not restricted to the cortex. The chemokine also effi-
ciently modulates the release of glutamate from spinal cord nerve 
endings. However, differently from what observed in the cortex 
of adult mice, the spontaneous release of glutamate from spinal 
cord glutamatergic nerve endings was unaffected by nanomolar 
CCL5, while the depolarization-evoked glutamate exocytosis 
was significantly increased. Again, facilitation of glutamate 
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exocytosis from these terminals involved CCR1/CCR5 heterom-
ers positively coupled to PLC-induced IP3-mediated enzymatic 
pathway, leading to increased mobilization of Ca2+ ions in the 
cytosol. Also in this region, the receptor protein composition was 
clarified by using selective CCR antagonists as well as anti CCR 
antibodies recognizing the N-terminal of the receptor protein 
(66). These studies unveiled that CCR1/CCR5 heterodimers 
mediates the CCL5-induced facilitation of glutamate exocytosis, 
further confirming the hypothesis that CCR1/CCR5 oligomers 
preferentially couples to stimulatory G protein positively coupled 
to PLC-mediated events (Figure  1; Table  2). Notably, CCR3 
immunoreactivity was detected in spinal cord synaptosomal 
lysates, but this receptor subtype was not involved in the CCL5-
mediated effect.

CCL5 iN DeMYeLiNATiNG DiSORDeRS

The serum level of CCL5 was found to be significantly increased 
in patients suffering from MS (89–91) as well as in EAE animals 
(15, 41, 92). The highest levels of the chemokine were detected in 
the peripheral blood mononuclear cells (PBMCs) of MS patients 
suffering from the secondary progressive form of the disease, 
while lower level was observed in the PBMCs from patients with 
the relapsing–remitting form of MS (93). CCL5 levels are also 
increased in the CNS of MS patients as well as of EAE mice 
(9, 13, 22, 88, 93–100). The huge elevation of the CCL5 levels 
in CNS mainly depends on the increased peripheral production 
of the chemokine, but it also reflects the local overexpression of 
the chemokine in astrocytes activated by IL-1beta, TNF-alpha, 
and IFN-gamma (55), from neighboring microglia cells. All these 
observations are predictive of the role of CCL5 in the onset and 
progression of disease in MS patients. Accordingly, a CCL5 poly-
morphism [the CCL5-403 G/A single nucleotide polymorphism 
(22, 99)] is associated to a higher risk of susceptibility to the onset 
of the disease, while modified CCL5 ligands are efficacious in 
controlling the symptoms and the neurodegenerative processes 
in EAE mice (15).

CCR1, CCR3, and CCR5 exist in different cell types, includ-
ing T  lymphocytes, monocytes/macrophages, and immature 
dendritic cells, but also exist in neurons and astrocytes (101–104). 
In particular, CCR1 and CCR3 are expressed by circulating 
T cells as well as in monocytes, which are occasionally found in 
perivascular infiltrates in the brain of MS patients. Differently, 
CCR5-positive T cells and macrophages are concentrated in the 
active demyelinating lesions in CNS of MS patients (13, 22). To 
note, the expression of CCRs in CNS correlates with disease 
severity (105–107) as proved by the observation that clinical 
symptoms are reduced in CCR1, CCR3, or CCR5 knockout (k.o.) 
EAE animals, which also suggest redundancy in the chemokine 
system (7, 8, 99, 108).

GLUTAMATe iN DeMYeLiNATiNG 
DiSORDeRS

Glutamate is the major excitatory neurotransmitter in CNS, 
where it mediates important physiological functions (i.e., synaptic 

plasticity, learning, and memory), but also triggers excitotoxic 
degenerative processes. Glutamate concentration in the synaptic 
cleft is finely tuned by several cellular mechanisms including active 
re-uptake and release from nerve terminals as well as presynaptic 
mechanisms of control mediated by auto- and/or heterorecep-
tors (65, 82, 109–116). Glutamate bioavailability is also affected 
by neighboring astrocytes [i.e., the cells that take up and release 
the aminoacid (77)] as well as by altered glutamate metabolism. 
l-Glutamate signaling, however, is not restricted to neuron/astro-
cyte compartments since glutamate receptors (GluR3-containing 
AMPA receptors and mGluR1/5 receptors) exist also in immune 
cells, including cells of the T lineage (117–119). Therefore, besides 
its role in controlling chemical transmission and excitotoxicity, 
glutamate may represent a chemo-attractant driving force for the 
recruitment and the migration of leukocytes and T cells into CNS 
site where glutamate release occurs (119).

Increased glutamate levels are found in the cerebrospinal fluid 
of MS patients (119–121) possibly because of the down-regulation 
of glutamate-metabolizing enzymes (glutamate dehydrogenase 
and glutamine synthase) and up-regulation of glutamate-
producing enzyme glutaminase (122). In 2003, Sarchielli et  al. 
(119) compared the levels of aspartate and glutamate in the CSF 
of patients suffering from different forms of MS and of controls 
healthy individuals. The authors find a significant increase of the 
glutamate levels in patients suffering from the relapsing–remitting 
form of MS. Interestingly, the glutamate levels were significantly 
higher in individuals suffering from the relapsing–remitting 
form of MS with active central lesions during the stable phase 
than in patients suffering from a similar form of disease, but 
without lesions. Inasmuch, high levels of glutamate were also 
detected in patients suffering from the secondary progressive  
form of MS.

Impaired glutamate bioavailability was also observed in EAE 
animals. However, depending on the animal model used and the 
brain region under study, opposite modifications of glutamate 
release efficiency were observed, consistent with the view that, 
in demyelinating disorders, impaired glutamate transmission at 
active synapses is a complex event. Increased glutamate release 
was detected in the spinal cord of EAE rats (123, 124) as well as 
in striatal and spinal cord nerve terminals of EAE mice (72, 88,  
124–126), while reduced glutamate release was observed in 
cortical and hippocampal nerve endings of both mice and rats 
suffering from EAE disease (72, 88, 100, 126, 127). As to glu-
tamate receptors, both metabotropic and ionotropic glutamate 
receptors (namely mGlu1/5 and mGlu4, mGlu2/3 receptors, and 
NMDA and AMPA receptors) control glutamate release (83, 109, 
113, 115, 116, 128, 129). The expression and the function of these 
receptors were found to be altered in EAE mice when compared 
with controls (109, 128–136), suggesting that they represent 
suitable targets of drugs for the cure of MS symptoms Besides 
receptors, also glutamate transporter expression is modified in 
EAE rats (124), determining increased glutamate bioavailability 
(137) and consequent neurotoxicity.

Generalized ongoing subclinical axonal degeneration in 
lesioned and non-lesioned white matter, as well as in gray matter, 
is detectable in CNS of MS patients and seems to occur inde-
pendently from inflammation or demyelination, representing an 
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early cause of CNS damage in MS (138). Interestingly, besides 
the spinal cord, neurodegeneration also takes place in other 
brain regions, such as the cortex and the hippocampus, and 
could be responsible of cognitive and affective dysfunctions  
(121, 139–141) that represent common and early manifestations 
of MS (142, 143).

CCL5-MeDiATeD CONTROL OF 
GLUTAMATe ReLeASe iN eAe MiCe

The thesis that central chemokines and classic transmitters 
functionally cross-talk in CNS has several implications and add 
new aspects of interest to the role of chemokines in the synaptic 
derangements that typify neuro-inflammatory central disease.

As already stated, an abnormal overproduction of CCL5 
in the spinal cord, and to a lesser extent in the cortex, of EAE 
mice was evidentiated in immunocytochemistry analysis and 
confirmed in tissue homogenate (88, 100, 126) and in blood (88). 
Concomitantly, changes in glutamate exocytosis from nerve end-
ings isolated from the cortex and the spinal cord of EAE mice were 
observed. Quite interestingly, the modifications of glutamate exo-
cytosis observed in cortical and spinal cord synaptosomes from 
EAE mice recall the presynaptic modulation elicited by CCL5 in 
nerve terminals in healthy mice. Actually, glutamate exocytosis 
was reduced in cortical nerve endings from EAE mice [i.e., in 
this CNS region, CCL5 inhibits glutamate exocytosis in control 
animals (66, 71)], but it was drastically increased in spinal cord 
terminals [where a positive role of CCL5 on glutamate release was 
observed in healthy animals (66)].

In both CNS regions, the altered glutamate exocytosis was 
paralleled by impaired second messenger production. Again, the 
alterations in cAMP ad IP3 productions observed in both cortical 
and spinal cord synaptosomal subpopulations from EAE mice 
were reminiscent of the modulatory presynaptic effects exerted 
by CCL5 on the corresponding enzymatic pathways in nerve ter-
minals from control, non-immunized, mice. In fact, endogenous 
cAMP was drastically reduced in cortical synaptosomes but not 
in the spinal cord, where IP3 production, the second messenger 
accounting for the CCL5-mediated presynaptic facilitation of 
glutamate exocytosis was significantly augmented (Figure  1) 
(66, 88).

The changes in second messenger productions and release 
efficiency could be explained by assuming that the prolonged 
in  vivo CCR activation elicited by the high CCL5 could have 
triggered adaptive intraterminal changes in nerve terminals 
(144–146), which are retained in “ex vivo, in vitro” synaptoso-
mal preparations and can emerge in “in vitro” functional studies 
as changes in glutamate release efficiency and second messenger 
production. As a matter of fact, the abnormal expression of 
the chemokine could have reverberated on the CCR repertoire 
presynaptically located on glutamatergic nerve terminals, 
leading to adaptation of the CCRs heteromers controlling glu-
tamate exocytosis. These adaptations might lead to changes in 
the receptor expression and/or associated signaling that might 
account for the profound changes in glutamate exocytosis in 

nerve terminals from EAE mice. The CCR composition of the 
presynaptic chemokinergic oligomers involved in the CCL5-
mediated control of glutamate exocytosis in both cortical and 
spinal cord nerve endings of EAE mice, however, was conserved 
when compared to control mice, indirectly suggesting that 
adaptation in CCR subunits assembly were not involved in 
the EAE-induced changes to the CCL5-mediated control of 
glutamate exocytosis described above (72).

As to the second messengers, the strict correlation linking 
CCL5 levels, glutamate release efficiency and IP3, and cAMP 
accumulation was confirmed by the observation that administra-
tion of drugs able to reduce the overexpression of CCL5 in CNS 
[i.e., the antidepressant desipramine (DMI)] (126) restored both 
presynaptic functions (i.e., transmitter exocytosis as well as sec-
ond messenger production) at glutamatergic nerve endings in the 
cortex of mice suffering from EAE. The beneficial effects exerted 
by DMI were mediated by the change in noradrenaline bioavail-
ability, due to blockade of the noradrenaline transporters. Actually, 
the transient increase in the endogenous amine in the synaptic 
cleft elicited by DMI activates the α and β receptors expressed 
in astrocytes in the near proximity of the noradrenergic nerve 
terminals, the activation of which hampers the central endog-
enous production and release of pro-inflammatory chemokines, 
including CCL5 (53, 126, 147) from these cells. Interestingly, the 
peripheral production of the chemokine (which at that stage of 
disease is already augmented) was unaffected (126).

To conclude, hampering the central overproduction of CCL5 
leads to a marked amelioration of the presynaptic defects in 
terms of release of glutamate and second messenger production. 
Altogether, these observations clearly support a strict correlation 
between the increased production of CCL5 in the CNS and the 
onset of synaptic glutamatergic alteration in EAE mice, also 
strengthening the pathological role of the “glial to neuron” 
“CCL5–glutamate” interaction.

CCL5 iN MS: CLiNiCAL STUDieS

In 2016, Centonze et al. (40) demonstrated that the endogenous 
concentration of CCL5 in the cerebrospinal fluid of MS patients 
suffering from the active form of the disease was largely increased 
when compared to healthy individuals and to patients at the inac-
tive stage of disease. Inasmuch, the authors showed a significant 
correlation between the endogenous level of CCL5 and the 
amount of IL-1 beta, used as a marker of gravity of the disease. 
CSF levels of RANTES were associated with enhanced cortical 
excitability in the cortex, as suggested by results from studies 
in which cortical excitability and plasticity was monitored with 
transcranial magnetic stimulation in MS patients. In these experi-
ments, the authors highlighted a high correlation between the 
increased intracortical facilitation and the endogenous amount 
of CCL5. Differently, no correlation emerged when studying the 
relation linking CCL5 and a long-term potentiation-like synaptic 
plasticity measured through theta burst stimulation in the same 
patients. Despite the contrasting observation, the authors con-
cluded that CCL5 couples inflammation and synaptic excitability 
in MS brains.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Pittaluga CCL5–Glutamate Interaction in CNS

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1079

iMPACT OF DiSeASe-MODiFYiNG DRUGS 
ON THe eNDOGeNOUS PRODUCTiON OF 
CCL5 iN DeMYeLiNATiNG DiSORDeRS

As already stated in this review, CCL5 production is increased 
in MS patients suffering from both the remitting and the non-
remitting form of the disease (15, 41, 89–92). Interestingly, most 
of the therapeutics currently in use for the cure of MS reduces 
significantly the overexpression of CCL5.

It is the case of interferon-beta-1b (IFN-beta-1b); administra-
tion of this drug prevents CCL5 overproduction in the sera, in 
the peripheral blood and in the adherent mononuclear cell super-
natants during both the relapse and the remission stage of the 
pathology. These observations are compatible with the idea that 
CCL5 might be involved in determining the molecular events 
accounting for the action of IFN-beta-1b in MS patients (38).

Similarly, glatiramer acetate, an approved drug for the treat-
ment of MS, was reported to reduce the TNF-alpha-induced 
CCL5 mRNA overexpression in human U-251 MG astrocytes. 
This effect was attributed to the inhibition of mRNA transcrip-
tion and led to the conclusion that glatiramer acetate may exert 

its therapeutic effect in MS also by inhibiting pro-inflammatoy 
signaling (148).

Activation of cannabinoid receptors, which represents a 
therapeutic approach useful to control the progression of central 
neuroinflammation in EAE mice and MS patients, also reduces 
the endogenous availability of the chemokine CCL5 being 
concomitantly beneficial to the progression of the demyelinating 
disorder (41, 149).

Laquinimod is a novel orally administered drug for the treat-
ment of relapsing–remitting MS. The molecular events account-
ing for its therapeutic effects are far from to be elucidated. 
Monocytes obtained from laquinimod-treated patients tended to 
secrete lower levels of the pro-inflammatory chemokines CCL2 
or CCL5 (150).

Another orally active disease-modifying drug is Fingolimod. 
Fingolimod is a pro-drug, rapidly metabolized to its active form, 
the fingolimod-phosphate (fingolimod-P). By acting at the S1PRs 
in microglia cells, in circulating T cells, and in the spleen, fin-
golimod-P prevents the egress of lymphocytes and exerts central 
anti-inflammatory effects favoring remyelination (151). Recent 
data demonstrated that in  vivo oral (the drug dissolved in the 

FiGURe 2 | The “quad partite” synapse is a functional structure consisting of neurons, astrocytes, and microglia cells. It represents the simplest central Unit, where 
adaptive and damaging processes occur in neuro-inflammatory disorders, including the demyelinating one. The concept originates from the tripartite synapse (152), 
but it is characterized by a highest level of complexity, since microglia is included as players of synaptic derangement. In a simplified model for demyelinating 
disorder, microglia cells migrating from periphery to central nervous system (CNS) as well as resident central microglia rapidly expand their populations and 
differentiate into the M1- and M2-cell subgroups, which exert various and mostly opposite functions in the brain. Microglia cells of the M1 group releases pro-
inflammatory cytokines, including CCL5, which in turn activate astrocytes. In a whole these events sustain and worsen central inflammatory processes. Differently, 
M2 microglia secretes anti-inflammatory cytokine and its neuroprotective. Astrocytes are the most abundant glial cells in the human brain and represent the innate 
immune sentinels that sheath cerebral blood vessels controlling the entry of peripheral cells into the CNS during infection. Astrocytes are neuroprotective at the initial 
stage of disease, since they reduce local hyper-glutamatergicity by active glutamate uptake processes. Astrocyte activation, however, becomes pathological upon 
prolonged exposure to the pro-inflammatory compounds released from neighboring microglial cells. At this stage, reactive astrocytes become hypertrophic, do not 
uptake efficiently glutamate, but release much more cytokines (including CCL5), which accelerate neurodegenerative processes. CCL5 actively released by activated 
astrocytes and microglia by one side and the abnormal bioavailability of glutamate in the synaptic cleft, on the other side, reverberate onto neurons, eliciting 
structural and functional changes at chemical synapses.
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drinking water) administration of this drug largely ameliorated 
the clinical symptoms in EAE mice. The treatment was beneficial 
to the inflammation and demyelination in the spinal cord of 
EAE mice, also significantly reducing the endogenous content of 
CCL5 in this CNS region (100).

Quite interestingly, the abovementioned therapeutics were 
also described to ameliorate glutamatergic synaptic transmission 
(152–155) further supporting the strict connection linking CCL5 
overexpression and glutamatergic synaptic derangements.

CONCLUSiON

The scope of this manuscript is to review the literature concerning 
the physio-pathological role of CCL5 in controlling glutamate 
transmission in the CNS of healthy mammals, as well as of 
individuals and animals suffering from demyelinating disease, in 
order to highlight the main role of CCL5 as a modulator of the 
neuroimmune cross-talk in the “quad partite” synapse in CNS 
(Figure 2).

These effects, together with the well-known chemo-attractant 
role of the chemokine toward glial cells, suggest that CCL5 exerts 
a dual role in the CNS of individuals suffering from MS. On 
one hand, the chemokine impairs the chemical transmission at 
asymmetric synapses in selected region of the CNS. On the other 
hand, it worsens the course of disease progression by favoring 

the recruitment of pro-inflammatory glial cells in the site of the 
lesion.

When considering its role as modulator of glutamate trans-
mission, the chemokine preferentially emerges as a key effector 
of the “astrocytes to neurons” signaling in CNS. Actually, the 
chemokine released from astrocyte and microglia is an efficient 
paracrine modulator of glutamate release at synaptic boutons of 
glutamatergic neurons in both healthy and demyelinating condi-
tions, while its autocrine role of modulator of glutamate overflow 
from astrocytes is less evidnet (Table 1).

Therapeutic approaches aimed at containing the overexpres-
sion of the chemokine might represent therefore a useful approach 
to the cure of MS.
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