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Broadly neutralizing antibodies (bNAbs) targeting conserved regions within the human 
immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (Env) can be generated 
by the human immune system and their elicitation by vaccination will be a key point to 
protect against the wide range of viral diversity. The membrane proximal external region 
(MPER) is a highly conserved region within the Env gp41 subunit, plays a major role in 
membrane fusion and is targeted by naturally induced bNAbs. Therefore, the MPER is 
considered as an attractive vaccine target. However, despite many attempts to design 
MPER-based immunogens, further study is still needed to understand its structural 
complexity, its amphiphilic feature, and its limited accessibility by steric hindrance. 
These particular features compromise the development of MPER-specific neutralizing 
responses during natural infection and limit the number of bNAbs isolated against this 
region, as compared with other HIV-1 vulnerability sites, and represent additional hurdles 
for immunogen development. Nevertheless, the analysis of MPER humoral responses 
elicited during natural infection as well as the MPER bNAbs isolated to date highlight 
that the human immune system is capable of generating MPER protective antibodies. 
Here, we discuss the recent advances describing the immunologic and biochemical 
features that make the MPER a unique HIV-1 vulnerability site, the different strategies 
to generate MPER-neutralizing antibodies in immunization protocols and point the 
importance of extending our knowledge toward new MPER epitopes by the isolation of 
novel monoclonal antibodies. This will be crucial for the redesign of immunogens able 
to skip non-neutralizing MPER determinants.

Keywords: human immunodeficiency virus type-1, broadly neutralizing antibodies, membrane proximal external 
region, B-cells, polyreactivity, membrane interaction, immunization, immunogens

iNTRODUCTiON

An Apparently easy vaccine Target
The human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (Env) is the sole viral 
antigen exposed on the virion surface. Env is synthetized as a precursor gp160 glycoprotein that 
will yield after cleavage a mature complex constituted by the non-covalent association of three 
gp120 (surface) and three gp41 (transmembrane) subunits, resulting in a heavily glycosylated 
trimer of heterodimers (1–5). Env determines the process of HIV-1 entry into the target cell that 
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will lead to the fusion of the viral and host cell membranes (6). 
This process initiates with the high affinity interaction between 
gp120 and the CD4 molecule on the surface of target cells. This 
interaction promotes a series of conformational changes that 
transiently expose the gp120 coreceptor binding site allowing 
the gp120 attachment to the CCR5 or CXCR4 chemokine recep-
tors (7–9). Coreceptor ligation triggers structural rearrange-
ments in gp41 that permit the initiation of viral fusion. The 
gp41 fusion peptide (FP) inserts into the target cell membrane 
accounting for a short-life prehairpin fusion intermediate in 
which both cellular and viral membranes are connected by an 
extended conformation of gp41. Next, alpha-helical domains 
HR1 and HR2 of each gp41 monomer are folded back together 
to generate a 6-helix bundle conformation that brings both 
target cell and viral membranes closer to finally produce the 
membrane merge (10, 11). During this process both FP and the 
membrane proximal external region (MPER) play a crucial role 
in membrane destabilization (12).

Given its exposure on the virion surface and its role in viral 
infectivity, Env is the main target of HIV-1 protective humoral 
responses. The elicitation of Env broadly neutralizing antibodies 
(bNAbs), defined as those capable of neutralize the wide viral 
diversity, is one of the main goals for a successful HIV-1 vac-
cine (13). The notion that the human immune system is capable 
of producing HIV-1 bNAbs has been established by two pieces 
of evidence: (i) the identification of such immune responses 
in sera from HIV-1 infected individuals and (ii) the isolation 
of monoclonal bNAbs from these individuals (14, 15). These 
naturally induced bNAbs allowed the identification of conserved 
Env regions that helped researchers to delineate an HIV-1 Env 
vulnerability map. The study of bNAbs and the epitopes targeted 
by them are contributing enormously to our understanding  
of the HIV-1 humoral response as well as to the rational design  
of immunogen candidates (14, 16).

Whereas a big collection of bNAbs against gp120 Env subunit 
has been generated, a limited number has been also isolated 
against the less exposed gp41 subunit (17). Although neutral-
izing antibodies targeting the HR1 alpha-helical region have 
been described (18–20), the MPER is the major gp41 neutral-
izing determinant (21, 22). This highly conserved and unusual 
tryptophan-rich motif is located adjacent to the viral membrane, 
covering the last C-terminal residues of the gp41 ectodomain 
(aa 660–683, HXB2 numbering) and connects the extracellular 
portion of Env with the TM domain (23, 24). The importance 
of the MPER on Env functionality was highlighted by analysis 
of mutant viruses containing deletions, insertions or substitu-
tions within this region (24–26). Substitution of the five MPER 
conserved tryptophan residues dramatically compromised 
the incorporation of gp41 into virions and, thus, blocked viral 
entry (24). Moreover, simple deletion of the W666-I682 spanning 
sequence completely abolished syncytium formation (27). These 
observations indicated that the MPER plays a major role in 
the HIV-1 Env-mediated fusion and viral infectivity, which is 
consistent with the high level of sequence conservation (23). The 
functional implications in viral infectivity, the high level of con-
servation and the lack of N-linked glycosylated residues, together 
with the discovery of potent and/or bNAbs targeting linear 

MPER sequences (2F5, 4E10, 10E8), all able to protect against 
viral challenge in non-human primates (NHP) (28–30), points 
that the elicitation of MPER-specific neutralizing responses 
by immunogen candidates is highly desirable (21, 22, 31).  
In addition, the MPER has a role in HIV-1 CD4-independent 
viral transcytosis at the epithelial barrier (32), where the con-
served 662ELDKWA667 gp41 sequence interacts with galactosyl 
ceramide receptors (33). Secretory IgA from cervicovaginal 
secretions of HIV-1 infected individuals are capable of blocking 
viral transcytosis via 662ELDKWA667 sequence binding (34).

The MPER presents some immunological, physical, and 
structural, properties that impact directly on its immunogenic-
ity, explaining the lower MPER neutralizing response of HIV-1 
infected individuals comparing with other Env vulnerability 
regions (35, 36). Those include steric hindrance by gp120 and 
high hydrophobicity that makes the MPER to be partially embed-
ded within the viral membrane (37). Structurally, the information 
regarding the native conformation of the MPER within the Env 
trimer is still limited (5), adding the challenge of developing an 
immunogen against a structurally ambiguous epitope. Finally, 
MPER-specific bNAbs show reactivity against self-antigens and 
host tolerance mechanisms have been suggested to influence the 
elicitation of MPER neutralizing responses (38).

Here, we discuss the properties that make the MPER both a 
unique as well as a challenging HIV-1 vaccine target; we review 
the MPER immune response during natural infection, the 
particular features of MPER bNAbs isolated and the different 
attempts to generate MPER-specific neutralizing antibodies by 
immunization within the last years. Although the results reflect 
a generalized failure, new insights into our knowledge have  
been achieved. The fact that other Env vulnerability sites have 
followed a similar path supports the notion that the MPER is still 
an HIV-1 vaccine target worth exploring (31).

iSOLATiON OF MPeR NeUTRALiZiNG 
ANTiBODieS

The strongest evidence supporting that the human immune sys-
tem can develop a potent neutralizing MPER-specific response 
results from the isolation of monoclonal antibodies from HIV-
infected individuals. From the naturally induced 2F5, 4E10, 
10E8, z13, m66.6, and CH12 antibodies identified, three of them 
(2F5, 4E10, and 10E8) display a broadly neutralizing activity 
(28, 39–46). 2F5 and 4E10 are among the first HIV-1 bNAbs 
discovered. They were generated by electrofusion of peripheral 
blood mononuclear cells mixtures from different HIV-1 infected 
individuals (47). 2F5 targets the linear sequence 662ELDKWA667 
(39) within the N-terminal moiety of the MPER, where the 
central core 664DKW666 is essential for neutralization, as demon-
strated by alanine-scanning mutagenesis assays (48). 2F5 has a 
relatively high potency and was found to neutralize 57–67% of 
the viral isolates tested with an IC50 below 50 µg/mL (42, 49). 
However, HIV-1 subtype C viruses are usually 2F5-resistant 
due to a mutation in the central core epitope (DSW instead of 
DKW) (49–51). 4E10 targets the distal conserved tryptophan 
rich moiety located C-terminal to the 2F5 epitope which includes 
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the sequence 671NWFDIT676 and is extended toward C-terminal 
residues, where W672, F673, I675, T676, L679, and W680 have 
the most significant contacts with the antibody (43). Although 
presenting a moderate potency, 4E10 displays a remarkable 
breadth against 98–100% of the viral isolates, depending of the 
panel tested, with an IC50 below 50  µg/mL (49, 52). Further 
characterization of 2F5 and 4E10 antibodies has shown reduced 
potency of both antibodies, against transmitted-founder viruses 
(T/F IMC) or against replicating viruses obtained from primary 
lymphocytes when compared with pseudovirus obtained in 
293 T cells (53–56). Despite these potential limitations, both 2F5 
and 4E10 were shown to protect against viral challenge in NHP 
(28, 29) and their administration into human recipients showed 
no major clinical complications (57).

In order to delineate a complete map of HIV-1 neutralizing 
determinants, starting in 2009, a substantial effort has been 
made on the isolation of new bNAbs. The development of high-
throughput analysis of single memory B  cells and the use of 
fluorescently labeled Env-based protein probes to isolate antigen 
specific B cells (58–60) contributed enormously to the discovery 
of new HIV-1 neutralizing antibodies. In this context, the dis-
covery in 2012 of the monoclonal antibody 10E8 recovered the 
interest toward the MPER region as a major vaccine target (42). 
10E8 neutralized 98% of a panel of 181 pseudovirus with an IC50 
below 50 µg/mL, showing a mean IC50 for sensitive viruses of 
0.25 µg/mL, whereas mean IC50 values for 4E10 and 2F5 were  
1.3 and 1.92 µg/mL, respectively (42). Interestingly, 72% of the 
panel was neutralized by 10E8 with an IC50 below 1  µg/mL, 
comparing with 37 and 16% for 4E10 and 2F5, respectively (42). 
Therefore, 10E8 could neutralize with a far greater potency and 
breadth than previously discovered anti-MPER bNAbs 2F5 and 
4E10, and was comparable with some of the most potent HIV-1 
bNAbs like VRC01 or PG9/PG16 (15). Notably, 10E8 was also 
reported to protect against viral challenge in vivo (30).

Interestingly, 2F5, 4E10, and 10E8 antibodies are IgG3  
(42, 61); however, the role of this IgG subclass in the neutralizing 
properties of these antibodies, if any, remains elusive. Although 
IgG1 and IgG3 are the predominant antibodies elicited against 
viral antigens (62), both subclasses show important differ-
ences. IgG3 shows higher affinity for Fcγ receptors than IgG1, 
a shorter half-life and a long highly flexible hinge region which 
has been suggested to be crucial to facilitate the access of these 
antibodies to the MPER and mediate their neutralizing activity  
(63, 64). However, it is still unclear whether an IgG3 background 
is absolutely required, since anti-MPER neutralizing responses 
have been identified in the non-IgG3 fraction of some HIV-
infected individuals (65), and a change to IgG1 did not affect the 
neutralizing activity of 2F5 and 4E10 antibodies (61, 66). In this 
context, anti-MPER bNAbs could have been specifically gener-
ated from germline precursors preferentially undergoing IgG3 
class switching (67) and, in some cases, after affinity maturation 
and antigen selection by somatic hypermutation, switching to a 
more downstream IgG subclasses, such as IgG1, by sequential 
class switching recombination (68). Because IgG3 is one of the 
less represented IgG subclasses, with the shortest half-life in 
plasma and IgG3-dominant humoral responses are uncommon 
(63), elucidating whether this IgG subclass is required for the 

development of anti-MPER bNAbs, might be crucial to define 
immunization strategies aimed to generate effective long-lasting 
anti-MPER responses.

Independently of their origin, all these antibodies are the 
result of a long process of affinity maturation and are highly 
mutated with an unusually long and hydrophobic IgH comple-
mentary determining region 3 (CDR H3) (42, 69, 70). Notably, 
these antibodies share a common neutralization mechanism in 
which the interaction of the hydrophobic CDR H3 apex with 
the membrane seems to be essential (see next section) (71, 72). 
Accordingly, autoreactivity/polyreactivity are odd characteristics 
of 2F5 and 4E10 antibodies. Initially, 10E8 was reported to be 
non-polyreactive but subsequent studies suggested that 10E8 
needs to bind membrane lipids, especially cholesterol, to mediate 
neutralization (42, 73, 74).

Depending on the bound antibody, the MPER can acquire a 
particular conformation. Crystal structures of 2F5 in complex 
with an MPER peptide showed that the core motif DKW forms 
a type 1 β-turn structure (75). Contrary, the MPER in complex 
with 4E10 was found to form an α-helical conformation from 
D674 to K683 (70, 76). Recently, the crystal structure of 10E8 
bound to an scaffolded MPER construct revealed that the full 
epitope of 10E8 is composed of both MPER and lipids (74). 
Encouragingly, the frequency of 10E8-like antibodies in HIV-
infected individuals seemed to be superior to 2F5 or 4E10 
specificities in the cohort where 10E8 was isolated (42).

Very recently, a new lineage of distal MPER-specific bNAbs, 
designated as DH511, was isolated from memory B-cells and 
plasma of an HIV-infected donor (67). DH511 lineage presented 
long CDR H3 loops of 23 to 24 aminoacids, an VH and VL 
somatic mutation rate of 15–22 and 14–18%, respectively, and 
was derived from the same heavy chain germline gene family as 
10E8 (VH 3–15). Similarly to 2F5, 4E10, and 10E8, DH511 clonal 
lineage presented an IgG3 isotype. Interestingly, the most potent 
mAb of this clonal lineage, DH511.2, neutralized 206 out of 208 
pseudovirus of a geographically and genetically diverse panel 
with a median IC50 of 1 µg/mL, being slightly more broad but 
less potent than 10E8 (67).

LiPiD BiNDiNG AND THe CONCeRN  
OF POLYReACTiviTY

MPeR and Lipids
Biophysical models suggest that the MPER acquires an alpha- 
helical conformation partially embedded into the viral mem-
brane, constituted by two independent domains separated by a 
flexible hinge (37, 77). These two segments showed to present dif-
ferent membrane-interacting properties. The C-terminal domain 
remains embedded into the membrane, whereas the N-terminal 
domain is more exposed (37, 77–79). The high tryptophan 
content is likely responsible of the MPER potential to interact 
with and destabilize lipid membranes (80, 81). According to its 
amphiphilic characteristics, hydrophobic residues remain buried 
into the membrane whereas the most polar ones are solvent-
exposed (37). Of note, the MPER topology depends on the 
membrane context where it is presented (82, 83) and membrane 
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lipids such as cholesterol and sphingomyelin can modulate the 
capacity of the MPER to destabilize membranes (82, 83). MPER 
and cholesterol interactions are further supported by the exist-
ence of the sequence 679-LWYIK-683 located at the C-terminus 
which was identified as a cholesterol recognition amino acid 
consensus motif (84). This motif seems to play an important role 
during the incorporation of Env into the virion, stabilizing the 
trimer complex (22).

Neutralization Mechanisms and the 
importance of Membrane interaction
Antibody binding to a precise peptide sequence is necessary 
but not sufficient to achieve MPER-dependent antibody neu-
tralization. Accordingly, z13e1 or 13H11 antibodies overlap 
the sequences bound by 4E10 and 2F5 respectively with similar 
affinities but displaying a far low neutralization potency (44, 85). 
MPER bNAbs show an enrichment of their long CDR H3 loops 
in hydrophobic residues that seem to be important for their 
neutralization capability (48, 86, 87). Whereas some residues of 
the CDRs are important for binding to the peptidic epitope, the 
most hydrophobic loops interact directly with membrane lipids 
(71, 72, 87). SPR-based studies demonstrated that whereas anti-
MPER bNAbs bind to a peptide sequence following a Langmuir 
curve model, binding against peptide-membrane complexes fol-
low a two steps (encounter-docking) model. First, the antibody 
attaches to the lipid membrane through its long hydrophobic 
CDR H3 and concentrates within the proximity of the MPER 
epitope to subsequently bind to the prehairpin intermediate 
of gp41, once the conformational change takes place (71, 72). 
This mechanism facilitates the accessibility of the antibody to its 
epitope, overcoming the poor exposure of the MPER and takes 
advantage of its close proximity to the viral membrane. Of note, 
upon binding, 2F5 or 4E10 promote an MPER conformational 
change, due to the extraction of the membrane-embedded 
epitope (37, 77).

Interestingly, the 2F5 antibody was predicted to bind lipids via 
CDRL1 and CDRH3 (88) and lipid binding sites were recently 
determined for 4E10 and 10E8 by X-ray crystallography (74, 89). 
4E10 was shown to interact specifically with phosphatidic acid, 
phosphatidylglicerol and glycerol phosphate by using the CDR 
H1 and CDR H3 loops to bind polar head and hydrophobic tail 
groups respectively (89). In a second study, 10E8 lipid binding 
site was identified at the proximity of CDR L1 and CDR H3 loops 
(74). Therefore, the full epitope of MPER bNAbs is constituted 
by both peptide residues and membrane lipids. Notably, neu-
tralizing activity of an anti-MPER single-chain bivalent llama 
antibody induced by immunization was also dependent of the 
hydrophobic CDR H3 apex without being involved in peptide 
recognition (87). Membrane interaction, thus, seems to play a 
major role in the neutralization mechanism of MPER bNAbs  
(26, 37, 72, 73, 77, 86).

The widely described importance of the membrane in MPER 
structure and functionality of the specific bNAbs suggest a role 
of lipids as a natural scaffold shaping the MPER structure. In this 
regard it is likely that lipids participate in the selection of germline 
precursors of bNAbs, pointing their relevance for immunogen 

design. Therefore, the generation of neutralizing anti-MPER 
responses may require its presentation within a membrane 
environment to properly present neutralizing determinants and 
to implement lipid cross-reactivity. The role of membrane lipids 
over MPER immunogenicity is, thus, a relevant issue currently 
being evaluated in immunization studies.

Binding to Self-Antigens: A Major 
Roadblock for MPeR Neutralizing 
Antibodies?
Reactivity with self-antigens was suggested to explain the failure 
of generating MPER neutralizing antibodies by immuniza-
tion as well as their low frequencies during natural infection  
(38, 90, 91). Gp41 antibodies generated during acute infection are 
usually derived from polyreactive antibodies whose precursors 
cross-react with antigens from intestinal microbiota (92–94). In 
2005, polyspecific binding of 4E10 and 2F5 mAbs to cardiolipin 
and other anionic phospholipids was reported (90). Furthermore, 
conserved host antigens bound by 2F5, 4E10 and 10E8 have been 
also identified (95, 96). 2F5 binds to the enzyme kinureninase 
(KYNU), which contains the identical sequence (ELDKWA) 
of the 2F5 epitope, and is highly conserved between different 
mammal species. 4E10 binds to splicing factor-3b subunit-3 and 
type I inositol triphosphate (IP3R1) (95) and, although initially 
described as non-autoreactive, 10E8 recognize the FAM84A 
protein (96). Collectively, these findings suggested that immuno-
logical tolerance might be involved in HIV-1 evasion of immune 
responses since autoreactive B-cells that cross-react with MPER 
sequences might be impaired in the naive repertoire (91, 97).

This hypothesis was tested by monitoring B-cell development 
in knock-in (KI) mice models carrying the same V(D)J rearrange-
ments as mature bNAbs 2F5 and 4E10. These models showed a 
normal early B cell development but exhibited a blockade in the 
transition of pre-B to immature IgM+ B cells, which is defined by 
the first tolerance checkpoint (98–101). B-cell central tolerance 
takes place in the bone marrow (BM) and abrogates the develop-
ment of autoreactive B-cells by several mechanisms such as clonal 
deletion or receptor edition (102). After that, some autoreactive 
B-cells can still egress from BM as anergic cells, which show a 
hyporesponder status and a reduced lifespan. However, in special 
circumstances anergic B-cells can be activated and differenti-
ate to antibody-producing cells (103). In accordance with this, 
immunization of 2F5 KI mice with MPER peptide-liposome 
immunogens could rescue anergic B-cells to produce specific 
neutralizing antibodies (104, 105). More recently, a 2F5 germ-
line KI mouse model showed 2F5 precursors deletion while the 
remaining anergic B  cells could be also activated by germ-line 
mimicking immunogens (106). These outcomes indicated that 
the generation of 2F5 and 4E10 antibodies is likely controlled 
by immunological tolerance mechanisms and launched the 
hypothesis that HIV-1 host mimicry is an evolutionary strategy 
of pathogens and not particularly restricted to HIV-1 (95, 96). 
However, it is important to highlight that HIV-1 epitope mimicry 
does not impair the functionality of the host enzyme kynureni-
nase, bound by 2F5 (107), and infusion of 2F5 or 4E10 in human 
recipients showed no major clinical complications (57), supporting  
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TABLe 1 | Human studies detecting MPER-specific neutralizing responses.

Year published Number of 
participants

Main findings Reference

2006 96 One individual with 4E10-like neutralizing activity. No epitope competition (110)

2007 3 No MPER-specific neutralizing activity (112)

2007 14 4 individuals with MPER-specific neutralizing activity. 2 of them within the 6 months after  
seroconversion. No correlation with breadth

(111)

2009 156 3 individuals high MPER titer, associated with breadth. Distinct epitope from 4E10, 2F5, or z13 (65)

2009 70 MPER titer correlated with breadth. 4E10-like. Anti-cardiolipin antibodies correlated with breadth  
and MPER titer

(113)

2009 32 MPER-specific neutralization in 4 individuals (114)

2010 19 Modest MPER-specific neutralization in 6 individuals (35)

2011 308 4 out of 9 breadth neutralizers displayed MPER-specific neutralization (17–30% contribution) (116)

2011 40 7 individuals > 40% breadth. MPER cross-neutralizing antibodies (115)

2012 78 21 MPER-specific neutralizing activity. 8 out of 21 displayed 10E8 neutralization pattern (42)

2014 35 8 individuals showed ID50 > 400 against chimeric HIV-2/MPER viruses whereas 66% had  
detectable MPER titers in ELISA and flow cytometry

(117)

2015 177 19% of the cohort showed MPER-specific neutralizing titers (ID50 > 1,000) against chimeric  
HIV-2/MPER viruses

(118)

2016 439 One individual with potent MPER-specific neutralizing activity (36)
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the safety of eliciting MPER protective antibodies by vaccination 
(57, 107).

THe MPeR ReSPONSe DURiNG NATURAL 
iNFeCTiON AND BALANCe BeTweeN 
NeUTRALiZiNG AND NON-NeUTRALiZiNG 
ANTiBODieS

The whole gp41 is mostly occluded by gp120 within the native 
viral spike, being the MPER transiently exposed during the 
fusion process (25). In consequence, B-cells accessibility to gp41 
and native MPER may be compromised. Despite this, a strong 
antibody response is generated against the gp41 subunit in the 
course of HIV-1 infection probably due to gp120 shedding, non-
functional forms of Env or transient epitope exposure during 
viral entry (108). Interestingly, the anti-gp41 humoral response 
can be detected two weeks after HIV-1 acquisition (108). This 
response, typically non-neutralizing and highly cross-reactive  
to gut commensal bacteria (92–94), is mainly focused against 
more exposed regions of gp41 such as the immunodominant 
disulfide loop, different from the MPER (108, 109).

Whereas MPER antibodies can be easily detected by ELISA, 
the analysis of their contribution to neutralizing activity of 
human plasma samples was found to be challenging. With this 
purpose chimeric SIV or HIV-2 viruses engrafted with HIV-1 
MPER sequences or peptide-coated beads adsorption assays were 
developed (110–112). Accordingly, the presence of anti-MPER 
antibodies and the evaluation of their neutralizing capacity have 
been reported (35, 36, 65, 111, 113–116). The characterization 
of different cohorts in Europe, the United States, and South 
Africa indicated that MPER-specific neutralizing responses 
are less represented during natural infection comparing with 
other neutralizing specificities. For example, in a South African 
cohort of 156 HIV-1 infected individuals, only three showed 

higher titers of anti-MPER antibodies (65). Depletion of these 
antibodies resulted in loss of the neutralization breadth but 
the antibody specificities were found to be targeting a distinct 
epitope from those recognized by previously identified neutral-
izing epitopes (bound by 2F5 and 4E10 bNAbs), highlighting 
the existence of additional neutralizing specificities within the 
MPER (65). A recent study of the Protocol C cohort analyzed 
the neutralization profile of 439 plasma samples showing a 
far great less prevalence of MPER-specific antibodies when 
comparing with other specificities, mainly V3 N332-dependent 
glycan supersite (36). Remarkably, 27% of HIV-1 infected 
patients from an American cohort presented MPER-specific 
neutralizing activity (42). We previously showed that 66% 
of ART-naive chronically HIV-1 infected subjects presented 
MPER antibodies that were stable, at least for 1  year, and 
with an heterogeneous neutralizing capacity, highlighting the 
coexistence of neutralizing and non-neutralizing antibodies 
targeting the MPER (117). Moreover, anti-MPER antibodies 
correlate with the total anti-Env humoral response (117) and 
neutralization breadth (113, 118) and have been identified in 
HIV-infected individuals at different stages of the infection 
(119). Therefore, this landscape highlights that regardless of 
the cohort of study, anti-MPER antibodies (neutralizing and 
non-neutralizing) are present in HIV-1 infected subjects but 
their prevalence seems to be highly heterogeneous and prob-
ably strongly dependent on the methodology used (42, 65, 114, 
117–119). Thus, the optimization of the current methodology 
for the quantification of MPER antibodies is highly desirable 
in order to establish their real prevalence. Human studies 
characterizing the MPER-specific neutralizing response are 
summarized in Table 1.

The results obtained from these studies also point out that 
the MPER is sufficiently immunogenic to generate a humoral 
response and that no specific constraints limit antibody genera-
tion against this region. However, the relatively low prevalence 
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TABLe 2 | Selection of recent immunization studies to elicit MPER neutralizing antibodies.

immunogen Animal model Major findings Reference

Prime/boost gp140 oligomer/MPER-peptide liposome Guinea pig
Rhesus macaque

Binding to the prefusion intermediate and the  
DKW 2F5 core

(121)

Liposomes containing a trimeric gp41-based protein Llama Bivalent single chain neutralizing antibody dependent  
of hydrophobic CDRH3

(87)

Fusion intermediate conformation of gp41 convalently 
linked to liposomes

Guinea pig Gp41-specific antibodies binding to the gp41 fusion  
intermediate. Modest neutralization activity against  
5 tier-1 and 2 tier-2 pseudovirus

(122)

Liposomes containing an MPER peptide, molecular 
adjuvants and encapsulated T-helper epitopes

Balb/c mouse Superior antibody titers with MPER antigens anchored  
to liposomes comparing with oil-based emulsions

(123)

Proteoliposomes of diverse composition containing  
a gp41-based miniprotein

C57BL/6 mouse Superior antibody titers of proteoliposomes based on lipids 
overrepresented on the viral membrane. Immunodominance 
against a 2F5 overlapping epitope

(124)

Recombinant Norovirus P particles (NoV PP) engrafted 
with the 4E10/10E8 epitopes emulsified with Freund’s 
adjuvant

Guinea Pigs
Balb/c mouse

MPER-specific antibody titers and modest neutralization  
against SF162 isolate

(125)

MPER engrafted between the trimeric core structure  
and the trimeric domain of influenza A virus

Guinea pig Induction of low MPER-specific titers (126)

Bovine papilomavirus VLPs engrafted with the  
extended epitopes of 2F5 and 4E10, or the full MPER

Balb/c mouse Epitope-specific IgG and mucosal secretory IgA (127)

Engineered replication-competent reovirus vectors 
displaying the MPER sequence

Rabbit
Balb/c mouse

No elicitation of MPER antibodies (128)

Epitope-engrafted scaffold mimicking the 2F5-bound  
form of gp41

Guinea pigs
Balb/c mouse

Isolation of antibodies resembling the 2F5 structure-specific 
recognition of gp41

(129)

Tandem peptide containing four copies of the 10E8 
epitope with Freund’s Adjuvant

Rabbit Modest neutralizing antiboy titers against tier-1 and  
tier-2 strains

(130)

Live attenuated Salmonella presenting the 10E8  
epitope in the frimbriae

Balb/c mouse MPER-specific antibodies and stimulated B-cell differentiation (131)

Gp41 peptide grafted on virosomes Rhesus macaque Protection against SHIV challenge was correlated with  
the induction of vaginal gp41-specific IgA with transcytosis-
blocking properties

(132)

6

Molinos-Albert et al. Insights on the HIV-1 MPER

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1154

of MPER-neutralizing responses identified to date indicates that 
some hurdles are involved in the generation of this type of antibod-
ies. The low accessibility of this region, which may compromise 
the affinity maturation process, as well as other mechanisms such 
as lipid cross-reactivity, might be determinant for the establish-
ment of a balance between neutralizing and non-neutralizing 
MPER antibodies. Therefore, this balance is a relevant issue with 
important implications for vaccine design, where immunogens 
exposing native MPER neutralizing determinants should be 
implemented.

eLiCiTiNG ANTi-MPeR ANTiBODieS  
BY iMMUNiZATiON

The particular features of the MPER described above, mainly low 
accessibility, close proximity to the membrane and subsequent 
hydrophobicity add additional hurdles for immunogen design 
against this vulnerability site. Moreover, the scarcity of MPER 
bNAbs isolated to date, comparing with other Env specificities 
does not contribute to enlarge our knowledge regarding the 
MPER complexity and the functional epitopes that should be 
targeted.

Initial approaches to induce 2F5 or 4E10-like antibodies 
attempted to introduce their corresponding binding sequences 
into chimeric viruses, fusion proteins or peptide-based vac-
cines (21). Although MPER-specific antibodies were elicited, 
neutralizing responses were not. Therefore, it became clear that 
additional variables beyond the recognition of specific peptidic 
sequences within the MPER should be considered. The com-
mon characteristics revealed later by MPER bNAbs, such as 
membrane cross-reactivity and binding to the gp41 prehairpin 
intermediate (72, 120), suggested that similar antibodies could 
be obtained by presenting MPER-based antigens in such precise 
conformational states in a membrane-like environment. In 
accordance, there are two major standpoints that are currently 
being addressed in MPER-based vaccinology: (i) what are the 
relevant structures that most likely mimic the native-bound 
form of MPER bNAbs and (ii) which is the role of membrane 
lipids over the MPER immunogenicity, including the precise 
lipid components and adjuvant systems. A summary of the 
most recent (since 2010) strategies followed in immunization 
protocols are listed in Table 2.

Conformational states bound by anti-MPER bNAbs have 
been approached (121, 122, 129, 133). The use of computational 
methods permitted the design of scaffolds consisting in unrelated 
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protein structures selected from database but able to accommo-
date the neutralizing 2F5 binding sequence in a conformation 
close to the peptide-bound crystal structure. Such scaffolds 
induced polyclonal responses mimicking a 2F5-like binding 
profile in immunized animals (129). Crystallographic analysis 
confirmed that monoclonal antibodies isolated from immunized 
animals mimicked the conformation of 2F5 in a flexible gp41 
peptide, high affinity to the same sequence and similar angle of 
epitope approach (129, 134). Same outcomes were obtained with 
scaffolds targeting the 4E10 (135) and z13e1 (136) binding motifs. 
In spite of such structural mimicry, neutralizing activity was not 
achieved, likely because additional features such as membrane 
binding were not addressed in the design of these scaffolds.

Due to the importance for neutralization and their implica-
tion in a substantial portion of the free energy of 2F5, 4E10, 
and 10E8 binding, lipid-containing immunogen are important 
platforms being explored (71, 87, 88). Given that the complete 
epitope of anti-MPER bNAbs includes membrane components 
(74, 89) and that lipid recognition by CDR H3 impacts into 
their functionality (69, 72, 73, 86, 87), their potential for contri-
buting to MPER-specific neutralizing responses by immuniza-
tion is worth exploring. In this regard, membrane-mimicking 
platforms including viral-like particles (VLP) (137, 138) or 
lipo somes (122–124) have been approached. It has been shown 
that membrane lipids can modulate the MPER structure likely 
by promoting a native-like conformation and demonstrated  
to improve immunogenicity (123, 124). In particular, we previ-
ously demonstrated that those lipids overrepresented in the 
viral membrane such as cholesterol and sphingomyelin have 
the potential to induce stronger antibody titers comparing 
with simple POPC lipids (124). Interestingly, MPER-specific 
antibodies from long-lived Bone marrow plasma cells from 
mice immunized with antigen-coupled liposomes have been 
also reported. Those antibodies showed that were shaped under 
selective pressure promoted by the MPER in the context of lipids 
and did not display any polyreactive feature (139).

Whereas the implementation of lipid-based platforms 
achieved MPER-specific antibodies, modest neutralizing titers 
have been reported by a few studies. For example, liposome-
peptide antigens in combination with MPLA molecular adju-
vant led to the isolation of two MPER-specific IgM antibodies 
showing lipid cross-reactivity but limited neutralizing capacity 
(140). The use of an HA/gp41 fusion protein in viral like particles 
induced modest 4E10-like neutralizating titers (141). One study 
by Dennison and colleagues obtained MPER-specific antibod-
ies in NHP which bound preferentially to the gp41 prehairpin 
fusion intermediate rather than a recombinant gp41 construct 
by using a gp140 oligomer prime boosted with liposomes 
exposing an MPER peptide regimen. Such preferential binding 
was thought to be primarily due to structural modifications 
induced by the liposomes where the antigen was presented 
(121). Furthermore, the response mapped specifically the 2F5 
DKW neutralizing core (121). In spite of these promising 
results, neutralizing activity was not achieved. Mimicking the 
gp41 prehairpin intermediate has been also approached by the 
design of a gp41 immunogen formulated in proteoliposomes. 

Immunization of guinea pigs showed modest neutralizing titers 
against tier 1 viruses, although the specificities responsible for 
such neutralization were not delineated (122). Finally, the role 
of non-neutralizing antibodies in protection has been shown 
in some studies. The presence of vaginal IgA with ADCC 
and transcytosis-bocking properties induced by gp41-grafted 
virosomes was associated with protection of NHP against SHIV 
challenge (132). Such vaccine platform was also evaluated in  
a Phase I clinical trial in healthy women. Vaginal secretions  
of vaccinated subjects were found to present transcytosis-
blocking properties in vitro (142).

ReMARK

In spite of the recent advances into the MPER physical and 
immunological properties, we still lack a full roadmap to gen-
erate a neutralizing response against this HIV-1 Env vulner-
ability site. The outcomes derived from MPER immunization 
studies clearly demonstrate that lipid cross-reactivity, binding 
to certain neutralizing epitopes or binding to gp41 native struc-
tures like the prehairpin intermediate are achievable. Although 
the implementation of these features will have a crucial role 
they will be likely insufficient to achieve the full properties of 
MPER-specific bNAbs in immunization protocols. In contrast, 
the selection of MPER non-neutralizing antibodies whose 
B-cell precursors may compete for the antigen presented can-
not be excluded. While the knowledge gained from other Env 
vulnerability regions has advanced from the higher number 
of bNAbs isolated, to date only the potent 10E8 as well as 2F5 
and 4E10 antibodies have been isolated. This fact highlights 
the need of the isolation of additional MPER bNAbs in order 
to bypass these gaps of our knowledge, improving immunogen 
design, while avoiding immunodominant non-neutralizing 
epitopes.
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