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Toxoplasma gondii has successfully developed strategies to evade host’s immune 
response and reach immune privileged sites, which remains in a controlled environment 
inside quiescent tissue cysts. In this review, we will approach several known mecha-
nisms used by the parasite to modulate mainly the murine immune system at its favor. In 
what follows, we review recent findings revealing interference of host’s cell autonomous 
immunity and cell signaling, gene expression, apoptosis, and production of microbicide 
molecules such as nitric oxide and oxygen reactive species during parasite infection. 
Modulation of host’s metalloproteinases of extracellular matrix is also discussed. These 
immune evasion strategies are determinant to parasite dissemination throughout the 
host taking advantage of cells from the immune system to reach brain and retina, cross-
ing crucial hosts’ barriers.
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inTRODUCTiOn

Toxoplasma gondii is a parasite acquired through food or water contamination, followed by gut inva-
sion and systemic dissemination. The protozoan T. gondii is able to escape the immune system and 
cross the blood–brain and blood–retina barrier reaching immune privileged sites leading to long-
term infection (1). Intracellular pathogen, T. gondii subverts innate immunitary system interfering 
with host signaling pathways according to virulence based on the parasite genotype and the cell 
type infected (2, 3). Moreover, distinct responses can be triggered depending on inflammatory cells 
recruited, parasite burden, and the parasites’ molecular arrangement (4). T. gondii is an example of 
host–parasite coadaptation, and several studies have unveiled molecular interactions that allow the 
parasite not to exterminate the host, evading from immune responses at different levels.

inTeRFeRinG wiTH CeLL-AUTOnOMOUS iMMUniTY

Host cell gene transcription is drastically affected by T. gondii including those genes involved in 
energy metabolism, immune responses, and signaling (5–7). Initially, pattern recognition receptors 
such as toll-like receptors (TLRs) are able to bind parasite molecules. In mice, TLR11 and TLR12 bind 
to TgPRF triggering a strong IL-12 response that most effective leads to interferon gamma-inducing 
response genes (IRGs) (8). In humans, those genes are not functional, and TLR2, 4, 8, and 9 are 
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effective in inducing IL-12 (9). After active invasion of host cell,  
T. gondii surrounds itself with a combination of host membrane 
and it is able to exclude and to recruit host proteins to the result-
ing parasitophorous vacuole (PV) in which it develops (3).

Rhoptry organelle initiates vacuole formation by secretion of 
an array of proteins that are released directly into the host cell, 
collectively known as RONs, forming the moving junction (MJ) 
(10). RONs 2/4/5/8 anchor the MJ at host cell membrane during 
invasion and also function as a selective sieve to host cell proteins 
that will be incorporated to PV (11, 12). This process assures the 
formation of a PV devoided of host proteins required for recruit-
ment of endosomes and lysosomes (13).

The non-fusogenic nature of the PV is critical since it 
inhibits one of the cell-autonomous immunity mechanisms, the 
autophagy (14). Autophagosomal compartments are generated in 
eukaryotic cells as part of a bulk degradation system, through 
the formation of an initial phagophorous derived of membrane 
cisterna where autophagy-related proteins (ATG) are orderly 
accumulated leading to the fusion with lysosomal pathway (15). 
In non-canonical autophagy, ATG proteins can build up from 
preformed membranes such as the PVM, and not all ATGs are 
required to participate in the process (16). Extensive experi-
mental data indicate that the autophagy machinery can promote 
killing of a broad variety of pathogens (17, 18) including T. gondii, 
especially in mouse models, and the IFNγ produced early in 
infection is crucial for that (19–23). Upon the influence of IFNγ, 
infected host cells respond regulating nearly 2,000 genes that are 
called interferon-inducible genes (24). Among those, effector 
molecules such as the immunity-related p47 GTPases (IRGs) 
and guanylate-binding proteins (GBPs) rapidly accumulate on 
and around the PVM, leading to the disruption of the PVM and 
subsequent death of the parasite in mouse cells (25). In human 
cells, ubiquitination and recruitment of autophagy adaptors did 
not require GBPs (26).

The recruitment of IRGs and GBPs to PVM depends on 
autophagy-related (Atg) gene products (24, 27, 28). In mice, it 
has been demonstrated that Atg5 and Atg8 (LC3 in humans) 
are required for the proper targeting of the effectors onto the 
PVM of T. gondii (29–31). In addition, Atg12, Atg16L1, Atg3, 
and Atg7 are recruited to the PVM to promote parasite killing  
(26, 32). Infection of Atg5- and Atg3-deficient cells show 
decreased accumulation of immunity-related GTPase family 
member b10 (Irgb10) and guanylate-binding protein 2 (Gbp2) 
at T. gondii PVM (33, 34). Genotypes II and III are susceptible 
to the IRGs resistance system. On the other hand, infection with 
virulent strains (e.g., type I) has demonstrated that polymorphic 
T. gondii kinase proteins from rhoptries like ROP5, ROP17, and 
ROP18 phosphorylate IRG proteins in murine cells inactivating 
them in order to preserve PVM integrity (35–40), suggesting that 
in type I strain parasites can evade this cell autonomous immunity 
mechanism (Figure 1A).

Until recently, IFN inducible GTPases were thought to be 
non-functional in T. gondii response in human cells. Qin et al. 
showed that Gbp1 induced by IFNγ in mesenchymal stromal cells 
was responsible to decrease the number of parasites after 4 h of 
infection and showed that Gbp1 was found in association with at 
least 10% of PV (37). On the other hand, Johnston et al. (38) using 

A549 human epithelial cells showed that in the absence of Gbp1 
parasite numbers increase rapidly. However, no Gbp1 was seen in 
association with PV at any moment. Clearly that are gaps in our 
knowledge of IRG system in the human autonomous immunity 
(38). Muniz-Feliciano et al. (22) showed that T. gondii microne-
mal proteins (MICs) containing epidermal growth factor (EGF) 
domains (MIC3 and MIC6) appeared to promote EGF receptor 
activation in endothelial cells, retinal pigment epithelial cells, and 
microglia in humans. These findings support the concept that  
T. gondii activates EGFR-Akt signaling in the host cell to prevent 
targeting of the PVM by LC3 (Atg8 orthologs in humans) and 
pathogen killing (22).

Moreover, T. gondii might also be killed by autophagy in mice 
macrophages independently of IFNγ, in a mechanism involving 
CD40, member of TNF receptor superfamily, and activation of  
ULK1, calcium/calmodulin-dependent kinase kinase b (CaMKKβ),  
AMP-activated kinase, and Jun-kinase (JKN are involved) (25).

CeLL SiGnALinG inTeRFeRenCe

Toxoplasma gondii modulates several signal transduction path-
ways once inside host cells. At the same time that an effective 
immune response is generated, intracellular survival strategies 
are adopted by the parasite. The equilibrium host-T. gondii is 
in the best interest of both allowing the establishment of long-
lasting latent infection, increasing the chances of transmission to 
new hosts. Several T. gondii effector molecules have been identi-
fied that directly interact with signal transducer and activator of 
transcription (STAT) pathways, which influence the transcription 
of both pro and anti-inflammatory molecules such as IFN-γ and 
major histocompatibility complex class II (MHCII) (STAT1); 
IL-10 (STAT3); and IL-4 (STAT6) (41–44).

Rhoptry 16 kinase (ROP16) is secreted into the host cytosol 
during invasion and phosphorylates STAT6 in a rapid and 
sustained way (45). Phosphorylation of STAT6 by ROP16 
mediates induction of arginase-1, resulting in arginine degra-
dation, depriving the parasite from one important metabolite 
(42). Infection of mice with ROP16 knockout parasites shows 
that STAT3 is also phosphorylated by this kinase, suppressing 
TLRs and inhibiting pro-inflammatory responses at some level  
(42, 46, 47). ROP16 encoded by the type I/III strains, but not type 
II strains, maintains STAT3/6 activation for 24 h and suppresses 
IL-12 production from macrophages (45, 47) (Figure  1B).  
A recent report by Jensen et  al. showed that ROP16, type II 
strain, induced the sustained phosphorylation and nuclear 
translocation of STAT5 in host infected cells, contributing 
to generation of protective immunity in murine gut mucosal 
system (48).

Toxoplasma gondii has also been shown to interfere with 
STAT1 signaling, resulting in blockage of interferon regula-
tory factor 1 (Irf1), p65 GBPs, inducible nitric oxide synthase 
(iNOS/Nos2), indoleamine 2,3-dioxygenase 1, and MHC 
(49–55) (Figure 1). Schneider et  al. (56) showed that STAT1 
is activated during infection of bone marrow-derived murine 
dendritic cells (BMDCs) through tyrosine 70 (Tyr70) and 
serine 727 (Ser727) phosphorylation with effective nuclear 
translocation in a ROP16 independent way. All clonal strains 
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FiGURe 1 | Mechanisms used by Toxoplasma gondii, type I strain, to modulate mainly immune system at its favor. (A) Interfering with cell-autonomous immunity. In 
infection with virulent strain (e.g., type I), the polymorphic effector proteins like ROP5, ROP17, and ROP18 cooperate to phosphorylate and inactivate mouse IRG 
proteins to preserve PVM integrity. In human cells (endothelial, retinal pigment epithelial, and microglia), T. gondii activates EGFR-Akt signaling to prevent targeting of 
the parasite by LC3 structures and pathogen killing dependent on autophagy proteins and lysosomal protease activity. (B) Cell signaling interference. The 
Toxoplasma rhoptry 16 kinase (ROP16), ROP18, and 38 can mediate the induction of arginase-1, suppress toll-like receptors (TLRs), IL-12, and nuclear factor-
kappa B (NF-κB) through phosphorylation of signal transducer and activator of transcription (STAT) 3 and 6. T. gondii also interferes with STAT1 signaling, resulting in 
blockage of interferon regulatory factor 1 (Irf1), p65 guanylate-binding proteins (GBPs), inducible nitric oxide synthase (iNOS/Nos2), indoleamine 2,3-dioxygenase 1 
(IDO1) and major histocompatibility complex (MHC). Furthermore, the infection upregulation SOCS1, 2 and 3. Together, T. gondii inhibiting pro-inflammatory 
response in different ways. (C) Silencing microbicide molecules. T. gondii [phosphatidylserine positive (PS+)] infection of murine blood monocyte-derived and 
peritoneal macrophages activated in vitro with IFN-γ and lipopolysaccharide (LPS) lead to a substantial decrease in NO production. Decreased mechanisms include 
phosphorylation of STAT6 by ROP16 resulting in arginine degradation and induction of TGFβ1 through Smad 2 and 3 leading to destruction of iNOS, actin filament 
(F-actin) depolymerization, and lack of NF-κB in the nucleus. (D) Maintaining the host cell alive. T. gondii has several strategies for inhibiting the initiation of the 
apoptotic cascade triggered by mitochondrial pathway or death receptor pathway in infected cells. The effector proteins like ROP16, ROP18, and ROP38 
phosphorylate STAT3 and STAT6 and promotes mechanisms that include blocking of mitochondrial cytochrome c release, alterations of the balance between 
pro- and anti-apoptotic Bcl-2 proteins, degradation of caspase 8, blocking Fas/CD95-mediated apoptosis, and inactivation of effector caspases (-3, -6, -7) in 
infected cells.
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tested (Type I—RH, Type II—PTG, and Type III—M774.1) 
showed similar results, with a less effective and sustained 
phosphorylation induced by M774.1 (56). Besides its nuclear 
translocation, tyrosine-phosphorylated STAT-1 (pYSTAT1) 

was unable to bind to the Irf1 gene promoter and chromatin 
immunoprecipitation assays showed the presence of aberrant 
STAT1 complexes, as earlier described by Lang et  al. (57) 
(Figure 1B).
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One of the mechanisms of IFN-γ blockage is the dephospho-
rylation of STAT1 by SOCS1 (suppressor of cytokine signaling 
phosphatase) induced by positive feedback. T. gondii infection 
has been shown to induce both downregulation of SOCS1 in 
human fibroblasts (58) and upregulation in murine macrophages 
(48, 55). Infection of mice with target deletion of SOCS3 in 
neutrophils and macrophages results in death, as this molecule is 
upregulated during infection. Furthermore, the administration of 
anti-IL6 and IL-12 restored mice resistance to the infection (59).

Toxoplasma gondii induces the expression of SOCS2 in DCs 
through lipoxin A4 (LXA4), an arachidonic acid (Ah) with 
anti-inflammatory action that stimulates Ah and LXA receptors 
of the host cell, resulting in decreased expression of chemokine 
receptor type 5 (CCR5) and IL-12 secretion (60). However, 
enhancing transcriptions factors can also be an evasion strategy. 
Dense granule proteins 6 (GRA6) interferes with nuclear factor of 
activated T cells 4 (NFAT4), activating it via calcium-modulating 
ligand, which might lead to increased migration of inflammatory 
macrophages (61).

Release of dense granule protein GRA15 by type II strains, but 
not the type I/III strains, into the host cell cytoplasm mediates 
nuclear factor-κappaB (NF-κB) activation and initiates IL-12 
synthesis (48, 62). On the other hand, type I strains inhibit NF-kB 
pathway through ROP18 and suppresses pro-inflammatory 
cytokine expression, resulting in the enhanced survival of the 
parasites in the hosts (63) (Figure 1B).

SiLenCinG MiCROBiCiDe MOLeCULeS

Inflammatory macrophages are able to contain dissemination of 
infection through microbicide molecules, such as nitric oxide 
(NO). However, T. gondii infection of murine blood monocytes 
and peritoneal macrophages activated in  vitro with IFN-γ and 
lipopolysaccharide leads to a substantial decrease in NO produc-
tion (51, 52, 54). Interestingly, pretreating T. gondii with annexin V,  
which binds to phosphatidylserine (PS) reverts NO inhibition 
(64). The authors demonstrated that infection induces TGFβ1 
through Smad 2 and 3 leading to destruction of iNOS, actin 
filament (F-actin) depolymerization, and lack of NF-κB in the 
nucleus (64). Recently, the same group showed that degradation 
of iNOS is proteasome dependent (65). iNOS reduced expres-
sion is also observed in microglia infected with T. gondii, also 
involving TGFβ pathways, protecting neurons from death (54). 
PS positive (PS+) but not PS negative (PS−) subpopulations of 
T. gondii were capable of NO inhibition after infection of murine 
macrophages in vitro, and infection in vivo with PS+ subpopula-
tions leads to high parasite burden and low inflammatory symp-
toms at peritoneal cavity, while low or absent infection observed 
when PS− parasites were used with active inflammatory response 
observed (66). Thus, PS expression at T. gondii cell surface seems 
to be an interesting regulator of exacerbated inflammation at the 
entry site (Figure 1C).

MAinTAininG THe HOST CeLL ALive

Toxoplasma gondii-infected cells are resistant to a series of apop-
tosis inducers (67), allowing intracellular survival and persistence 

within the host cells (68). In a recent study, He et  al. (69)  
suggested that T. gondii (Type I—RH) targets transregulation fac-
tors in mouse spleen cells modulating host gene expression. The 
genes involved in apoptosis or anti-apoptosis were both targeted 
by differentially expressed miRNAs, which contributes to the 
fate of host apoptosis process (69). The same group revealed the  
T. gondii infection can alter the transcripts at mitochondria level 
that are involved in several biosynthetic and metabolic processes 
and also in apoptosis (70) (Figure 1D).

The initiation of the apoptotic cascades is disturbed by T. gondii  
at several key points. Blocking of mitochondrial cytochrome c 
release is one of the mechanisms affected (71–73). The balance of 
pro- and anti-apoptotic Bcl-2 proteins (71, 72, 74–76) and direct 
inhibition of cytochrome c-mediated activation of the caspase 
cascade (73) were also reported. Inhibition of caspase 8, blocking 
of Fas/CD95-mediated apoptosis (77–79), inactivation of caspase 
3 and PARP (80), as well as abrogation of Granzyme B activity in 
infected cells (81) are also important in maintaining the host cell 
alive, in favor of parasite’s survival.

Inhibition of apoptosis is regulated also at the transcriptional 
level. Infection of mouse splenocytes induces activation of host’s 
NF-κB and the transcription of antiapoptotic genes (80). After cell 
invasion, cells increase levels of active serine threonine kinase/
protein kinase B (Akt/PKB), exploiting PI3K in a Gi-dependent 
way to delay host cell apoptosis (82). Furthermore, T. gondii 
phosphorylates the pro-apoptotic Bad protein to prevent apop-
tosis (83). These findings suggest that during the early stages of 
infection T. gondii is able to evade induction of apoptosis remain-
ing inside the cell allowing the spreading of infection. However, 
there are reports indicating that ROP18 from virulent T. gondii 
strains induces apoptosis of neurons via RE stress (84). On the 
other hand, the gp130 expressed by neuronal cells protects them 
through IL-6, TGFβ, and IL-27 (85).

Signal transducer and activator of transcription molecules 
are also exploited by T. gondii to prevent the apoptosis. Serine 
proteases, like SERPIN B3 and B4, are significantly expressed 
in macrophages infected by T. gondii via STAT6 activation. 
Extended parasite intracellular survival in THP-1 is gain through 
those enzymes that ultimately inhibit apoptosis (86). In a recent 
work, Cai et al. demonstrated that STAT3 mediates pro-survival 
by upregulating the miR-17–92 that in turn targets Bim, inhibit-
ing apoptosis in infected macrophages (87).

USinG CeLLS AS TROJAn HORSeS

Inflammatory cells attracted to the primary site of infection are 
targets of parasites that highjack the cell in order to circulate 
through the body inside the host cell, in a mechanism similar to 
a Trojan horse, delivering the parasite to deep tissues and immune 
privileged sites, such as central nervous system and eyes (88).

Our group showed that host extracellular matrix metal-
loproteases (MMPs) might be involved in infected macrophage 
dissemination (89, 90). Murine macrophages infected in  vitro 
with T. gondii exhibit increased membrane type-1 matrix metal-
loproteinase (MT1-MMP) and disintegrin and metalloproteinase 
domain-containing protein 10 (ADAM10) while decreased 
levels of CD44 are observed at cell surface. On the other hand, 
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FiGURe 2 | Using cells as Trojan horses. Host extracellular matrix metalloproteases (MMPs) are involved in infected macrophage dissemination. In vitro infection 
of murine macrophages induced an increase in membrane type-1 matrix metalloproteinase (MT1-MMP) and disintegrin and metalloproteinase domain-
containing protein 10 (ADAM10), while decreased levels of CD44 are observed at cell surface. On the other hand, augmented active MMP-9, MMP-2, and a 
multiprotein complex containing MMP-9/TIMP1/urokinase-type PA receptor (uPAR) are present at cell supernatant. This mechanism resembling metastasis 
allows Toxoplasma gondii to disseminate throughout the host, reaching immune-privileged sites, where it remains in low proliferative state, with little damage to 
the host.
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augmented active MMP-9 is present at cell supernatant (89) 
resembling metastasis mechanisms used by invasive tumors (89). 
Upregulation of MMP-9 and -2 via an Erk1/2/NF-κB pathway 
was also observed in murine mast cells infected with T. gondii 
(91) and human macrophages infected with T. gondii showed 
increased levels of MT1-MMP, with decrease in pro-MMP-2 and 
pro-MMP-9, maintain the migratory capacity, although decrease 
some the costimulatory molecules (89).

Regulation of hosts’ MMPs processing involves extra- and 
intracellular mechanisms upon T. gondii infection. Urokinase-
type PA/urokinase-type PA receptor (uPA/uPAR) pathway is 
known to be involved with MMPs processing at extracellular 
space and is regulated by endogenous inhibitor of plasminogen 
activator inhibitor (PAI-1) and protease nexin-1 (PN-1). We 
demonstrated that T. gondii-infected macrophages secrete a 
multiprotein complex containing MMP-9/TIMP1/uPAR, and 
incubation of infected cells with PAI-1 decreases the presence of 
this complex at cell supernatant (90) (Figure 2).

Toxoplasma gondii proteinases were identified (92) and 
might be involved in intracellular processing of MMPs 
zymogens, suggesting that hosts and T. gondii MMPs would 
work in favor of parasites’ dissemination to secondary organs 
and to immune privileged sites. Thus, dissemination through 
lymphatics and leukocytes could be the main form of dissemi-
nation, and cumulative information in this subject have been 
gathered (88, 93).

After oral infection, T. gondii is found in the blood inside 
CD11b+ monocytes and inside mouse CD11c+ DCs at lamina 
propria Peyer’s patches and mesenteric lymph nodes. Infected 
CD11b+ monocytes are observed at the extravascular space 
in the mouse brain after 7  days of infection (94). In human 
infected astroglia cells, the increase of MMP-2 and MMP-9 could 
promote leukocyte migration during toxoplasmic encephalitis 
(95). MMP-2 and -9 are higher in the sera and umbilical cord 
of pregnant women with T. gondii infection (96), suggesting that 
MMPs might be involved in the crossing of T. gondii through the 
placental barrier. Oral infection with T. gondii provokes small 
intestine inflammation as a result of Th1 responses, that depend-
ing of mice strain and/or parasite genotype is rapidly contained 
(3). Muñoz et al. (97) demonstrated that MMP-2 is involved in the 
development of T. gondii-induced immunopathology. The same 
paper shows that this gelatinase is regulated by IL-23 via IL-22 but 
independent of IL-17 (97).

T cells from CD4+ and CD8+ lineages are essential to control 
bradyzoites containing cysts at the brain, T  cells expressing 
MMP-10 are present at the brain after 21 days of infection, while 
T cells expressing MMP-8 are observed at 28th day of infection. 
At this time, astrocytes express TIMP-1, probably in an attempt 
to control damage (98). The presence of TIMP-1 at the brain dur-
ing chronicle stages of toxoplasmosis could control degradation/
activation of cytokines, decreasing exacerbated inflammatory 
response at the brain.
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COnCLUSiOn

Several effector molecules and mechanisms were presented here, 
which allow T. gondii to leave inside host, with little destructive 
effects to immunocompetent individuals. Both parasite and host 
have developed several strategies to decrease collateral damag-
ing immediately after infection such as interfering with cell- 
autonomous immunity and cell signaling and also blocking 
apoptosis allowing infected host cell to remain alive. Also, 
controlling dissemination of parasites through metastatic-simile 
mechanisms, using host cell MMPs and migration, allows para-
site to spread to immune-privileged sites, where it remains in low 
proliferative state, with little damage to the host. In order to 
successfully reach this semiequilibrium state between parasite–
host, the initial events occurring at the parasite entrance site are 
crucial. Damaging control of ileitis by regulating levels of IFNγ, 
IL-23, and IL-17 and maintaining the fine tuning of MMPs and 

other enzymes and pro-zymogen enhancers, inducers, and/or 
converters are fundamental.
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