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Background: Although anti-TNF-α monoclonal antibodies are considered safe during 
pregnancy, there are no studies on the development of the exposed-infant immune 
system. The objective was to study for the first time the impact of throughout preg-
nancy exposure to anti-TNF-α has an impact in the development of the infant’s immune 
system, especially B cells and the IL-12/IFN-γ pathway.

Methods: Prospective study of infants born to mothers with inflammatory bowel disease 
treated throughout pregnancy with anti-TNF-α (adalimumab/infliximab). Infants were 
monitored both clinically and immunologically at birth and at 3, 6, 12, and 18 months.

results: We included seven patients and eight healthy controls. Exposed infants had 
detectable levels of anti-TNF-α until 6 months of age; they presented a more immature 
B- and helper T-phenotype that normalized within 12 months, with normal immuno-
globulin production and vaccine responses. A decreased Treg cell frequency at birth 
that inversely correlated with mother’s peripartum anti-TNF-α levels was observed. 
Also, a decreased response after mycobacterial challenge was noted. Clinically, no 
serious infections occurred during follow-up. Four of seven had atopia.

conclusion: This study reveals changes in the immune system of infants exposed 
during pregnancy to anti-TNF-α. We hypothesize that a Treg decrease might facilitate 
hypersensitivity and that defects in IL-12/IFN-γ pathway might place the infant at risk of 
intracellular infections. Pediatricians should be aware of these changes. Although new 
studies are needed to confirm these results, our findings are especially relevant in view 
of a likely increase in the use of these drugs during pregnancy in the coming years.

Keywords: adalimumab, inflammatory bowel disease, infliximab, monoclonal antibodies, pregnancy,  
prenatal exposure
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inTrODUcTiOn

Anti-TNF-α monoclonal antibodies (mAb) have revolutionized 
inflammatory bowel disease (IBD) treatment (1–4). IBD onset 
is frequently observed in women during childbearing age (3, 4); 
nevertheless, pregnancy is not associated with IBD improvement 
(5–9). Active IBD can lead to increased pre-term deliveries and 
spontaneous abortion, and sustained remission of IBD is often 
only achievable with anti-TNF-α treatment. Anti-TNF-α mAb 
cross placenta mostly from week 28 of gestation to delivery 
(10); they are included in category B (no apparent risk) of FDA-
classification for pregnancy risk. However, drug level’s safety 
in newborns and the full consequences of such exposure in 
newborn’s immune system development are unclear.

Several recent studies in extensive cohorts [PIANO 
(n = 426), OTIS registry (n = 74), and CRIB study (n = 31)] 
of infants exposed to anti-TNF-α drugs during, at least, the 
second and third trimester of pregnancy showed that both anti-
TNF-α adalimumab (ADA) and infliximab (IFX) are detectable 
in infants from treated mothers for 12 months after birth while 
certolizumab was barely detectable. Infants showed no appar-
ent major clinical consequences (11–14). Nevertheless, a fatal 
case of disseminated Bacillus Calmette–Guérin (BCG) disease 
after vaccination was reported in an infant whose mother had 
been treated with high doses of IFX during pregnancy (15). 
It is recommended to delay immunization with live vaccines 
until 12 months or after confirmation of negative drug levels 
(13, 16).

It has been hypothesized that biologic drugs targeting 
immune-system molecules can lead to phenotypes resem-
bling primary immune deficiencies (PID) related to the 
inhibited or modulated pathway (17). Although there are not 
known PID caused specifically by a deficiency in TNF-α, it 
plays a key role in the IL-12/IFN-γ pathway, responsible for 
the response to intracellular pathogens. Infections observed 
in adult patients treated with anti-TNF-α mAbs resemble 
those observed in patients with Mendelian Susceptibility to 
Mycobacterial Disease (OMIM 209950) (18), caused by mono-
genic errors in the IL-12/IFN-γ pathway. Severe or recurrent 
infections by atypical/non-pathogenic mycobacteria and 
other intra-macrophagic infections, including salmonellosis 
are characteristic in patients with Mendelian Susceptibility 
to Mycobacterial Disease and in patients treated with anti-
TNF-α (19). Anti-TNF-α treatment alters the IL-12/IFN-γ 
pathway by inhibiting IL-12p70 production in response to 
CD40L stimulation (18). Besides, it is thought that it plays 
a pivotal role in B cell development: TNF-α knockout mice 
present abnormal B  cell structures. These alterations lead 
to a decreased humoral responses and increased infection 
risk (20).

The in-depth study of the effect of prenatal anti-TNF-α 
exposure on a developing immune system remains a relevant 
clinical question. Therefore, this was the aim of our study: our 
hypothesis was that throughout exposure during pregnancy 
to anti-TNF-α affects the development of the infant’s immune 
system, especially B-cells (20, 21) and the IL-12/IFN-γ pathway 

(18). To our knowledge, this is the first study to shed light on 
how prenatal anti-TNF-α influences the human immune system 
development.

MaTerials anD MeThODs

Patients included
We conducted a prospective study (January 2014–January 2016) 
of infants born to mothers with IBD who received anti-TNF-α 
mAb (ADA or IFX) throughout during pregnancy, including 
the third trimester. Infants undergoing immunosuppressive 
treatment or with an immunodeficiency were excluded. All IBD 
patients included in the study were recruited from the IBD Unit of 
Hospital Clinic de Barcelona (HCB), and underwent close moni-
toring of pregnancy and childbirth. At the time of the initiation 
of our study, the IBD Unit of HCB was the only institution in our 
region maintaining this treatment during throughout pregnancy 
and all patients but one fulfilling inclusion criteria were enrolled 
in the study.

This study was carried out in accordance with the recom-
mendations of Ley General de Sanidad (25/4/1986) Art. 10, with 
written informed consent from all subjects. The protocol was 
approved by the ethics committee of the Hospital Sant Joan de 
Déu (Comité Ético de Investigaciones Clínicas number PIC-
50-12). All patients included in the study signed the informed 
consent, complying with current legislation.

We included seven exposed-infants and eight healthy 
controls. Exposed-infants were monitored both clinically and 
immunologically at birth and at 3, 6, 12, and 18  months. On 
the delivery day, 20 ml of heparinized blood was extracted from 
umbilical cord blood (seven exposed-infants and eight controls). 
From 3 months, 6 ml heparinized blood and 2.5 ml sera without 
anticoagulant factor were obtained from all exposed-infants  
but 2, due to the mother’s refusing subsequent blood draws after 
an unsuccessful first attempt.

immune and clinical Follow-up
Immune parameter study included: quantification of anti-
TNF-α blood levels, basic T/B/NK immunophenotype, T-cell 
and B-cell subphenotypes with evaluation of regulatory cells 
(Treg and Breg), lymphocyte proliferation to mitogens, and 
IFN-γ/IL-12 pathway (Tables S1 and S2 in Supplementary 
Material). Common procedures as immunophenotyping and 
cell proliferation are detailed in the supplementary methods. To 
facilitate reading and interpretation, populations appear in the 
text with a given name, while markers definitions are presented 
in Table 1.

Study of IL-12/IFN-γ Pathway in Response to 
Mycobacterial Stimulus
For the study of IL-12/IFN-γ pathway, we performed a whole 
blood culture (22). Heparinized blood was diluted 1:2 in 
complete medium [RPMI (Gibco, Grand Island, New York, 
NY, USA)] supplemented with 10% heat-inactivated fetal 
calf serum (FCS; Sigma-Aldrich, St. Louis, MO, USA), 1  µg/
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TaBle 1 | Lymphocyte subpopulation cell markers.

name cell marker

T lymphocytes CD45+CD3+CD19−

B lymphocytes CD45+CD3−CD19+

NK cells CD45+CD3−CD16CD56+

CD4 T cells CD45+CD3+CD4+

CD8 T cells CD45+CD3+CD8+

Double-negative T cells CD45+CD3+CD4−CD8−

TCRγδ T cells CD3+TCRγδ+

TCRαβ T cells CD3+TCRαβ+

Naive T cells CD3+CD45RA+CD45RO−

Cytotoxic naive T cells CD3+CD45RA+CD45RO−CD8+

Helper naive T cells CD3+CD45RA+CD45RO−CD8−

Memory T cells CD3+CD45RO+

Cytotoxic memory T cells CD3+CD45RO+CD8+

Helper memory T cells CD3+CD45RO+CD8−

Late-memory T cells CD3+CD45RA−CD45RO+

Cytotoxic late-memory T cells CD3+CD45RA−CD45RO+CD8+

Helper late-memory T cells CD3+CD45RA−CD45RO+CD8−

Early-memory T cells CD3+CD45RA+CD45RO+

Cytotoxic early-memory T cells CD3+CD45RA+CD45RO+CD8+

Helper early-memory T cells CD3+CD45RA+CD45RO+CD8−

T regulatory cells CD45+CD3+CD4+CD25hiCD127lowFoxP3+

IgD+IgM+ B cells CD19+IgD+IgM+

Marginal zone B cells CD19+IgD+IgM+CD27+

Naive B cells CD19+IgD+CD27−

Transitional B cells CD19+IgM+CD38hi

B regulatory cells CD19+CD24hiCD38hi

IgD+IgM− B cells CD19+IgD+IgM−

Switched B cells CD19+IgD−IgM−

Switched memory B cells CD19+IgD−IgM−CD27+

IgM only B cells CD19+IgD−IgM+

Activated B cells CD19+CD38lowCD21low

Plasmablasts CD19+IgMlowCD38hi
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then added for 30 more minutes. During all incubation steps, the 
plate was agitated at 650 rpm. After washing, plate was agitated 
for 15 min at 650 rpm and read in the xMAP Luminex reader 
(Waltham, MA, USA). IL-17 detection was assessed by ELISA 
(Invitrogen, Carlsbad, CA, USA) at 48 h culture point following 
manufacturer’s instructions.

statistical analysis
As data did not follow a Gaussian distribution, unpaired t-test 
was performed to compare different cell populations between 
exposed and non-exposed infants. Significance of correlation 
between populations/drug levels was studied with Spearman test 
for non-parametric populations.

Statistical significance of functional studies was performed 
with two-way ANOVA test and Bonferroni post-test. For the 
comparison between the results obtained with autologous sera 
and washed condition, two-way ANOVA for repeated measures 
was used. In heat-map representation, blue corresponds with the 
minimum, red with the maximum, and yellow with one for each 
parameter.

Statistical analysis and graphical representation of the data 
were performed with Prism5 software (GraphPad, La Jolla, CA, 
USA) and Microsoft Excel (2010). Detailed results (mean ± SE 
of the mean and p) for immune phenotype are detailed in 
Tables 2 and 3.

resUlTs

all studied Mothers Presented 
Therapeutic levels of anti-TnF-α
Seven moderate-to-severe IBD pregnant patients (mean 34 years 
old, range 27–36) with long-lasting IBD (mean 9 years since diag-
nosis, range 2.5–11) were treated with anti-TNF-α for a period 
longer than 6-months prior to pregnancy. Six patients suffered 
from Crohn’s disease (CD) and one from extended ulcerative 
colitis. Five patients were treated with ADA, and two with IFX. 
All mothers presented supra-therapeutic levels of anti-TNF-α 
(ADA >4  μg/ml; IFX >3  μg/ml) before or during pregnancy. 
Three patients were treated with other immunosuppressive 
drugs—2 with azathioprine (AZA) and one with prednisolone—
and two of them had active IBD during pregnancy (Table S3 in 
Supplementary Material).

For all patients, the interval between the last dose of drug 
and the delivery was ≤7 days (range: 3–7 days). The delivery was 
programmed only in two patients; the five remaining mothers 
gave birth by caesarian section (1) or vaginal (4) delivery, with 
one preterm infant (35 weeks in one mother with active disease); 
while the remaining 4-cases delivered at 39  weeks on average 
(range 37–41). All newborns were normal weight for gestational 
age, Apgar 9/10, and did not present any malformations. Five 
mothers breastfed.

levels of anti-TnF-α in the infant
Exposed-infants had positive anti-TNF-α drug levels in cord 
blood (mean 11.42 µg/ml, range: 5.87–42.52 µg/ml; Figure 1A); 

ml penicillin, and 1  µg/ml streptomycin (Invitrogen, Grand 
Island, New York, NY, USA) and incubated at 37°C in a 5% 
CO2 humidified incubator for 48  h. To assess the effect of 
anti-TNF-α mAb on the function of IL-12/IFN-γ pathway, the 
same whole blood culture was performed in two ways: using 
blood from exposed infants without washing and using the 
blood washed with PBS three times to eliminate anti-TNF-α 
drug. After the washing, complete medium (RPMI with 10% 
FBS and penicillin/streptomycin) was added to restore blood 
to the same volume as before the washing with PBS. In this 
way, we maintained cellular amounts of cells and cell concen-
tration in the two conditions assayed. Activation conditions: 
medium alone, live BCG (M. bovis BCG, Pasteur substrain) at 
a multiplicity of infection of 20 BCG per leukocyte, BCG plus 
human recombinant IL-12p70 (hrIL-12p70, 20 ng/ml, Miltenyi 
Biotec, Germany), BCG plus hrIFN-γ (5,000  IU/ml; Imukin, 
Boehringer Ingelheim, Germany) as described elsewhere (22). 
We analyzed activation markers after 48  h of culture by flow 
cytometry.

Cytokine production determination was assessed by Luminex 
(Millipore, Billerica, MA, USA) at 48-h culture point follow-
ing the manufacturer’s instructions. Briefly, supernatants were 
incubated for 2  h with corresponding anti-cytokine magnetic 
beads, and then washed with 1× washing buffer and stained with 
detection antibodies (provided) for 1  h. Strepatividin-PE was 
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TaBle 2 | Leukocyte populations in umbilical cord blood of exposed and non-exposed infants.

exposed (n =6) non-exp (n = 8) p aDa-exposed (n = 4) iFX-exposed (n = 2)

Mean seM Mean seM Mean seM p Mean seM p

Absolute 
numbers 
(103 cells/μl 
blood)

Leukocytes 16.06 3.12 13.12 1.00 0.28 20.15 3.65 0.15 12.36 6.15 >0.9999
Lymphocytes 7.18 1.47 5.39 0.41 0.08 9.31 1.47 0.02 5.27 2.93 >0.9999
Neutrophils 7.29 1.83 6.18 0.74 0.85 8.54 2.81 0.9 6.48 3.42 0.84
Monocytes 1.04 0.24 1.16 0.10 0.94 1.28 0.26 0.15 0.44 0.04 0.04
Basophils 0.11 0.02 0.39 0.11 0.09 0.09 0.03 0.07 NA NA NA
Eosinophils 0.44 0.21 0.08 0.02 0.07 0.63 0.55 0.004 NA NA NA

Absolute 
numbers 
(cells/μl 
blood)

T lymphocytes 5593.00 1006.00 3479.00 256.70 0.04* 6298 1045 0.004* 4184 2376 1
B lymphocytes 959.20 303.80 978.60 166.30 0.85 1112 420.4 0.57 653.6 428.8 0.71
NK cells 1100.00 304.00 796.40 217.80 0.66 1552 164.8 0.11 196.8 4.92 0.18
CD4 T cells 3935.00 779.40 2442.00 169.80 0.14 4470 854.2 0.49 2864 1736 1
CD8 T cells 1523.00 294.70 925.10 101.00 0.14 1736 343.5 0.07 1097 567.9 0.89
Double-negative T cells 182.80 45.22 70.90 10.66 0.01* 217.6 59.69 0.008* 113.4 45.37 0.09

% of T cells TCRγδ T cells 3.57 0.79 2.11 0.28 0.28 3.12 0.67 0.26 2.39 0.38 0.67
TCRαβ T cells 94.84 0.80 94.26 0.45 0.15 95.18 0.78 0.57 96.15 0.25 0.07
Naive T cells 62.72 6.82 46.90 2.32 0.13 54.88 7.226 0.47 78.4 3.9 0.07
Cytotoxic naive T cells 15.11 1.22 16.20 1.24 0.82 13.25 0.4575 0.25 18.82 0.625 0.28
Helper naive T cells 47.62 6.08 30.73 2.33 0.13 41.64 7.293 0.47 59.59 4.525 0.07
Memory T cells 34.68 7.98 52.65 2.30 0.13 44.9 7.391 0.48 14.25 0.35 0.07
Cytotoxic memory T cells 11.74 4.11 9.77 1.17 0.7 11.74 4.108 0.61 5.675 0.305 0.07
Helper memory T cells 22.95 5.393 42.9 1.784 0.009* 22.95 5.393 0.04* 8.575 0.655 0.07
Late-memory T cells 9.07 1.39 8.05 0.80 0.81 8.948 2.156 0.91 9.31 0.89 0.43
Cytotoxic late-memory T cells 2.55 0.70 0.12 0.03 0.002* 2.21 1.046 0.01* 3.225 0.145 0.07
Helper late-memory T cells 6.52 1.05 7.92 0.78 0.13 6.738 1.625 0.25 6.085 0.745 0.28
Early-memory T cells 25.64 8.53 44.87 2.09 0.18 35.73 8.952 0.61 5.46 1.02 0.07
Cytotoxic early-memory T cells 9.22 3.85 9.69 1.15 0.69 12.47 5.132 0.61 2.715 0.705 0.07
Helper early memory T cells 16.42 5.71 35.18 1.90 0.03* 23.26 5.901 0.11 2.745 0.315 0.07

% of CD4 
T cells

T regulatory cells 0.24 0.04 0.5 0.10 0.04 0.22 0.037 0.049 0.29 0.11 0.4

% of B cells IgD+IgM+ B cells 91.97 2.38 92.03 1.30 0.46 90.13 3.20 0.920 95.65 1.85 0.29
Marginal zone B cells 20.16 9.02 40.74 2.46 0.03* 29.58 40.74 0.190 1.33 0.45 0.04*
Naive B cells 72.21 10.87 47.70 3.49 0.045* 60.77 12.82 0.270 95.11 1.42 0.04*
Transitional B cells 59.75 10.78 53.89 4.88 0.44 50.43 13.66 0.920 78.40 10.00 0.09
B regulatory cells 49.31 1.42 34.39 2.49 0.0007* 47.62 1.31 0.004* 53.55 0.45 0.04*
IgD+IgM− B cells 3.36 2.13 3.64 1.65 0.72 4.35 3.18 0.780 1.37 1.15 0.89
Switched B cells 2.84 1.00 3.90 1.30 0.045* 3.59 1.35 0.130 1.32 0.79 0.17
Switched memory B cells 2.26 0.82 2.57 0.58 0.35 2.76 1.16 0.630 1.28 0.78 0.4
IgM only B cells 1.81 0.16 0.43 0.09 0.002* 1.90 0.24 0.010* 1.64 0.10 0.04*
Activated B cells 1.23 0.73 0.05 0.03 0.003* 1.74 1.03 0.010* 0.21 0.12 0.09
Plasmablasts 1.33 0.32 1.39 0.28 0.94 1.81 0.16 0.500 0.7 0.41 0.27

ADA, adalimumab; IFX, infliximab.
*indicates statistically significant p-values.
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with especially high levels in one IFX-exposed infant whose 
mother received the drug 4  days before delivery. There was a 
direct correlation between the trough level of ADA in the mother 
and the cord blood level (r = 0.9 p = 0.04); this correlation was 
not determinable in IFX patients due to the low number of 
samples (Figure  1B). The ratio between the mother and cord 
blood drug’s trough level was close to 1 (mean: 0.99) for ADA 
and higher for IFX (mean: 3.25).

Drug level clearance in the infant followed a one-phase decay 
with a mean half-life of 29.6  days (range 23.93–35.53  days), 
slightly longer than the described half-life of immunoglobulin 
(Ig) G (23). Drug levels were detectable until 6  months in 
all infants studied (Figure  1C; Table S4 in Supplementary 
Material).

Mild changes in leukocyte and 
lymphocyte Population in exposed-
infants
There were no statistical differences in cord blood counts in 
red blood cells (Figure S1 in Supplementary Material), total 
leukocytes, lymphocytes, neutrophils, and basophils between 
exposed-infants and healthy controls (Figure S2 in Supplementary 
Material). However, although due to sample-size limitations 
comparisons between ADA- and IFX-exposed infants should 
be approached with caution. We have observed that, compared 
with healthy controls, IFX-exposed infants had lower monocyte 
count in cord blood (0.44 vs 1.16 × 103 cells/μl blood) and that 
ADA-exposed infants presented increased eosinophil counts in 
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FigUre 2 | Helper CD45RO+CD45RA+ T-cells are at a low frequency in exposed infants cord blood. T-cell subpopulation frequency at birth (a) and at follow-up  
(B). Dotted lines, described reference ranges; purple circles, adalimumab (ADA)-exposed; green triangles, infliximab (IFX)-exposed; red diamonds, cord blood 
healthy controls; empty symbols, azathioprine co-exposure; half-empty symbols, prednisone co-exposure. ADA-exposed infants, n = 4; IFX-exposed infants, n = 2.

FigUre 1 | Anti-TNF-α drug levels. (a) Anti-TNF-α levels in cord blood. (B) Correlation between mother’s adalimumab (ADA) trough level during the third trimester 
of pregnancy and level in cord blood. (c) Clearance of the anti-TNF-α monoclonal antibodies. Purple circles: ADA-exposed; green triangles: infliximab (IFX)-exposed, 
empty symbols: co-exposure with azathioprine; half-empty symbols: co-exposure with prednisone. ADA-exposed infants, n = 5; IFX-exposed infants, n = 2.
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cord blood (0.63 vs 0.08 × 103 cells/μl blood; p = 0.004) (Figure S2  
in Supplementary Material; Table 2).

Absolute number of T-cells was increased in cord blood 
of ADA-exposed-infants (6.294 vs 3.479 cells/μl of blood; 
p =  0.004), which fell within normal ranges at 12  months. No 

differences were observed in other lymphocyte subpopulations 
(Figures S2 and S3 in Supplementary Material). One ADA-treated 
patient, also treated with AZA, presented very low numbers of 
B-cells (0.54% of lymphocytes and 32 cells/μl of blood) (this effect 
was not observed in the other AZA-treated infant).
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FigUre 4 | Low Treg levels at birth are not rescued and correlate with increased T-cell proliferation. Treg frequency at birth (a) and follow-up (B). (c) Correlation 
between Treg frequency and mother’s anti-TNF-α trough level. (D) Division Index after 7-days’ stimulation with ConA. (e) Correlation between Treg frequency and 
T-cell division index. Dotted lines, described reference ranges; purple circles, adalimumab (ADA)-exposed; green triangles, infliximab (IFX)-exposed; red diamonds, 
cord blood healthy controls; empty symbols, azathioprine co-exposure; half-empty symbols: prednisone co-exposure. ADA-exposed infants, n = 4; IFX-exposed 
infants, n = 2.

FigUre 3 | B-cells present higher levels of naïve markers and normal levels of immunoglobulins (Igs) in exposed infants. (a,B) B-cell subpopulation frequencies at 
birth. adalimumab (ADA)-exposed infants, n = 3; infliximab (IFX)-exposed infants, n = 2. (c) Ig production follow-up. ADA-exposed infants, n = 4; IFX-exposed 
infants, n = 2. Dotted lines, described reference ranges; purple circles, ADA-exposed; green triangles, IFX-exposed; red diamonds, cord blood healthy controls; 
empty symbols, azathioprine co-exposure; half-empty symbols: prednisone co-exposure.
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TaBle 3 | Activation markers’ expression and cytokine production after 48 h whole blood culture with different stimulations.

ratio stim/basal ratio w_exp/exp 

Variable stimulus non-exp exp w_exp UcB 3 months 6 months 12 months

acTiVaTiOn MarKers eXPressiOn

CD71 Freq% Bacillus Calmette–
Guérin (BCG)

2.36 1.416 1.162 2.307 3.434 4.004 3.788

BCG IL-12 2.379 1.768 1.434 2.227 2.768 3.826 3.368
BCG IFN-γ 3.018 1.682 1.252 1.883 3.204 4.394 3.51

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes 
observed

p 0.06 0.06 0.17 0.13
MFI BCG 1.154 1.238 1.116 3.443 2.164 2.016 1.93

BCG IL-12 1.183 1.168 1.218 3.487 2.034 1.926 1.75
BCG IFN-γ 1.266 1.28 1.032 2.733 2.006 2.026 1.69

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes 
observed

p 0.91 0.71 0.27 0.003
CD69 Freq% BCG 2.306 2.052 1.904 1.14 1.434 1.018 2.11

BCG IL-12 4.359 2.664 3.778 1.103 1.412 1.09 2.143
BCG IFN-γ 4.829 2.69 3.424 2.653 1.48 1.15 1.938

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes 
observed

p 0.13 0.13 0.09 0.15
MFI BCG 5.478 2.106 1.838 1.513 1.526 0.918 1.02

BCG IL-12 11.34 2.57 4.38 1.647 1.674 1.044 1.438
BCG IFN-γ 12.22 2.464 3.232 1.887 1.66 1.038 1.008

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes 
observed

p 0.001* 0.004* 0.02* 0.009*
HLA-DR Freq% BCG 1.123 1.854 1.674 1.053 1.08 0.938 0.9725

BCG IL-12 1.231 2.18 1.854 1.03 1.038 0.94 1.018
BCG IFN-γ 1.443 2.016 1.61 0.9867 1.03 0.976 0.955

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes 
observed

p 0.21 0.1 0.26 0.58
MFI BCG 2.024 1.166 1.926 2.673 1.368 0.962 1.318

BCG IL-12 2.38 1.19 2.198 2.093 1.164 1.046 1.165
BCG IFN-γ 2.564 1.482 2.404 2.99 1.338 1.204 1.213

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes 
observed

p 0.003* 0.05 0.1 0.009*

(Continued )
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At 12 months of age, all exposed infants showed normal-for-
age levels of leukocyte and lymphocyte subsets; neutrophils and 
NK were at the lower limit of the normal ranges (24) (Figure S2 
in Supplementary Material; Table 2).

Differences in T- and B-lymphocyte 
Maturation status in exposed-infants
In the T-cell compartment (Figure 2; Figure S4 in Supplementary 
Material; Table 2), there was a tendency toward an increase in the 
naïve population in exposed infants (62.72 vs 46.9% of T-cells, 

p = 0.13) due to T helper (Th)-subset. Furthermore, CD45RO+ 
(memory) population frequency was decreased among Th-cells 
(22.95 vs 42.9% of T-cells; p  =  0.009) due to a decrease in 
Th-early-memory-cells (16.42 vs 35.18% of CD3+; p = 0.03) while 
there were no significant differences in late-memory T-cells.  
By contrast, there was an increase in the T cytotoxic Tc-memory-
cells (2.55 vs 0.12% of T-cells; p = 0.002). At 12 months of age, 
CD45RO+ T-cells, both Th and Tc, were in range (25).

In the B-cell compartment (Figure  3; Figure S5 in 
Supplementary Material; Table  2), naïve B-cell population 

http://www.frontiersin.org/Immunology/
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ratio stim/basal ratio w_exp/exp 

Variable stimulus non-exp exp w_exp UcB 3 months 6 months 12 months

cyTOKine secreTiOn

IFN-γ BCG 282.1 12.68 85.44 15.97 3.378 0.946 1.195
BCG IL-12 2994 2835 6680 10.4 1.616 7.866 0.9375

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes observed

p 0.87 0.22 0.18 0.13
IL-10 BCG 775.6 510 611.5 0.4733 0.376 0.442 0.5175

BCG IL-12 841.5 447.4 523.9 0.4567 0.202 0.366 0.35
BCG IFN-γ 120.6 60.8 22.45 0.6933 0.304 0.302 0.295

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes observed

p 0.42 0.5 0.74 0.61
IL-12p70 BCG 0.3638 2.132 0.032 0.54 0.2 0.2 0.25

BCG IFN-γ 38.23 73.18 88.62 4.78 2.87 1.308 3.07

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes observed

p 0.48 0.44 0.5 0.5
IL1-RA BCG 42.72 144.4 69.55 1.157 1.272 1.69 1.83

BCG IL-12 39.82 140.4 69.27 1.197 1.07 1.45 1.385
BCG IFN-γ 47.04 144.8 70.63 0.93 1.086 0.968 1.435

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes observed

p 0.07 0.32 0.07 0.12
IL-1β BCG 4223 2176 2069 0.94 0.626 1.284 0.6775

BCG IL-12 4361 2232 2099 1.063 0.838 1.76 0.7725
BCG IFN-γ 5264 2180 2139 0.8967 0.738 0.948 0.5525

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes observed

p 0.06 0.06 0.39 0.05
IL-6 BCG 953.3 2676 3551 0.7233 4.172 0.882 0.785

BCG IL-12 1783 2703 3538 0.61 2.124 1.114 0.9425
BCG IFN-γ 1002 3176 3571 5.92 0.704 0.614 0.6575

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes observed

p 0.06 0.03* 0.52 0.25
TNF-α BCG 621.8 42.86 243.7 20.91 18.15 6.604 1.06

BCG IL-12 638 44.09 165.8 24.34 51.46 9.276 1.23
BCG IFN-γ 818.8 87.72 509.1 34.44 40.06 3.528 0.85

non-exp vs exp non-exp vs w_exp exp vs w_exp p of the effect of time in the changes observed

p 0.0002* 0.02* 0.005 0.02

Stim, stimulation; non-exp, healthy neonate; exp, infants exposed to anti-TNF-α during pregnancy, blood cultured with autologous sera; w_exp, infants exposed to anti-TNF-α during 
pregnancy, blood cultured after PBS washing; MFI, mean fluorescence intensity; freq, frequency of lymphocytes.
Age expressed in months.
*indicates statistically significant p-values.
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fre quency was greater in exposed infants (72.21 vs 47.70% of B cells,  
p = 0.045) and switched B-cell population was smaller (2.84 vs 
3.90% of B-cells, p =  0.045). Circulating marginal zone B-cells 
were decreased (20.16 vs 40.74% of B cells; p = 0.03), and activated 
B-cells (1.23 vs 0.05% of B cells; p = 0.003) and IgM-only B-cell-
frequency (1.81 vs 0.43% of B-cells, p = 0.002) were increased. 
Although at some time-points, some B-cell subsets showed 
values outside the range, at 12–18 months all values were within 
age-matched ranges (23, 24, 26, 27). In all exposed-infants, IgG, 
IgA, and IgM production were since birth in range; at 3 months 
there was an increase in IgM with respect to reference ranges 

(Figure 3C). IgG-responses to vaccines (tetanus, diphtheria, and 
pneumococcus) were normal (Table 3).

Differences in Treg- and Breg cells  
in exposed infants
In cord blood of anti-TNF-α-exposed-infants, Treg (Figure 4) 
were diminished (0.24 vs 0.5% of CD4+-cells; p  =  0.04). An 
inverse correlation between mother’s anti-TNF-α trough 
level and Treg frequency was observed (r  =  −0.9; p  =  0.03); 
at follow-up, almost all Treg values were below the lower 
reference limit (24). Treg frequency inversely correlated with 
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FigUre 5 | Effects of anti-TNF-α exposure in the IL-12/IFN-γ pathway. (a) Stimulation ratio of lymphocyte activation markers expression (measured with flow 
cytometry) and secreted cytokines (measured with luminex) is represented as a heat map. Stimulation ratio is calculated as “stimulated culture condition/baseline 
condition.” (B) Ratio of lymphocyte activation markers expression and secreted cytokines after Bacillus Calmette–Guérin (BCG) culture using washed blood and 
non-washed blood during follow-up is represented as a heat map. Blue indicates the minimum values, red the maximum, and yellow next to one for each parameter. 
Adalimumab-exposed infants, n = 4; infliximab-exposed infants, n = 2.
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T-cell proliferation to ConA (a weak T-cell mitogen; r = −0.64, 
p = 0.01; Figure 4). Ratio of division indexes between T-cells/
total lymphocytes was significantly statistically higher in 
exposed infants than controls (1.6 vs 0.52; p = 0.01; Figure 4), 
while there were no differences when strong T-cell mitogens 
were used (Figure S6 in Supplementary Material). Inversely to 
the decrease in Treg, we observed in cord blood an increase in 
Breg (49.31 vs 34.39% of B-cells, p = 0.0007; Figure 4). We have 
observed similar amounts of IL-10 production in exposed-
infant’s B  cells as in cells from non-exposed infants. We also 
observed that Breg cell frequency positively correlated with 
the frequency of IL-10+ B  cells (Figure S8 in Supplementary 
Material).

Deficient Mycobactericidal response  
in exposed-infants
We evaluated anti-mycobacterial response by studying surface 
activation markers and cytokine secretion after whole blood 
cultures in the presence (non-washed condition) and absence 
(washed condition) of autologous sera.

Exposure to anti-TNF-α during pregnancy reduced the 
response after mycobacterial challenge (Figure  5A; Table  3). 
Exposed-infants presented at birth a lower stimulation ratio  

(SR, stimulated condition/basal condition) of CD69 (p = 0.004) 
and HLA-DR (p  =  0.003) MFI (expression per cell). CD69 
expression was partially recovered after drug removal (p = 0.02) 
although still reduced (p  =  0.004); drug removal had a mild 
effect on HLA-DR SR reduction (p = 0.05). There was a tendency 
toward a reduction of CD71+ frequency SR, with (p = 0.06) or 
without (0.06) drug presence.

At birth, TNF-α induction was reduced in the exposed-infant 
(p  =  0.0002), being partially recovered after drug removal 
(p = 0.005) although still reduced (p = 0.02). Although without 
statistical significance, IL-1ß secretion was reduced (p = 0.06), 
and IL-6 (p = 0.06) and IL-1RA (p = 0.07) SR were increased. 
IL-1ß was not recovered after washing, IL-1RA SR was rescued 
and IL-6 secretion increased even more (p  =  0.03). Without 
stimulation, washed samples from exposed infants produced 
higher amounts of IL-17 (measured by ELISA) compared with 
the non-washed condition (p  =  0.03) and with non-exposed 
infants (p  =  0.02). On the other hand, after BCG stimulation, 
IL-17 production in exposed infants was reduced, as none of the 
exposed infants produced any detectable IL-17 but one; however, 
differences did not reach statistical significance. Differences 
between non-washed and washed samples from exposed infants 
were maintained (p = 0.03) but disappeared when compared with 
non-exposed infants (p  =  0.95) (Figure S9 in Supplementary 
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FigUre 6 | Cytokine secretion in the first months of age related to birth in exposed infants. Cytokine secretion measured by Luminex after 48 h culture with  
Bacillus Calmette–Guérin. Values are relative to “birth” (0) time point. Points represent mean and bars SE of the mean. Adalimumab-exposed infants, n = 3; 
infliximab-exposed infants, n = 1 Tables.
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Material). Altogether, these data suggest that immune system 
activation upon mycobacterial challenge may be compromised.

After anti-TNF-α clearing (3–12 months after birth), IFN-γ, 
IL-12p70, IL-1β, and TNF-α production increased while IL-6 
production was stable (Figure  6) and the differences between 
washed and non-washed blood of exposed infants decreased 
(overall effect of time on the ratio between washed and non-
washed blood, p  =  0.006). This effect was observed in CD69 
(p = 0.009) and HLA-DR (p = 0.0009) MFI, CD71+ frequency 
(p = 0.003), and TNF-α secretion (p = 0.02) (Figure 5B).

clinical Manifestations
All children showed normal growth and neurological develop-
ment. Although one child suffered from recurrent infections 
from 6 to 12 months of age, no other exposed-infants manifested 
any significant infections, despite normal microbial exposure 
(attendance to daycare or siblings below 5 years old). Although 
our recommendation was to avoid rotavirus vaccination, it was 
used in four exposed-infants with no adverse effects. Atopic 
dermatitis was observed in four children (two of them without 
family history), and food allergy was diagnosed in one of them 
(Table 4).

DiscUssiOn

In accordance with published data (11, 13), anti-TNF-α mAbs 
were detectable until 6 months post-partum. Exceptionally, anti-
TNF-α mAbs were detectable at 12 months in one exposed-infant. 
Our results on the child/mother ratio level show some differences 
from those of a recent publication: mean ratio of 0.99 for ADA 
and 3.25 for IFX vs reported ratios of 1.21 and 1.97, respectively 
(13). These differences may be justified because we measured 
mother’s trough levels during pregnancy instead of levels at birth; 
also, all patients included received the treatment only 1  week 
before delivery, while in Julsgaard et al. patients received the last 
dose from 0 to 25 weeks before delivery. Of interest, we observed 
a greater ratio with IFX than ADA, attributable to the larger 
inter-dose interval of IFX than ADA (4–8 folds), and all patients 
received the last dose a week prior to birth. These discrepancies 
in the “transferred dosage” of anti-TNF-α may explain why 
effects observed seemed to be stronger in IFX-exposed infants. 
Our recommendation would be to try to separate as much as pos-
sible from birth the administration of anti-TNF-α in the mother 
to reduce the drug level in the newborn. In this sense, there  
are other studies recommending ADA and IFX discontinuation 
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TaBle 4 | Clinical evolution of exposed infants.

iD gender Treatment Blood 
follow-up

general information Family history siblings infections Other clinical 
symptoms

Vaccinations

1 Male ADA + Pred No Normal development, 
2w BF, daycare  
from 9 m

Father with atopic 
dermatitis and  
allergic conjunctivitis

Yes. Exposed to  
ADA and Pred.  
No significant 
infections, or atopy

No severe infections.
2 upper respiratory tract infections,  
2 gastroenteritis

Atopic dermatitis Yes, including Prevenar,  
varicella and MMR

2 Male ADA + AZA 18 m Normal development, 
3 m BF, daycare  
from 12 m

Father with  
psoriasis and  
allergic rhinitis

NO No severe infections.
3 gastroenteritis, 3 upper respiratory tract  
infections, 1 conjunctivitis, 1 bronchitis,  
and 2 otitis.

At 2y, auto- 
limited tics

Yes, including varicella, MMR,  
and RotaTeq® without adverse  
effects. Urticarial reaction, facial  
edema, and fever after  
Prevenar

3 Male ADA 18 m Normal development, 
5 m BF, daycare  
from 5 m

Mother with atopic 
dermatitis and 
allergic rhinitis

NO No severe infections.
2 upper respiratory tract infections, 5 recurrent  
bronchitis, 4 otitis media, and 1 conjunctivitis.  
Most infections between 6 and 12 months.

Atopic dermatitis 
and egg allergy

Yes, including p
Prevenar, varicella, MMR and 
RotaTeq®  without adverse effects.

4 Male IFX 18 m Normal development,  
BF continues at 2y,  
no daycare

NO Yes. Exposed to 
mesalazine. No 
infections but atopy

No severe infections.
3 bronchitis, thrush that responded to treatment,  
1 tonsillitis with otitis media without complications,  
and 3 upper respiratory tract infections  
without complications.

Atopic dermatitis Yes, including Prevenar, varicella,  
MMR, and RotaTeq® without  
adverse effects

5 Female IFX + ADA 12 m Normal development,  
no BF, no daycare

NO NO No severe infections.
1 otitis media; 1 upper respiratory tract infection  
complicated with bronchitis; and 2 urinary tract  
infections without pyelonephritis.

Atopic dermatitis Yes, including Prevenar and  
MMR without adverse effects

6 Female ADA 3 m Normal development, 
BF continues at 12 m, 
daycare from 7 m

NO NO No severe infections.
4 otitis media. Mouth-hand-feed infection

NO Yes, including Prevenar and  
MMR without adverse effects

7 Male ADA 12 m Normal development,  
no BF, no daycare

NO Yes, exposed to ADA 
without significant 
infections or atopy

No severe infections.
2 upper respiratory tract infections,  
not complicated

NO Yes, including Prevenar, MMR and 
RotaTeq® without adverse effects

ADA, adalimumab; AZA, azathioprine; IFX, infliximab; Pred, prednisone; w, week; m, month; y, year; BF, breastfeeding.
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after week 20 of pregnancy to try to reduce drug levels in the 
newborn (28–30).

In some patients, it has been seen that anti-TNF-α exposure 
during pregnancy can lead to neutropenia (28). Neutrophils from 
four children exposed to IFX during pregnancy (including third 
trimester, without other immunosuppressants) were decreased 
when measured “a few days” or 15 days after birth, with levels 
below <0.5 × 109 ANC/L in 3 and 1.1 × 109 ANC/L, and increased 
3 months after birth; infectious skin lesions occurred during neu-
tropenia. In our study, three exposed infants had normal levels of 
neutrophils at birth in cord blood, two had values below the refer-
ence range for the age (4.3–11.4 × 109 ANC/L): 2.78 (exposed to 
ADA + steroids) and 3.06 × 109 ANC/L (exposed to IFX + AZA) 
and one had values in the limit of the reference range: 4.73 × 109 
ANC/L (exposed to ADA  +  AZA). We observed a decrease 
of neutrophil levels below the reference ranges at 3  months of 
age (2.2–6.3 × 109 ANC/L): one infant with severe neutropenia 
(0.25  ×  109 ANC/L; exposed to ADA) and two with moderate 
neutropenia (1.35 and 1.14 × 109 ANC/L, exposed to ADA + AZA 
and ADA, respectively). None of them presented infectious skin 
lesions. Differences in the results may be due to differences in the 
drug infusion pattern. In the four cases described, the infusion 
of the last IFX dose was, at least, 8 weeks’ prepartum. Instead, 
patients included in our study received the last dose of either IFX 
or ADA from 3 to 7 days’ pre-partum. Also, other factors (such 
as prematurity and presence of positive neutrophil-specific CD16 
autoantibodies) differentiate our cohort from the cases published 
by GuiddirT et  al. However, we agree that neutrophil count 
should be routinely performed in infants exposed to anti-TNF-α 
drugs during pregnancy, especially in the event of an infection.

We have observed normal numbers of B cells at birth, although 
with a more immature phenotype. It is known that TNF-α knock 
out mice presented abnormal B cell structures. They lack splenic 
B  cell follicles, organized follicular dendritic cell networks  
and germinal centers. These alterations lead to a decreased 
humoral response and increased infection risk (20, 21). None-
theless, mice exposed to anti-TNF-α mAb during gestation did 
not show any abnormal B cell structures. This difference might 
be ascribed to the fact that in mice, B cell development occurs 
3  weeks after birth. Instead, in humans B  cell development 
occurs during the third trimester of pregnancy and through 
8  weeks after delivery (29–31). A study on the impact of the 
exposure to golimumab during pregnancy in macaques revealed 
no effect in B or T cell frequency, nor in humoral responses, or 
in lymphoid organ formation, but maturation status of B cells 
was not assessed (32). Data from animal models along with 
our study reinforce the theory that TNF-α plays a role in B cell 
development and maturation in humans.

Based on empirical experience [adverse event to BCG vaccine 
(15) and theoretical knowledge (33)], the use of all live vaccines 
is delayed from 6 to 12 months of age in infants exposed to ADA 
or IFX during the late second and third trimester of pregnancy 
(13, 15). Here, we provide objective data to ponder this statement: 
at birth, exposed infants showed more immature B- and T-cell 
subsets. However, we observed a normal T-cell proliferation to 
mitogens, as well as T- and B-cell numbers and maturation, Ig 
production, and inactivated vaccine responses, accomplishing 

the criteria for attenuated vaccination in patients with cellular 
immunodeficiency (34). One infant presented B-cell lymphope-
nia at birth after ADA + AZA exposure; it is known that AZA 
exposure during pregnancy can lead to B  cell lymphopenia at 
birth (35). Also, none of the four infants who received rotavirus-
inactivated vaccine presented adverse events.

Immune system dysregulation needs to be considered: four 
of seven of our children presented atopy in the first year (two 
of them without family history), and all ADA-exposed infants 
had increased eosinophil counts in cord blood. Exposed infants 
showed an altered T- and B-regulatory compartment. There was 
an increased Breg frequency, a population having an anti-inflam-
matory role in cord blood (36). By contrast, we can speculate that 
a decreased Treg cell frequency correlating with increased T-cell 
response to weak stimulus may be a sign of a more responsive 
immune system, which might be related to the atopy in these 
patients. However, we cannot rule out the possibility that this 
may be influenced by the mother’s disease (37). A decrease on 
Treg cell population has also been observed in infants born to 
mothers that had received a kidney transplant and were exposed 
to immunosuppressive drugs during pregnancy. However, in 
this case, Treg cell numbers were rescued with age (38). As Treg 
did not increase over time, clinical evolution of exposed infants 
should be specifically followed-up, with special attention to aller-
gic, inflammatory, and autoimmune events. More studies with 
larger cohorts are needed to confirm these results.

We have observed a diminished frequency of Treg cells 
described as CD4+CD25hiCD127lowFoxP3+ T cells in all exposed 
infants compared to healthy controls. Interestingly, there are 
some publications showing an increase in Treg cells in responder 
patients after anti-TNF-α treatment (39–41). These differences 
may be explained by the possibility that (1) It is described that the 
cells that increase in adult are not natural (CD62L+) but induced 
(CD62L−) Treg cells (40). As induced Treg cells are differentiated 
upon an antigenic insult (42), in the umbilical cord blood, the 
majority of Treg cells would be expected to be natural Treg as they 
express high levels of CD62L (43) and (2) the effect of anti-TNF-α 
drugs on the development of induced Tregs in exposed infants 
is difficult to assess since as early as at 3 months the amount of 
anti-TNF-a in blood had significantly decreased. It has been 
noted that the functional capacity of Tregs after anti-TNF-a 
treatment is increased. Although it would be interesting to study 
the inhibitory capacity of Treg cells in exposed infants, we cannot 
test this in samples from our cohort due to limitations related to 
cell number requirements.

We have shown that drug exposure decreases the response 
after a mycobacterial challenge at birth, which did not totally 
recover after drug cleaning. In adults, anti-cytokine biological 
treatments are thought to cause an immune-deficiency-like 
phenotype (17). This should also be applied to infants who, 
besides, intrinsically present a Th2-biased response (44). It has 
been observed that there is a decreased production of IL-12 but 
not of IL-6 after anti-TNF-α therapy in adults (45). Also, that 
there is a decrease in IFN-γ-producing CD8 T cells and in Th1/
Th17 subset with an increase in IFN-γ-producing NK cells (46). 
Results obtained after BCG stimulation do not correspond with 
those published; we have observed no significant differences in 
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IL-12p70 production in comparison with non-exposed infants 
and an increased production of IL-6. However, from our results 
and others (36, 44, 47–50), it would seem that the immune 
system of patients with inflammatory diseases and neonates 
show differentiable characteristics. Also, presence of anti-TNF-a 
mAbs reduced IL-17 production after BCG stimulation that was 
rescued after whole-blood washing. The advent of biosimilars  
will broaden the use of biological treatments in developing 
countries, some of which have endemic tuberculosis or BCG 
vaccination soon after birth. Until more investigations are per-
formed, BCG vaccination must be absolutely avoided in exposed 
infants until recovery of antimycobacterial function is verified or 
at least until 12 months of age. In vitro functional studies would 
be relevant for this purpose.

Although this study has several strengths, including the 
thorough immune system analysis, it also has some limita-
tions: our cohort of exposed infants is small, and a broader 
group would probably provide more robust information. 
Nevertheless, all observations were consistent from sample 
to sample. Our study control group included infants born to 
healthy mothers, since no IBD pregnant women with mod-
erate-to-severe disease were without anti-TNF-α treatment; 
thus, we have not been able to evaluate the effect of IBD itself. 
Finally, immunological follow-up of healthy controls was not 
performed for ethical reasons.

This study is the first thorough evaluation of the impact of 
prenatal anti-TNF-α on the immune system development of 
exposed-infants. Although we observed specific changes, infants 
were not clinically compromised. Our results aim at generating 
consciousness of the need to further study and follow-up on 
exposed-infants. The pediatrician should be informed of the 
mother’s mAb treatment during pregnancy, because of the impact 
on vaccine recommendations, especially with regards to BCG  
due to the observed mycobacterial-deficient response.
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