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The eukaryote immune system evolved and continues to evolve within a microbial world, 
and as such is critically shaped by—and in some cases even reliant upon—the presence 
of host-associated microbial species. There are clear examples of adaptations that 
allow the host to simultaneously tolerate and/or promote growth of symbiotic microbiota 
while protecting itself against pathogens, but the relationship between immunity and 
the microbiome reaches far beyond simple recognition and includes complex cross talk 
between host and microbe as well as direct microbiome-mediated protection against 
pathogens. Here, we present a broad but brief overview of how the microbiome is 
controlled by and interacts with diverse immune systems, with the goal of identifying 
questions that can be better addressed by taking a comparative approach across plants 
and animals and different types of immunity. As two key examples of such an approach, 
we focus on data examining the importance of early exposure on microbiome tolerance 
and immune system development and function, and the importance of transmission 
among hosts in shaping the potential coevolution between, and long-term stability of, 
host–microbiome associations. Then, by comparing existing evidence across short-lived 
plants, mouse model systems and humans, and insects, we highlight areas of micro-
biome research that are strong in some systems and absent in others with the hope 
of guiding future research that will allow for broad-scale comparisons moving forward. 
We argue that such an approach will not only help with identification of generalities in 
host–microbiome–immune interactions but also improve our understanding of the role 
of the microbiome in host health.

Keywords: timing of exposure, microbiome, defensive symbiont, microbiome transmission, microbiome variation

iNtrODUctiON

Across kingdoms of life and branches of immunity, there are conserved characteristics in how 
hosts interact with their microbiome. Plants, mammals, and invertebrates are all able to differ-
entiate between self and non-self, where they tolerate, and in some cases promote, associations 
with commensal or beneficial microbes while retaining the ability to sense and attack microbial 
pathogens. In many cases, beneficial microbes can even be considered an extension of the immune 
system through either competitive exclusion of pathogens or direct inhibition of their growth. 
Furthermore, non-pathogenic microbiota can both interact with and influence the adaptive and 
innate immune systems. Across these diverse host systems, the evidence for an interaction between 
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the micro biome and immunity is strong and unsurprising 
given that eukaryotic evolution has occurred entirely within a 
microbial world. The topic of immunity is highly complex and 
may seem inaccessible to those outside the discipline. However, 
from the perspective of evolutionary ecology, there is much that 
can be learned about host–microbe adaptation and coevolution 
through exploring topics in immunity. Therefore, our goal 
in this perspective piece is to broadly examine the key char-
acteristics of known interplay between host immune systems 
and symbiotic bacteria across well-studied systems (the more 
detailed aspects of which, including microbiome variability 
among individuals, stability over time, mode of transmission, 
and evidence for host–microbiota co-speciation, we summarize 
in Table 1). We focus on the bacterial component of the micro-
biome but recognize the importance of fungal members and 
viruses, especially bacteriophages, given their known impact 
on the microbiome [e.g., Ref. (1, 2)] and possible role in host 
immunity [e.g., Ref. (3)].

The microbiome field is expanding rapidly, and doing so 
across systems, such as plants, mouse models, humans, and 
insects. We suggest that taking a broad comparative approach 
across the diverse mechanisms of immunity and host systems 
could offer unique insight to how host defenses are shaped by 
and shape the microbiome. Such an approach can, for example, 
help identify areas in which research is strong for certain sys-
tems but lacking in others. Here, we emphasize areas lacking in 
plant host systems, but which would likely elucidate important 
aspects of plant health and resilience against pathogens. Filling 
in such gaps across systems would allow for more powerful 
comparative studies and may inform predictions about host–
microbe adaptations in light of larger issues such as antibiotic 
overuse and the spread of agricultural pathogens in a changing 
climate.

OvervieW OF HOst iMMUNe sYsteMs

To begin, we offer a brief description of immunity in mammals, 
plants, and insects focusing primarily on the aspects of these 
systems that directly relate to known interactions with the 
microbiome [thorough and more discipline-specific descriptions 
of these immune systems exist elsewhere (103–106)]. The adap-
tive immune system is thought to have arisen in jawed fish ≈500 
million years ago (107), whereas the innate immune system likely 
dates back to early eukaryotic cells themselves (105, 108,). As 
microbial communities greatly predate the existence of multicel-
lular eukaryotes, both branches of the immune system, therefore, 
evolved in the presence of microbes, and it follows that tolerance 
for commensal or mutualistic microbiota (those associated with 
hosts, but which do not cause disease) must have been a key 
factor in shaping the evolution of immunity. Innate immunity, 
found across all kingdoms of life, is largely non-specific and 
responds broadly to “non-self ” cells. Its hallmarks include pro-
tective physical barriers and general pattern recognition recep-
tors that sense non-self signals known as microbe-associated or 
pathogen-associated molecular patterns (MAMPs/PAMPs) and 
elicit generalized host responses (such as phagocytic ingestion of 
invading cells in animals or a hypersensitive response in plants). 

Adaptive immunity is unique to vertebrates and responds to 
specific pathogens through detection of antigens via somati-
cally generated receptors and specialized white blood cells (B 
and T cells). Cellular recognition of a specific pathogen leads to 
clonal expansion of the lymphocyte, resulting in daughter cells 
that produce the same antigen-specific antibodies. Memory cells 
are also produced, resulting in specific and long-lasting immu-
nological memory. Other versions of adaptive immunity may 
exist (discussed below), but broadly speaking, adaptive immune 
responses are highly specific to particular pathogens or antigens, 
and the immune response changes over the course of a host’s 
lifetime.

In many cases in vertebrates, innate immunity is the first 
line of defense that elicits an adaptive immune response (103), 
and the two systems work cooperatively to combat infection. 
In comparison, plants rely on an innate immunity consisting of 
two primary responses to microbes (106). The first branch of the 
immune system recognizes MAMPs/PAMPs, such as flagellin and 
lipopolysaccharides (LPS), through the use of transmembrane 
pattern recognition receptors and results in pattern-triggered 
immunity. However, many plant pathogens have evolved to 
overcome these defenses through the use of effectors. Plants with 
resistance genes for specific pathogens can detect the effectors 
through NB-LRR proteins, which represent the second response 
to microbes: effector-triggered immunity. In addition, plants 
have physical barriers to infection such as cell wall defenses (109) 
and can also secrete antimicrobial peptides to ward off infection 
(110). Insect immunology shares characteristics with both plants 
and mammals; responses to microbial pathogens are highly 
diverse among host species, but most are considered innate. 
Immune responses include production of antimicrobial peptides, 
pattern recognition receptors, and responding to pathogens 
via circulating phagocytic cells. Evidence accrued over the last 
few decades also shows responses reminiscent of adaptive-type 
immunity, such as immunological memory via virus-derived 
complementary DNAs that generate systemic immunity (111) 
and highly specific immune priming both within and across 
generations (112), but the extent of such adaptive-type immunity 
and similarity to vertebrate defenses remains an open question 
in the field (113, 114). Taking into account the type of host 
immunity is essential when making hypotheses about adaptation 
and coevolution between host and microbiota. For example, in 
contrast to adaptive immunity, the innate immune response is 
a general resistance that can only respond to selection across 
host generations and not within, an important distinction when 
considering how plants might adapt in response to microbiota as 
compared to vertebrates.

As is becoming increasingly evident, the immune system influ-
ences both the composition and abundance of non-pathogenic 
microbiota in addition to its well-studied role in preventing 
pathogen establishment. In mammals, this is best studied in the 
gut microbiome, where differentiating between these diverse 
symbionts and colonizing pathogens is clearly a complex prob-
lem. The human immune system maintains a homeostatic rela-
tionship with commensal microbiota through mechanisms that 
include stratification and compartmentalization of the intestine, 
production of a mucous layer and antimicrobial proteins, and 
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tABLe 1 | Characteristics of host/microbiota association.

Host site/organ core taxa Max O.t.U. rangea variability between individuals

early development Adult

Humans Skin 4 phyla 14–182 May depend on delivery method in first weeks Yes: more similarity between sites on one body  
than between bodies; variation between bodies depends on skin site

Gut 3 phyla 237–395 Lower alpha diversity than adults; higher variability 
between individuals

Yes: tend to fall into three enterotypes

 Oral 6 phyla 600–19,000 Lower alpha diversity than adults; may depend on  
delivery method in first weeks

Low at genus level; higher at species level; varying results across 
studies

Honey bee  
(Apis mellifera)

Gut 3 phyla; 6–10 
species

68–99 Bacteria limited or absent in larvae/newly emerged  
bees

No: core species across geography, “tasks,” diets, and time

Termite Gut 11 phyla 357–5413 Lower alpha diversity than adults, limited larval studies Dominated by some phyla, but very diet dependent

Aphid Gut 1 primary  
species

3–67 ? Primary symbionts: low; secondary: varies with geography or host 
plant

Drosophila 
melanogaster

Gut 2–4 genera 21–122 High Primarily same genera but varies based on diet  
and wild/lab strain

Tsetse fly (Glossina 
spp.)

Various (Gut, bacteriome, 
milk gland organ) 

3 phyla; 3  
primary species

25 (one study) Some primary symbionts: low; secondary: ? Some primary symbionts: low; secondary: variable, but limited studies

Arabidopsis thaliana Rhizosphere 3–7 phyla 778–1,262 ? Soil and/or genotype driven

Arabidopsis thaliana Rhizosphere 4 phyla 840–5,057 ? Abundance variable; may converge over time

Maize Phyllosphere 4 phyla 396–61,067 Abundance/diversity variable between genotypes;  
high consistency with synthetic community 

Genotype, soil type, geography driven
 

Host site/organ Heritability of 
microbiota

evidence for role 
of host genetics 
shaping microbiota

transmission temporal stability co-speciation

Humans Skin Yes Yes Maternal, contact, environmental Skin site dependent; stability shown up to 2 years Yes

Gut Yes Yes Maternal, environmental May stabilize after adolescence; diet has an impact ?

 Oral Yes ? Maternal, environmental May stabilize after adolescence ?

Honey bee Gut Yes ? Social hive interactions within 3 days Change in abundance Limited evidence

Termite Gut Yes ? Early social exchange/exposure via proctodeal  
trophallaxis

Stable; diet has an impact Yes

Aphid Gut Primary: yes Primary: yes; 
secondary: ?

Primary: ovarian transmission; secondary: vertical  
or horizontal

Primary: low; secondary: may vary over time Primary: yes

Drosophila 
melanogaster 

Gut Yes Yes Larval ingestion of bacteria-coated egg shells Composition and density change with gut 
development and age

Maybe with 
endosymbionts

Tsetse Fly (Glossina 
spp.)

Various (Gut, bacteriome, 
milk gland organ) 

Primary: yes Limited Primary: maternal milk, germline; secondary: ? ? Primary: yes

Arabidopsis thaliana Rhizosphere ? Yes Horizontal: soil Changes with developmental stage of plant;  
may converge after senescence

?

Arabidopsis thaliana Rhizosphere ? Yes Horizontal: air, soil Communities may converge over time ?

Maize Phyllosphere Yes Yes Vertical: seed; horizontal: soil Known successional dynamics ?

(Continued)
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limiting epithelial exposure and immune response (115), and 
through antibody targeting, which can limit bacterial spread and 
virulence, among other mechanisms (116). Interactions between 
the immune system and microbiota in the gut is a heavily studied 
field (115, 117–121), but we are still learning the ways in which 
aberrations in cross talk can cause or contribute to conditions, 
such as inflammatory bowel disease, obesity, and even certain 
types of cancer (122–126).

In insects, immune system responses also contribute to home-
ostasis with endosymbionts, reviewed in Ref. (127, 128), and  
restriction of other commensal bacteria to specific host compart-
ments, as in the gut symbionts of termites (129), bees (32, 33),  
drosophila (130), and aphids (43), may also help maintain inver-
tebrate symbiotic communities. The plant immune system is also 
critical in shaping the non-pathogenic microbiome [recently 
reviewed by Zipfel and Oldroyd (131)]. Two studies in Arabidopsis 
thaliana demonstrate that disrupting components of the plant 
immune system, such as the signaling molecules: salicylic acid 
(SA) and jasmonic acid (JA), influences microbial community 
composition: the first shows evidence for altered root microbiome 
communities in plant hosts lacking genes controlling production 
of SA compared to control plants (132) and the second shows 
altered microbial communities in plants with mutations in genes 
controlling ethylene response (another signaling molecule) and 
cuticle formation (90). Recent work in wheat also demonstrates a 
role for JA in shaping composition of the microbiome, and again 
in this case, activation of JA signaling pathways altered microbial 
diversity and composition of root endophytes (133). However, 
the importance of resistance genes and diversity, as well as the 
number of pattern recognition receptors, in shaping the plant 
microbiome remains an open question.

iMPOrtANce OF MicrOBiOtA iN 
sHAPiNG HOst iMMUNitY

The interaction between the microbiome and the immune system 
is far from one-sided, as has been elegantly demonstrated in stud-
ies from germ-free mice. Microbiome establishment influences 
levels of circulating myeloid cells, macrophages in tissues, and 
proper functioning of innate lymphoid cells, all critical for a 
healthy immune response (134–136). Furthermore, microbiota 
is critical in development and function of components of adap-
tive immunity, such as B and T cell diversity and differentiation  
(119, 137) and there is evidence from germ-free mice supporting 
a role in natural killer cell priming and function (137, 138). In 
insects, microbes also play a role in immune system development. 
For example, tsetse flies lacking their vertically transmitted sym-
bionts are immunocompromised through both altered expression 
of immunity-related genes and reduced levels of hemocytes, which 
play an important role in invertebrate immunity (83, 139–141). 
Altered gene expression and other physiological effects were also 
found in axenically raised Drosophila melanogaster (61). In plants, 
symbiotic bacteria influence host immunity by priming the plant 
for future exposure to pathogens through the induction of a 
systemic response, causing broad-range basal levels of protec-
tion. A primed plant can respond more rapidly and strongly to 
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microbiome to adult germ-free mice did not restore normal levels 
of invariant natural killer T  cells nor did it lessen the physical 
effects of induced colitis (164), and altered exposure to bacterial 
species and their LPS subtypes in human infant guts may have 
lasting and detrimental effects on development of immunity 
(165). In the human neonate airway, disruption of microbiome 
formation as early as the first 2 weeks of life can result in lifelong 
susceptibility to allergic airway inflammation (166). There are 
additional documented links between dysbiosis of early-life 
microbiota and disease or health conditions later in life, reviewed 
elsewhere (167). Despite the accruing evidence from human and 
mouse systems, there has been little to no exploration of such a 
window of opportunity for microbiome–immune system interac-
tions in other systems, such as plants or insects. It also remains 
unclear whether such early exposure effects should be limited to 
organisms with adaptive immunity or whether priming of innate 
immunity at different host developmental stages also affects 
host–microbiome interactions.

The clear role of early exposure to microbiota, at least in 
mammals, suggests that it would be advantageous for a com-
munity of beneficial microbes to be transmitted vertically from 
parent to offspring (e.g., through direct contact at birth, seeds, or 
transovarian) from generation to generation. Vertical transmis-
sion in humans may be impacted by delivery mode, as there is 
good evidence for differences in microbiome composition and 
diversity between infants delivered via virginal birth versus those 
delivered via cesarean sections (12, 168), but it remains contro-
versial how long-lived such effects are (4). In insects, symbionts 
are known to be maintained through both vertical transmission 
[for example, Buchnera in aphids; (169)] and other transmission 
mechanisms such as early social interactions [observed in bees; 
(36)], proctodeal exchange of fluids [e.g., in termites; (170)], or 
larval consumption of bacteria-coated egg shells [as observed in 
Drosophila; (59, 70, 171)]. Interestingly, non-social bees (in which 
early social transmission of symbionts would not occur) do not 
seem to share the core microbiome that is observed among social 
bees (33).

Transmission of microbiota in plants can occur vertically 
through the seeds, or horizontally from the soil and surrounding 
environment. Plants ranging from trees to grasses are known to 
harbor bacteria in their seeds, many of which are reported to 
promote plant health (172–174). Despite this, there is no evidence 
that plants actively select for transmission of specific microbial 
communities, and there are no clear examples of adaptations to 
ensure seed-mediated transmission. Intuitively, vertical transmis-
sion of a microbiome or symbionts would allow for maintenance 
of key members of the microbial community across generations, 
as beneficial microbes would have primary access to both spatial 
niches and environmental nutrients provided by seedlings. 
Interestingly, plants have been shown to have differential onset of 
resistance to pathogens throughout their life-stages, something 
described as age-related resistance (ARR) or developmental 
resistance (175–177). However, much of the work on ARR inves-
tigates exposure and resistance to specific pathogens throughout 
the developmental stage of the plant and does not address if there 
is a window of opportunity for microbial exposure in general, as 
observed in mammals.

pathogen invasion through a variety of mechanisms, including 
quicker closing of stomata, less sensitivity to bacterial manipu-
lation of defenses, upregulation of defense-related genes, and 
a stronger SA-related immune responses (142). In some cases, 
the effects of priming can even be trans-generational through 
chromatin and histone modification, where the subsequent gen-
eration of primed plants exhibits enhanced resistance to bacterial, 
fungal, and herbivorous pathogens (143–146). Immunological 
priming by microbiota is also observed in arthropods, where it is 
often described as functional adaptive immunity, as it can occur 
within one generation or trans-generationally. Its effects have 
been observed in bumble bees (147, 148), beetles (149), daphnia 
(150), moths (151), and many more [summarized by Contreras-
Garduño et al. (152)].

Host-associated microbiota can also directly influence host 
resistance against invading pathogens. Common in insects 
and also plants and mammals, the microbiome can serve a 
protective role that is independent of the host immune system 
through antagonism, competitive exclusion, or physical exclu-
sion of pathogens, collectively referred to as defensive symbiosis  
(153, 154). For example, the mammalian skin microbiota is 
known to play a large role in pathogen recognition and infection 
prevention through amplification of immune responses (155) 
and production of antimicrobials (156). When germ-free mice 
were inoculated with gut microbiota from a non-mouse host 
source, they showed a decreased ability to fight infection against 
Salmonella, and particular bacterial strains seem to be required 
for normal adaptive immune response (157). More recently, it has 
been shown that a mildly pathogenic bacterium of Caenorhabditis 
elegans can evolve over time to protect its host against the more 
virulent pathogen, Staphylococcus aureus (158). The importance 
of such pairwise interactions have been demonstrated many 
times [reviewed in Ref. (159, 160)], and indeed has motivated 
many current biocontrol strategies, but an open question in the 
field is how such microbe-mediated protection might scale up 
to the whole microbiome level. This leads to the idea that by 
directly protecting their host against pathogens, microbiota could 
hinder the evolution of host resistance by relaxing selection on 
host populations and, therefore, increasing host reliance on the 
microbiome.

MicrOBiOMe trANsMissiON AND 
tiMiNG OF eXPOsUre

In mammals, it is clear that early exposure to microbes is crucial 
to the development of both branches of the immune system 
(161), influencing not only immune development and response 
against pathogens but also tolerance to commensal or mutualistic 
microbiota (162). For example, pregnant female mice treated 
with antibiotics have been shown to have offspring with not only 
a depauperate microbiome but also decreased levels of blood 
neutrophils and precursor cells, resulting in higher susceptibility 
to infection and increased mortality rates as compared to control 
mice (163). In line with this, there is increasing evidence for a 
crucial window of opportunity for exposure to microbiota (135). 
A study in germ-free mice showed that introducing a healthy 
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cONcLUsiON AND OPPOrtUNities FOr 
ADvANceMeNt iN tHe FieLD

Unsurprisingly, that the microbiome is both shaped by and shapes 
the host immune system is a common feature of eukaryotes. 
However, the mechanisms underlying such cross talk are highly 
variable. Although we now have a foundation of knowledge dem-
onstrating the microbiome’s role in immune system development 
and function, key-questions remain unanswered across systems. 
One specific area for advancement is exploring the importance of 
both vertical transmission and timing of microbiome exposure 
across systems with diverse immune mechanisms. For example, 
despite the known importance of timing of exposure in mouse 
models and vertical transmission in insects, to our knowledge 
there are no studies to date that test the importance of timing 
of non-pathogenic microbial exposure on microbiome establish-
ment or immune function in plants, and few in invertebrates. 
Would a seedling exposed to beneficial microbes mount as strong 
of a response as an older plant? And would exposure of otherwise 
sterile adult plants result in the same successional dynamics of 
microbiome establishment as has been observed in seedlings of 
some plant species (93, 178, 179)? Given that we know resistance 
to pathogens can change throughout the life cycle of a plant, 
research focused on age-related tolerance and recruitment of 
beneficial symbionts and plant-growth promoting bacteria has 
large implications in agricultural practices, such as seed treat-
ment, greenhouse germination, and age-structured planting.

Vertical transmission also ensures stable associations between 
hosts and their microbiomes over evolutionary time and, 
therefore, sets the stage for long-term coevolution and even co-
speciation. There is good evidence for vertical transmission of 
microbiota through gametes, secretions, or birth/delivery from  
across systems, but how this relates to coevolution between micro -
biota and their hosts remains to be determined. Long-term 
associations between hosts and microbiota can be uncovered 
through examination of co-speciation events, and these have 
been described in insects, such as aphids (51, 52), social bees (31), 
and termites (40). Furthermore, recent evidence from the homi-
nid phylogeny also strongly supports this phenomenon (180). 
However, in plant systems, the current evidence is limited to a few 
pairwise host–symbiont interactions (181, 182). To understand 
the ways in which microbiota–immunity interactions influence 
stable association, transmission, and potentially coevolution in 
organisms such as plants, it may be wise to start by looking for 
similarities in established examples, such as the reduced genomes 
of symbionts commonly found in insect symbionts (183), nutri-
tional dependence on symbionts, or physical partitioning of 
microbiota within the host.

Another area of advancement involves taking into account 
the whole suite of microbiomes associated with hosts. Despite 
what we know about spatially distinct microbiota in humans 
(5) and plants (184, 185), there are still large biases toward the 
below-ground (rhizosphere) microbiota of plants and the gut 
microbiota of vertebrates and insects. As more multi-tissue 
microbiome studies are generated across systems, we will be in 
a better position to uncover general patterns of potential cross 

talk among microbiomes within a host, differences in the types 
of pathogens being protected against across tissues, and perhaps 
even the role of distinct microbiomes in shaping tissue tropism 
of pathogens. Furthermore, parallel studies of spatially distinct 
microbiomes in insects could offer nice insight into, for example, 
the roles of internally versus externally colonizing microbiota in 
shaping disease susceptibility, as well as how the host immune 
response regulates multiple microbiomes simultaneously.

Finally, the field is still limited by challenges in data inter-
pretation for large, complex, and dynamic microbiome systems, 
explaining many of the open questions regarding heritability, 
temporal dynamics, and co-speciation (highlighted in Table 1). 
However, addressing these questions is increasingly feasible 
through rapidly advancing sequencing and bioinformatics 
approaches and the compilation of biologically representative 
synthetic communities. Although we are still some way from 
having large cross-system comparative microbiome studies, as 
sequencing costs continue to fall and data standardization across 
studies becomes more stringent, such meta-analyses will likely 
uncover larger “rules” of microbiome assembly, diversity, and 
interplay with host immunity. For example, plant-microbiome 
literature has forged the way in our understanding of how host 
genetics versus environment contribute to shaping the adult 
microbiome [e.g., Ref. (90, 186)], and recent work from humans 
now raises the question of whether similar rules are true for 
vertebrates (187). Another, more reductionist, approach for test-
ing fundamental predictions about microbiome establishment 
genetic underpinning and immune system interactions is using 
synthetic microbiomes, as has been well-developed in plants (86, 
90, 101, 132, 188). For example, a recent study in D. melanogaster 
explored colonization of gnotobiotic flies with specific strains of 
bacteria to document how host genotype influences microbial 
abundance levels (65). Though far from painting a complete pic-
ture, approaches such as this may also provide a means to study 
specific microbial adaptations to the immune systems of hosts 
across environmental conditions and genotypes. In conclusion, as 
we accumulate more data across systems, we can take more com-
parative and/or phylogenetic approaches to better understand the 
evolution of microbiome–immune system interaction mecha-
nisms and to uncover conserved microbiome-mediated immune 
functions across systems. Such research has broad application to 
both human and agricultural health and is critical in light of the 
emergence of antibiotic and chemical-resistant pathogens and 
the common use of interventions that disrupt host-microbiome 
associations across systems.
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