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Oxford, The Churchill Hospital, Oxford, United Kingdom

MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that post-
transcriptionally regulate up to 60% of protein encoding genes. Evidence is emerging 
that miRNAs are key mediators of the host response to infection, predominantly by 
regulating proteins involved in innate and adaptive immune pathways. miRNAs can 
govern the cellular tropism of some viruses, are implicated in the resistance of some 
individuals to infections like HIV, and are associated with impaired vaccine response in 
older people. Not surprisingly, pathogens have evolved ways to undermine the effects 
of miRNAs on immunity. Recognition of this has led to new experimental treatments, 
RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs 
are being investigated as novel infection biomarkers, and they are being used to 
design attenuated vaccines, e.g., against Dengue virus. This comprehensive review 
synthesizes current knowledge of miRNA in host response to infection with emphasis 
on potential clinical applications, along with an evaluation of the challenges still to be 
overcome.
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iNTRODUCTiON

In 1993, Ambros et al. made a surprise discovery while trying to unpick the fundamental mechanisms 
underlying gene expression in the nematode. They discovered a 22 nucleotide RNA sequence that 
controlled expression of a protein encoding gene (1). Initially thought to be a peculiarity of nematodes, 
the next decade brought the discovery of hundreds of 20–24 nucleotide RNA molecules in viruses, 
plants, animals and humans, and what’s more, these small RNA molecules were able to regulate 
the expression of genes (2). These tiny single-stranded transcripts became known as microRNAs  
(miRNAs, miRs) and led to a paradigm shift in our understanding of gene regulation. Utilizing the 
mechanics of the RNA interference pathway, miRNAs bind to complementary sequences in the  
3′ untranslated region of messenger RNA transcripts, to prevent translation (3). miRNAs fine tune 
protein production after a gene has been transcribed. Although the study of miRNA is still in its 
relative infancy, it is clear that miRNAs are key mediators of gene expression. The miRNA registry, 
miRbase, lists 2558 human miRNAs, and collectively these miRNAs regulate an estimated 60% of 
protein-coding genes (4, 5). miRNAs are critical controllers of cell differentiation and functions, 

Abbreviations: 3′UTR, 3′ untranslated region; 5′UTR, 5′ untranslated region; AID, activation-induced cytidine deaminase; 
EV-71, enterovirus 71; HBV, hepatitis B virus; HCMV, human cytomegalovirus; HCV, hepatitis C virus; HESN, HIV-exposed 
seronegative individuals; HSV, herpes simplex virus; miRNA, microRNA; MRE, microRNA response element; RISC, RNA 
induced silencing complex; siRNA, small interfering RNA; TB, tuberculosis; TLR, toll-like receptor.
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FigURe 1 | MicroRNA biogenesis and mechanism of action [composed from Ref. (35–39)]. 1. MicroRNA genes can be found as independent transcriptional units, 
or embedded within introns, and occasionally exons of other genes. In the canonical pathway, microRNA are transcribed as long primary miRNA transcripts 
(pri-miRNAs) by RNA polymerase II (and occasionally RNA polymerase III). Pri-miRNAs can be several kilobases long and can contain the stem loops of several 
mature miRNAs (giving rise to miRNA clusters—see Box 1). In the non-canonical pathway, miRNA precursors lie in mRNA introns (“miRtrons”). 2. Pri-miRNAs are 
processed by the nuclear protein DGCR8 (DiGeorge syndrome critical 8 region) and the enzyme DROSHA into hair pin shaped structures called pre-miRNA 
transcripts. In the non-canonical pathway, miRNA precursors in mRNA introns are spliced out and bypass DGCR8/DROSHA. 3. Pre-miRNAs are exported to the 
cytoplasm by exportin-5. 4. The enzyme DICER cleaves the pre-miRNA hairpin loop to produce a mature miRNA duplex. 5. One strand of the miRNA duplex (the 
guide strand) associates with Argonaut (AGO) protein in the RNA induced silencing complex (RISC). The remaining strand (termed the passenger strand) is 
degraded. In most cases, there is a preference for which strand is incorporated due to factors like thermodynamic stability. 6. The mature single-stranded miRNA in 
the miR-RISC complex binds to complementary sequences in the 3′ untranslated region of mRNA molecule, preventing translation. Bound mRNA may be degraded 
or stored for translation later (48). Bound mRNA may be sequestered into processing bodies (p-bodies) possibly for later release (49).
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mediating a variety of cellular processes including those integral 
to innate and adaptive immunity (6–15). Unsurprisingly, patho-
gens have evolved to exploit host miRNAs to subvert the immune 
response (16–34). Characterization of the physiological roles of 
miRNAs in immunity has led to the pursuit of miRNA-based 
tests and treatments, and 24 years after the discovery of the first 
miRNA, the clinical application of miRNAs in infectious disease 
is starting to be realized. This review summarizes the role of miR-
NAs in host response to pathogens and reviews the promising 
clinical applications of miRNAs in preventing, diagnosing, and 
treating infections.

MiCRORNAs

MicroRNA biogenesis and mechanism of action are summarized 
in Figure  1 (35–39). Key terminology is outlined in Box  1.  
As noted above, miRNAs bind to complementary sequences in the 
3′ untranslated region of mRNA transcripts. miRNA molecules 
do not require perfect complementarity to bind mRNA, indeed 
only nucleotides 2–7 of a miRNA (termed the “seed region”) have 
to match a site on a mRNA perfectly for binding to occur (40). 
Therein lies the complexity of miRNA-mediated gene regulation; 
namely one miRNA can bind hundreds of different mRNAs, and 
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BOx 1 | Terminology.

Nomenclature. microRNA is commonly condensed to miRNA or miR. Initial 
miRNAs discovered in Caenorhabditis elegans were prefixed with “lin” and 
“let,” e.g., lin-4 and let-7. Subsequently miRNAs have been numbered in 
the order in which they were discovered, e.g., miR-1. Their prefix is usually 
shortened to miR and often prefixed by their species, e.g., hsa-miR-21 
(homosapien-microRNA-21).

−5p and 3p suffixes: Denotes whether the mature miRNA is derived from 
the 5′arm or the 3′arm of the stem loop precursor: e.g., hsa-miR-21-3p, 
hsa-miR-21-5p.

* suffix: A * suffix denotes the miRNA strand from the miRNA duplex that 
is less abundantly expressed as determined by experiment, e.g., miR-56 
(the predominant product) and miR-56* (the opposite miRNA strand). This 
annotation has been generally superseded by the −5p/−3p suffix.

miRNA family: Closely related miRNAs whose mature sequences differ by 1 
nucleotide, e.g., the let-7 family, comprising of let-7a, let-7b, let-7c, etc.

miRNA cluster: Some miRNA genes are found grouped together in polyci-
stronic units with a shared promoter meaning they are transcribed together 
as a long primary transcript and are therefore coexpressed. E.g., miR-17-19 
cluster.

Micronome: The entire miRNA expression profile of a cell or sample.

Seed sequence: Nucleotides 2–7 from the 5′ end of the miRNA molecule. 
Canonical targeting of mRNAs requires that the miRNA seed sequence be 
perfectly complementary to an mRNA site for binding to occur.

MicroRNA response element (MRE): the miRNA binding site on an mRNA 
molecule

AntagomiR/antimiR: A miRNA inhibitor—an artificially produced single-
stranded RNA molecule which is perfectly complementary to (and therefore 
binds to) a target miRNA molecule preventing the miRNA from functioning.

miRNA mimics: artificially produced analogs of miRNAs. Used to artificially 
upregulate the levels of specific miRNAs.

RNA interference (RNAi), small interfering RNAs (siRNA), and miRNA.

Small interfering RNAs (siRNAs) are double-stranded RNA molecules which 
bind to targets with perfectly homologous sequences. MicroRNA and siRNA 
have analogous but not identical biogenesis. siRNAs are produced from 
DICER cleavage of endogenously (e.g., mRNA transcript) or exogenously 
(e.g., viral transcript) derived long double-stranded transcripts. MicroRNA 
and siRNA pathways conjoin at the point where the guide strand is loaded 
into RISC complexes (50). Unlike miRNAs, siRNA bind targets with perfect 
complementarity resulting in mRNA cleavage. In line with several authors this 
review uses RNAi as an umbrella term for the process of miRNA and siRNA 
molecules interfering with gene expression. It should be noted that some 
authors ascribe RNAi solely to the process of siRNA mRNA degradation.
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one mRNA can bind several miRNAs, with bound miRNAs coop-
eratively controlling mRNA transcript translation (41). Generally 
speaking, binding of miRNA molecules blocks translation and 
promotes mRNA degradation but this might not always be the 
case. miRNA binding to 5′ untranslated regions (5′UTRs), exons 
and even DNA elements has been described and may enhance 
translation and transcription, respectively (42–47).

The overall effect of a miRNA on a gene’s protein expression 
depends on whether its transcript is a direct or indirect target 
of the miRNA; for example when a miRNA targets a protein’s 
repressors, that miRNA will indirectly upregulate that protein 
(the so-called repressor of a repressor effect) (51). The direct 
and indirect effects of miRNA can therefore lead to protein and 
pathway repression or enhancement. miRNAs fine tune gene 
expression often by involvement in complex negative feedback 

loops and feed-forward mechanisms. (A feedforward mechanism 
describes a situation where a protein coding transcript and a 
miRNA targeting that transcript are simultaneously induced by 
the same factor; this enables a protein to be expressed but not 
excessively so.) miRNAs may set an expression level threshold 
which a transcript must reach before protein translation occurs 
(i.e., the point at which a transcript is so abundant that the inhibi-
tory effects of miRNAs are overcome and protein translation 
occurs) (11, 51). miRNAs frequently target several proteins in 
the same or connected pathways (11, 51).

MiCRORNAs ARe iMPORTANT 
CONTROLLeRS OF LeUKOCYTe 
DeveLOPMeNT

Evidence that miRNAs are important in the immune system first 
arose from mice studies showing that the production of mature B 
and T lymphocytes is altered by manipulating miRNA expression 
in hematopeotic stem cells and immature lymphyocytes (7, 8, 10). 
These early studies revealed that miRNAs are pivotal mediators of 
lymphocyte development and differentiation. More recent work 
showed that different stages of T-cell development have charac-
teristic, stage-specific miRNA expression profiles, and cell lineage 
fate (e.g., CD4+, CD8+) is determined by miRNA expression  
(52, 53). miRNAs also create thresholds which prevent naive 
T-cells differentiating into effector cells in the absence of signifi-
cant T-cell receptor activation. For example, naive T-cells, highly 
express miR-125b which targets factors that promote differen-
tiation (including interferon gamma, IL2-subunit receptor beta, 
IL10-subunit receptor alpha, and BLIMP1) and differentiation 
into an effector T-cell will only occur after a reduction in miR-125b 
caused by T-cell receptor activation (54). miR-125b, miR-181, 
miR-146, miR-155, miR-150, miR-21, and the miR 17-19 cluster 
appear particularly important in regulating T-lymphocyte devel-
opment (55). A similar set of miRNAs, miR-21, mir-34, mir-125, 
mir-146, mir-155, mir-150, and mir-181 are important in B-cell 
development and function (56). These miRNAs govern many 
aspects of immunity, not just lymphocyte development, and are 
frequently identified as biomarkers of infection (see Biomarker 
section and tables in Supplementary Material), reflecting their 
integral role in immune response.

MiCRORNAs MeDiATe iNNATe AND 
ADAPTive iMMUNiTY

MicroRNAs have been investigated in the host–pathogen interac-
tions of more than 50 different infections (Table 1). Table S1 in 
Supplementary Material contains information on which miRNAs 
have been implicated in these infections along with their pro-
posed targets. Cells isolated from patients infected with viral, 
fungal, and bacterial infections have different miRNA expression 
profiles compared with healthy controls, and this is also the case 
for infected versus non-infected cells in vitro (27, 57–62). miRNA 
regulation has been described in a wide range of leukocytes 
and in the innate immune responses of non-leukocytes (12, 34, 
63–71). Indeed, single nucleotide polymorphisms in miRNA loci 
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TABLe 1 | MicroRNAs mediate the host–pathogen interactions of the following pathogens.

viral infections Bacterial infections Fungal infections Parasitic infections

Chikungunya virus [Selvamani et al. (77)] Brucella spp. [Budak et al. (103)] Aspergillus fumigatus [Dix et al. (116)], Candida 
albicans

Angiostrongylus cantonensis  
[Yu et al. (117)]

Human Cytomegalovirus [Hook et al. (78)] Francisella tularensis [Bandyopadhyay et al. (104)] Muhammad et al. (60) Cryptosporidium parvum [Gong et al. (66)]
Coxsackie virus [Tong et al. (79)] Helicobacter pylori [Teng et al. (105)] Leishmania major  

[Lemaire et al. (58)]
Dengue virus [Smith et al. (80)] Haemophilus influenza [Tay et al. (106)] Malaria falciparum  

[Mantel et al. (118)]
Ebola virus [Duy et al. (81)] Klebsiella pneumonia [Teng et al. (71)] Schistosomia japonicum [He et al. (119)]
Epstein–Barr virus [Gao et al. (82)] Mycobacterium leprae [Jorge et al. (107)] Toxoplasma gondii [Cannella et al. (120)]
enterovirus 71 [Ho et al. (83)] Listeria moncytogenes [Johnston et al. (108)]
Hantavirus [Shin et al. (84)] Mycobacteria tuberculosis [Rothchild et al. (109)]
Hepatitis B virus [Li et al. (85)] Neisseria meningitides [Liu et al. (110)]
Hepatitis C virus [Luna et al. (86)] Bordetella pertussis [Ge et al. (111)]
Herpes Simplex 1 virus [Pan et al. (87)] Salmonella enterica [Maudet et al. (27)]
Human immunodeficiency virus [Xu et al. (88)] Staphylococcus aureus [Jin et al. (112)]
Human papilloma virus [Harden et al. (89)] Orientia tsutsugamushi [Tsai et al. (113)]
Rotavirus [Chanda et al. (90)] Streptococcus pneumoniae [Griss et al. (114)]
Human T-cell leukemic virus 1 [Bai and Nicot (91)] Haemophilus influenzae [Tay et al. (106)]
influenza virus [Tambyah et al. (92)] Burkholderia pseudomallei [Fang et al. (115)]
Japanese encephalitis virus [Zhu et al. (93)]
Kaposi’s sarcoma-associated herpes virus [Lagos et al. (94)]
Polio virus [Perwitasari et al. (95)]
BK Polyoma virus [Broekema and Imperiale (96)]
JC Polyoma virus [Rocca et al. (97)]
Rabies virus [Shi et al. (98)]
Respiratory syncytial virus [Thornburg et al. (99)]
Vaccinia virus [Grinberg et al. (22)]
Varicella zoster virus [Qi et al. (100)]
West Nile virus [Chugh et al. (101)]
Zika virus [Pylro et al. (102)]

The most frequently studied organisms are highlighted in bold.
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FigURe 2 | Key ways microRNAs (miRNAs) mediate immune responses to pathogens. (A–F) A variety of ways in which miRNAs regulate immune responses.

5

Drury et al. miRNA in Infectious Disease

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1182

have been associated with susceptibility to leprosy and infection 
outcome in human cytomegalovirus (hCMV) and hepatitis B 
infection (72–76). Although confirming the functional nature 
of such associations is difficult, the findings of such studies are 
in keeping with the important role of miRNAs in immunity 
and provide some evidence that person to person variation in 
susceptibility to infection could be governed by polymorphism in 
miRNA genes, at least for certain pathogens. Key concepts of how 
miRNAs mediate immunity are illustrated in Figure 2.

The activation of innate immune cells such as macrophages, 
dendritic cells, and natural killer cells are controlled by miRNAs 
(14, 50, 121–125). For example, dendritic cells exposed to myco-
bacteria, gram-negative and gram-positive bacteria downregu-
late miR-155, miR-505, miR-7, and miR-940 which alleviates 
translational repression of proteins involved in innate immune 
responses (126). miRNAs allow cells to respond rapidly to their 
surroundings for example, activation of resting NK-cells leads to 
downregulation of miR-30e which derepresses its target perforin 
thus enabling prompt cytolysis of infected cells (127). In this 
way, miRNAs prevent aberrant expression of proinflammatory 

molecules in the absence of inflammatory stimuli (Figure 2A). 
miRNAs can also promote inflammatory responses by inhibiting 
the translation of genes that supress inflammation (Figure 2B).

The plethora of pathogens faced by hosts demands a nuanced 
immune response which can adapt to cope with viral, bacterial, 
fungal and protozoal infections. miRNAs facilitate this nuanced 
inflammatory response through their control of macrophage 
polarization and T-cell differentiation, thereby mediating the 
skewing of T-cell immunity toward a T-helper (TH) 1 or TH2 
response (Figure 2C). miR-29 for example limits TH1 cell dif-
ferentiation by targeting mRNAs encoding T-bet, eomesodermin 
and IFN-gamma which promote TH1 differentiation (15).

A balanced immune response is essential if pathogens are to be 
eradicated with minimal collateral damage to the host otherwise 
immune dysregulation as seen in sepsis or chronic inflammation 
ensues leading to protracted illness and even death. The balance 
that miRNA provides is best illustrated by their regulation of toll-
like receptor (TLR) signaling. TLR signaling induces miRNAs 
which target many elements of TLR signaling pathways includ-
ing TLRs themselves, signaling proteins, regulatory molecules, 

http://www.frontiersin.org/Immunology/
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transcription factors and cytokines (6, 9, 13, 125, 128–130). This 
creates complex feedforward and feedback loops which enables 
fine-tuning of TLR signaling to ensure pathogens are irradiated in 
a controlled manner (13) (Figure 2D). miRNA regulation of TLR 
signaling is a large subject which has been reviewed elsewhere 
(131) and therefore an extensive discussion is beyond the scope of 
this review, nevertheless it is useful to briefly mention miR-155 and 
miR-146 as these are frequently identified in studies investigating 
host–pathogen interactions. miR-155 is induced by TLR-2, TLR-3, 
TLR-4, and TLR-9 signaling in many cell types and generally func-
tions as a proinflammatory miRNA through its targeting of factors 
which negatively regulate inflammation, e.g., SH2-containing 
inositol 5′-phosphatase 1, suppression of cytokine signaling 1  
(13, 130, 132). To prevent excessive inflammation however, 
miR-155 expression must be controlled. In macrophages, TLR-4 
signaling induces both miR-155 and IL-10, an anti-inflammatory 
cytokine that inhibits transcription of miR-155; this system 
ensures a check in the upregulation of miR-155 and therefore the 
inflammation it induces (133). miRNAs also negatively regulated 
inflammation and miR-146a is a prime example. miR-146a nega-
tively regulates TLR signaling through a negative feedback loop 
involving its targets IRAK1 and TRAF6 which ensures a check in 
the proinflammatory signaling of NF-κβ (124, 125).

Although miRNAs such as miR-155 and miR-146a are gener-
ally seen as positive and negative regulators of inflammation, 
respectively, it should be remembered that most miRNAs are 
likely to be pleiotropic in infection, with net result dependant 
on the transcription factors and signaling molecules which are 
concurrently shaping cell response and cell differentiation. miR-
155, for example, may promote inflammation as noted above, 
but in some circumstances it may also negatively regulate NF-κβ 
activation thereby controlling inflammation (134). The targets of 
a miRNA can differ from cell type to cell type so the action of a 
miRNA in a macrophage for example may be different to its action 
in a neutrophil, or TH1 lymphocyte; care should be taken to avoid 
generalizing the findings from one cell type to another and it 
would be a gross oversimplification to classify most miRNAs as 
proinflammatory or anti-inflammatory (109). Care should also 
be taken in generalizing the results of in vitro experiments to the 
in vivo setting, and in generalizing mice studies to humans as the 
micronome and targets of miRNA can vary in vitro compared to 
in vivo and can be organism specific (135).

Another process tight controlled by of miRNAs is the produc-
tion of high affinity antibodies. During infection/postvaccina-
tion, B-cells, T-follicular helper cells, and dendritic cells form 
germinal centers in lymphoid tissue. miRNAs are integral to this 
antibody affinity maturation process, evidenced by studies show-
ing germinal center formation does not occur if there is global 
knockout out of miRNAs in B-cells (through conditional knock 
out of DICER) prevents germinal center formation. Within these 
germinal centers, activated B-cells undergo clonal expansion and 
mutate their B-cell receptors (somatic hypermutation) which are 
then tested against antigen bound by follicular dendritic cells in 
the presence of T-follicular helper cells. B-cells enter apoptosis 
unless their B-cell receptor strongly binds antigen in which 
case they receive cell survival signals from T-follicular helper 
cells which causes upregulation of miR-155 which then targets 

proapoptotic factors (e.g., JARID2) and reverses the apoptotic 
pathway (136). Surviving B-cells may undergo further rounds of 
clonal expansion, somatic hypermutation and antigen presenta-
tion; a process which ultimately yields a population of B-cells 
with high affinity antibodies.

Mutation of the B-cell receptor (through somatic hypermuta-
tion) and immunoglobulin class switching is regulated by miRNAs. 
Activation-induced cytidine deaminase (AID) catalyzes mutation 
of the immunoglobulin locus and is integral to class switching and 
affinity maturation but must be tightly controlled to prevent off 
target mutations and an overzealous mutational rate that can lead 
to oncogenic mutations and, for unclear reasons, low affinity and 
autoreactive antibodies (137–139). AID transcripts are targeted 
in resting B-cells by high levels of miR-181b. miR-181b is down-
regulated after activation, allowing AID expression and thus class 
switching and somatic hypermutation. To tightly regulate AID 
expression, B-cell receptor signaling induces miR-155 (which 
targets AID transcripts) at the same time as AID (65, 138, 140). 
Coinduction of AID and miR-155 after B-cell receptor stimulation 
creates a system in which AID is rapidly induced and then rapidly 
brought undercontrol, preventing immune pathology (11, 138).

Given the pivotal role of miR-155 in the germinal center response, 
dysregulation of miR-155 could lead to immune dysfunction in 
humans; supporting this is the finding that naive B-cells of elderly 
people have higher levels of mir-155 compared with young people, 
and this inhibits class switching in the B-cell of elderly people due 
to increased downregulation of AID. These findings indicate that 
miRNA modulation of immunity is a finely balanced process and 
increased susceptibility to infection and possibly poor vaccine 
responses in elderly people may in part be due to age-related dys-
regulation of miRNAs (141, 142). Such a conclusion is further sup-
ported by a study showing an age-associated decline in miR-125b 
expression in monocytes and naive CD8+ T-cell correlates with an 
age-associated increase in expression of its target chemokine (C-C 
motif) ligand 4 (CCL4) (143). CCL4 is a chemokine that promotes 
leukocyte migration, activation and T-cell differentiation, and its 
aberrant over expression in elderly people is thought to contribute 
to a chronic inflammatory state, leading the authors to suggest that 
changes in miR-125b with age may underlie age-associated chronic 
inflammation.

As well as shaping cell response to infection, miRNAs may 
play a role in determining the tropism of viruses and intracellular 
bacteria (23, 27, 91, 144) (Figure  2E). Primary monocytes for 
example are resistant to HIV infection, and this appears to be 
due to endogenous expression of miR-1236 which targets Vpr 
(HIV-1)-binding protein (144).

HOST miRNAs MAY TARgeT PATHOgeNS 
DiReCTLY

In addition to regulating leukocyte response, miRNAs themselves 
may be independent effectors of innate immunity by directly tar-
geting viral transcripts (see Table S1 in Supplementary Material). 
In vitro studies show miRNA target influenza; vesicular stomatitis 
virus, human T-cell leukemia virus 1; human papilloma virus; 
and enterovirus 71, and inhibit viral replication (Figure  2F) 
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facilitating pathogen clearance or potentiating viral latency  
(91, 145–149). Malaria transcripts have also shown to be targeted 
by host miRNAs translocating into the parasite (150). Indeed, 
miRNAs may partially dictate the cell tropism of a virus due to 
their targeting of viral transcripts, e.g., the resistance of resting 
T-cells to human T-cell leukemia virus appears to be due to their 
expression of mir-28-3p (91). Not everyone agrees that miRNA 
directly target viral transcripts, Bogerd et al. argue that cellular 
miRNAs do not target viruses as global downregulation of host 
cell miRNAs (via DICER knockout) did not lead to enhancement 
of 11 viruses in human embryonic kidney cell line 293T (151). 
Bogerd et al.’s model is problematic however as viruses may be 
dependent on cell mechanisms which are controlled by miRNAs 
and also the usual host cell of the viruses in their study are not 
human embryonic kidney cells. Contrary to Bogerd et al.’s study, 
there is evidence that direct targeting of viral genome/transcripts 
occurs in  vivo as several groups have successfully attenuated 
viral vaccines by incorporating human miRNA seed sites in viral 
genome (see The Clinical Applications of miRNAs: Improving 
Vaccines) (152). The relative importance of miRNA direct target-
ing of viruses in innate immunity remains to be seen however as 
in vivo and in vitro studies show viral mutation of miRNA seed 
sites in viral genomes means viruses can quickly evolve to avoid 
being targeted by miRNAs (149, 153).

exTRACeLLULAR miRNAs AND HOST 
ReSPONSe TO PATHOgeNS

MicroRNAs secreted from cells are called extracellular miRNAs 
(ex-miRNAs, circulating miRNAs). Extracellular miRNAs can be 
isolated from most biological fluids (154–156). Ex-miRNAs are 
contained in extracellular vesicles (exosomes, microvesicles, and 
apoptotic bodies), and through their association with Argonaut 
protein (a component of the RISC complex—see Figure 1) and 
high-density lipoprotein (154, 157–159). The biological func-
tion of ex-miRNAs is debated; they may be actively secreted as 
intercellular communicators of gene regulation; actively secreted 
as a cellular waste disposal method; or passively secreted as a by-
product of cell death (160). Although all three theories may be 
correct there is increasing evidence that ex-miRNA are functional, 
can be passed between leukocytes in vitro and in vivo, and play 
a role in disease (161–164). Supporting a functional role is the 
finding that, miR-233 and miR-29a are upregulated in the serum, 
and unstimulated PBMCs of HIV-exposed seronegative indi-
viduals (HESN) compared with healthy controls (165). PBMCs 
from HESN individuals release greater amounts of miR-223 and 
miR-29a when infected with HIV in vitro and infection is also 
better controlled, prompting the study’s authors to speculate that 
miR-223 and miR-29a could represent novel therapeutic targets. 
Ex-miRNAs have been implicated in the pathophysiology of 
infection, for example Malaria falciparum infected erythrocytes 
secrete extracellular vesicles containing miR-451a which are 
taken up by endothelial cells and downregulate proteins required 
to maintain integrity of the endothelium again suggesting that 
miRNA-based therapies could hold promise (118) (this issues 
of this are discussed in the section below on treatments). A key 
issue for establishing the role of ex-miRNA in infectious disease 

is identifying the donor and recipient cells of miRNA. The sur-
face marker proteins of exosomes (e.g., CD44) may help in this 
respect, but miRNA bound to protein and HDL is more difficult 
to track (166). Regardless of what they do, one clinical application 
of ex-miRNA is the use of them biomarkers of infectious disease. 
This is discussed in detail in the Biomarker section.

iNTRACeLLULAR PATHOgeNS exPLOiT 
HOST miRNAs

Since miRNAs are part of an effective immunological response, 
intracellular pathogens have evolved ways of utilizing host miR-
NAs to create an immune tolerant environment that promotes 
pathogen survival and latency (Figure 3) (19). One of the first 
examples of this was the discovery that the hepatitis C virus 
(HCV) is restricted to hepatocytes because it depends on expres-
sion of miR-122 (a liver specific miRNA) to survive and replicate 
(23) (Figure  3A). miR-122 binds to the HCV genome in two 
places, including the 5′UTR and this creates a 3′ overhang which 
protects the virus from nuclear degradation (167, 168). Cellular 
miRNAs can also promote viral latency. For example, during 
latent hCMV infection, host miRNAs miR-200c and miR-200b 
target the transcript of a hCMV protein (UL122) which promotes 
the lytic replication, thereby promoting latency, and allowing it 
to persist within the host (169). The switch from viral latency 
to reactivation can also be facilitated by miRNAs targeting viral 
transcripts which inhibit lytic replication (20).

Viruses such as enterovirus, CMV, human papilloma virus, 
hepatitis B virus (HBV), and HCV, manipulate the expression of 
specific cellular miRNAs to inhibit translation of proinflamma-
tory proteins (16, 17, 21, 24, 25, 27, 29, 32, 33) (Figures 3B,C). 
For example, Epstein–Barr virus latent membrane protein 1 
induces miR-146a expression to negatively regulate the interferon 
response and promote its survival (17). Manipulation of host 
miRNAs can occur indirectly through induction or repression 
of transcription factors, or in some cases may occur directly 
through viral sequestration of host miRNAs. In the latter case, 
viral transcripts bind cellular miRNAs through the production 
of small RNA molecules which are complementary to miRNAs 
(essentially virally produced antagomiRs) or through multiple 
cognate miRNA binding sites in miRNA decay elements or 
long 3′UTRs (miRNA sponge effect) (86, 131, 170–172). This 
sequestration blocks miRNA function and may promote miRNA 
decay, preventing miRNAs downregulating host transcripts that 
are advantageous to viral survival or replication.

There is evidence that some viruses such as HIV, dengue, vac-
cinia, Epstein–Barr virus, Human papilloma virus 16, and HBV 
globally suppress miRNA production in host cells to circum-
navigate miRNA-mediated innate immunity by targeting proteins 
involved in the RNA interference pathway (e.g., DICER) (18, 22, 
26, 28, 31, 173) (Figure 3D). Given miRNAs mediate host response 
to infection, it follows that miRNA deregulation could contribute 
to susceptibility to disease and immunopathology. Studies relat-
ing miRNA expression to patient outcomes in infection are now 
needed to understand how deregulation of miRNAs can contribute 
to disease course. This could provide new therapeutic targets or 
prognostic indicators.
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Intracellular bacteria including Mycobacterium spp., Listeria 
monocytogenes, Francisella tularensis, and Salmonella enterica 
also appear to manipulate host cell miRNA expression to down-
regulate inflammatory cytokines and the factors and pathways 
that promote autophagy and cell apoptosis (27, 30, 34, 174). 
For example, miR-26a is downregulated in macrophages by 
Mycobacterium tuberculosis which leads to depression of the 
miR-26a target Krüpple-like factor 4 (KLF4). KLF4 is a transcrip-
tion factor that skews macrophage polarization away from the 
inflammatory M1 phenotype toward an anti-inflammatory M2 
in which bactericidal mechanisms are repressed. Downregulation  
of miR-26a in M. tuberculosis infected cells therefore promotes 
M2 polarization which facilitates M. tuberculosis survival (175). 
The molecular mechanisms whereby intracellular bacteria 
manipulate host cell miRNAs remains to be elucidated.

viRUSeS HAve miRNAs TOO

Viruses encode miRNAs within in their genome which pro-
mote viral replication and control latency (96, 176–183). HIV,  

Ebola, Adenoviridae, Herpesviridae, and the BK polyomavirus 
utilize host cell machinery to process their own miRNAs  
(96, 176–183) (Figure 3E). Viral miRNAs promote viral latency, 
prevent cell apoptosis (an oncogenic feature of oncoviruses 
such as Kaposi’s sarcoma-associated herpes virus that promotes 
malignant transformation), and downregulate factors which pro-
mote an inflammatory response and recruitment of leukocytes 
(184). The HSV-1 gene latency-associated transcript, for example, 
encodes miR-H2-3p which is cotranscribed with, and targets a 
viral immediate-early transcriptional activator (ICPO) believed 
to promote HSV-1 replication and reactivation from latency 
(183). CMV inhibits CD8(+) T-cell responses by expressing miR-
US4-1 which targets endoplasmic aminopeptidase 1, a protein 
responsible for trimming peptides for presentation by MHC 
class I molecules (179). The Kaposi’s sarcoma-associated virus 
expresses many miRNAs including miR-K5 and miR-K9 which 
target MYD88 and IRAK1 to reduce inflammatory cytokine 
expression and clearance by the immune system (19). Viral miR-
NAs may mimic host miRNAs, e.g., Ebola virus and the Kaposi’s 
sarcoma-associated herpes virus encode miRNA orthologs of 
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miR-155 (180, 185). In the case of Ebola, this miRNA-155 analog 
targets importin-α5 (KPNA1) expression which may lead to dys-
function of the interferon signaling and an unbalanced immune 
response thereby contributing to the marked pathogenicity of the 
virus (180). Manipulating viral miRNAs using miRNA mimics 
or antagomiRs could hold therapeutic potential. Several studies 
show viral miRNAs are excreted in exosomes of infected cells, and 
in some cases this appears to modulate innate immune responses 
in recipient cells including dendritic cells and macrophages; 
however, the functional significance of this remains to be seen 
(186–190).

There is little evidence that bacteria have miRNAs. Deep 
sequencing of a mouse macrophage cell line (RAW264.7) infected 
with Mycobacterium marinum identified a 23nt RNA molecule 
which is predicted to arise from a stem loop, and was not present 
in broth grown bacteria, prompting the authors to suggest DICER 
in the host cell is required for processing as would be expected  
for a miRNA (191). Evidence is far from conclusive however 
and deep sequencing of human cells infected with Chlamydia 
trachomatis, Legionella pneumophila, and M. tuberculosis in the 
same study did not identify any potential bacterial miRNAs.

THe CLiNiCAL APPLiCATiONS OF 
miRNAs: TReATMeNTS

A promising application of miRNAs is to utilize their immu-
nomodulatory functions to promote antimicrobial pathways dur-
ing infection and control dysregulated inflammatory responses 
during sepsis. Hock et  al., noted physiological downregulation 
of miR-328-3p in the lungs of mice infected with non-typeable 
Haemophilus influenza promoted phagocytosis by neutrophils 
and macrophages and bacterial killing and found boosting this 
downregulation by intra-tracheally administering an antagomiR 
(see Box 1) of miR-328-3p enhanced bacterial killing when mice 
were challenged with non-typeable H. influenza. Alexander et al. 
observed that administration of exosomes containing miR-146a 
and miR-155 ameliorated and enhanced mice inflammatory 
response to endotoxin in vivo, respectively, prompting the authors 
to speculate that such treatments could be useful adjuncts in 
managing sepsis (in the case of miR-146a) or vaccination (in the 
case of miR-155). Work by Wang et al. supports the notion that 
miRNA therapies could be a useful treatment in sepsis after they 
discovered administration of mesenchymal stem cell exosomes 
containing miR-223 confer cardiac protection in septic mice (192).

A miRNA-based strategy that renders the host resistant to 
the exploitation of their miRNAs by pathogens opens up a new 
avenue of therapeutics. As noted above, EV-71 infection induces 
miRNA-146a in cells to prevent an innate immune response. Work 
by Ho et al. showed that inhibition of miR-146a in EV-71 infected 
mice using an intraperitoneal injection of a miR-146a antagomiR 
significantly improved survival from 25 to 80% by reinstating an 
interferon gamma response (83). Bacterial infections may also be 
treatable with miRNAs. Upregulation of miR-128 by S. enterica 
promoted S. enterica survival in mice and intragastric delivery of 
anti-miR-128 reverses this phenomenon in mice and suppressed 
S. enterica infection (193).

Translation of these concepts to clinical treatments is on 
the horizon. An oligonucleotide inhibitor of miR-122 called 
Miravirsen was shown to be proven to be safe and well tolerated 
in HCV-infected patients in a phase IIa trial (194). In an effort 
to target drug delivery more effectively RG-101 was created in 
which the oligonucleotide inhibitor is conjugated to a high affin-
ity ligand for the hepatocyte-specific asialoglycoprotein receptor 
(ASGPR). A recent phase 1b double blind randomized controlled 
trial of RG-101 showed a single subcutaneous dose induced a 
significant reduction in viral load in patients with HCV within 
4 weeks of treatment (195). Unfortunately, viral rebound was seen 
in most patients (22 out of 28) and this was associated with HCV 
5′UTR mutations. A small number of patients (3 out 28) had a 
sustained antiviral response at 76 weeks and phase II trials are 
planned to see whether combining RG-101 with virus targeting 
antiviral agents augments HCV therapy. Interestingly RG-101 
appeared to increase NK-cell frequency and reduce activation 
which may have contributed to control of HCV (196). The hope 
is a treatment like RG-101 could shorten current HCV treatment 
regimens or offer an alternative treatment option in patients who 
have not responded to standard therapies (195).

Overall, using miRNA-based therapies to leverage immune 
response may prove useful adjuncts to standard antimicrobial 
therapies, e.g., in multidrug resistant gram-negative infections, 
or chronic viral infections such as hepatitis C. Nevertheless, 
there are significant challenges to implementing miRNA-based 
antimicrobial therapeutics which include devising methods of 
administration and drug design that will protect miRNA mimics/
antagomiRs from circulating RNAse enzymes. Delivery systems 
have to ensure targeted efficient delivery of miRNAs to the site 
of infection, because, as noted above, a miRNA may appear in 
many cell types, serving very different functions making off 
target effects a real possibility, limiting efficacy and safety (134).  
A detailed analysis of the outcomes of phase 1 trials of two 
miRNA-based cancer treatments will provide more important 
data on the feasibility of miRNA-based therapeutics generally 
(197, 198). As noted in the RG-101 trial above, viral mutation 
and resistance is an issue that will need tackling (195).

THe CLiNiCAL APPLiCATiONS OF 
miRNAs: BiOMARKeRS OF iNFeCTiOUS 
DiSeASe

Extracellular miRNAs are ideal biomarker candidates because 
they can be isolated from biological fluids (199). RT-PCR is 
already used routinely in the clinical setting to quickly identify 
infections (e.g., respiratory infections in babies with bronchioli-
tis) and could be used to quantify ex-miRNAs in patient samples.

A comprehensive search of the literature identified 57 studies 
assessing ex-miRNAs in infectious diseases through whole micro-
nome profiling and candidate miRNA approaches (see Tables S2 
and S3 in Supplementary Material). The overwhelming majority 
of these studies are serum and plasma based, but ex-miRNAs in 
CSF, saliva and sputum have also been investigated. Most studies, 
to date, have focused on HCV, HBV, HIV, tuberculosis (TB), and 
sepsis and aim to improve diagnosis and prognosticate infection 
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outcome (e.g., death in sepsis, liver cirrhosis in hepatitis) or treat-
ment response.

Most infection studies compare the ex-miRNA profile of 
patients with healthy controls. Many identify ex-miRNA signa-
tures which are highly predictive of infection. Zhang et al. found 
the combined expression of miR-378, miR-483-5p, miR-22, miR-
29c, miR-101, and miR-320b could differentiate pulmonary TB 
from healthy controls with sensitivity and specificity of 95 and 
91.8%, respectively (200). The issue with using healthy controls 
as a comparator group is that differentially expressed ex-miRNAs 
may represent a non-specific marker of infection; this limits the 
clinical translatability of these studies given most people under-
going tests are symptomatic of some disease process.

A handful of studies have chosen more pragmatic compara-
tor groups and promisingly suggest ex-miRNA signatures can 
differentiate particular infectious disease from other differential 
diagnoses. Zhang et  al. found miR-379, 483-5p, 23, 29c were 
upregulated, and miRNA 102 and 320b were downregulated in 
the serum of patients with pulmonary TB compared to patients 
with pneumonia, lung cancer, and COPD and this was confirmed 
in a second independent cohort (200). Interesting data from 
investigators in China identified miRNA signatures which differ-
entiate enteroviral hand foot and mouth, coxsackie hand foot and 
mouth, pertussis, TB, and varicella from each other (100, 201).

A promising application of ex-miRNA biomarker work may 
be to differentiate viral from bacterial infection, identify or prog-
nosticate sepsis, and in monitoring of response to antimicrobial 
treatment. At least 13 studies investigating ex-miRNA signatures 
in sepsis have been published; most are conducted in an inten-
sive care unit (ICU) setting. In more than one study, miR-223, 
miR-193, miR-483, miR-499, miR-15a/b, and miR-16 have been 
identified as potential biomarkers of sepsis diagnosis and mor-
tality (see Tables S2 and S3 in Supplementary Material). There 
are substantial inter-study discrepancies in miRNAs identified 
as potential biomarkers; this may be due heterogeneity in study 
design (e.g., data normalization methods) and confounders such 
as hospital differences in defining sepsis and ICU admission 
criteria. Differences in the lengths of illness between patients 
creates noise in the data; longitudinal studies that measure serial 
miRNA levels would provide temporal information on miRNA 
expression in sepsis and may resolve some conflicting findings.

The most commonly identified biomarker across all ex-
miRNA biomarkers of infection studies is miR-122 because of the 
over-representation of hepatitis studies in ex-miRNA biomarker 
studies. Studies of hepatitis C and hepatitis B have repeatedly 
found an association between circulating miR-122 and an aspect 
of infection (202–204). miR-122 is highly expressed by hepato-
cytes, and the association between levels of serum miR-122 and 
hepatitis may be the result of hepatocyte death. Upregulation 
of serum miR-122 is associated with HCV and HBV infection 
per se, correlates with viral DNA titers and falls during antiviral 
treatment (202–204). Conflicting evidence exists regarding the 
use of baseline miR-122 to prognosticate likelihood of response to 
treatment and liver cirrhosis (202–205). Among the 30 biomarker 
studies which used a miRNA profiling method (rather than a 
candidate miRNA approach which are at risk of heavy reporting 
bias), the most commonly identified ex-miRNAs biomarkers  

were miR-122 and the miR-29 family (identified in 7 studies), 
miR-21 and miR-146 (identified in 4 studies), and miR-150, miR-
16, miR-22, miR-125, miR-134, miR-194, and miR-106 (identi-
fied in 3 studies). Given the significant heterogeneity across all 
studies, there are significant limitations in combining them in this 
way, nevertheless it is interesting to note that a several of these 
miRNAs (miR-125, miR-150, and miR-21) already have estab-
lished roles in lymphocyte development and activation (54, 56).

There are challenges in using miRNAs as biomarkers of 
infectious disease, however, and this is underlined by a lack of 
inter-study cross validation of many results. Conflicting study 
results may arise from heterogeneity in study design includ-
ing differences in populations and control groups; methods of 
miRNA extraction and the circulating fraction under investiga-
tion (serum, plasma, microvesicles, or exosomes); micronome 
expression profiling platforms (next generation sequencing, 
probe-based hybridization microarrays, or RT-PCR arrays) and 
the dearth of miRNAs assessed; the limited statistical power of 
many studies at the profiling stage; data normalization methods; 
whether p-values were adjusted to take account of multiple test-
ing issues (usually not done); and whether confirmatory cohorts 
were used to validate results. Given there is good evidence that 
miRNA contained in exosomes is functionally secreted as inter-
cellular mediators of gene regulation, it is tempting to speculate 
that biomarker studies which profile miRNAs in exosomes rather 
than ex-miRNA in total plasma/serum (which will include 
a background of miRNA present from dead cells) could be 
more sensitive or specific biomarkers; comparisons of different 
extraction methods within the same biomarker study could help 
resolve this possibility.

THe CLiNiCAL APPLiCATiONS OF 
miRNAs: iMPROviNg vACCiNeS

As previously discussed, miRNAs may inhibit viruses through 
direct targeting of viral genomes or transcripts. This concept is 
being exploited to create new and attenuated vaccines by incor-
porating miRNA response elements (miRNA target sequences) 
into viral vaccine genomes. When the virus enters a cell-type 
which expresses the miRNA which targets the miRNA response 
elements (MRE), the virus is attenuated. The virus is not attenu-
ated in other cells not expressing that miRNA. In theory, this 
allows the creation of live vaccines which are attenuated in a tissue 
specific manner, maximizing efficacy while minimizing harm  
(see Figure 4).

Several groups have demonstrated safe, efficacious vaccination 
in mice through the incorporation of MREs into viral genomes. 
Perez et al. incorporated the ubiquitously expressed miR-93 MRE 
into a live influenza virus and showed the vaccine was safe and 
effective in mice (206). Most groups use MREs that correspond 
to tissue-specific miRNAs; an example being the incorporation 
of miR-124 in polio, West Nile, and Dengue viruses to selectively 
prevent replication in neuronal cells; and the incorporation of 
a let-7 MREs in H1N1 viral vaccines to reduce replication in 
bronchial cells (152, 207–210). In all of these cases, vaccination 
was efficacious and viruses were significantly attenuated. In two 
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studies, a small number of immunocompromised mice suc-
cumbed to infection, and this was due to MRE mutation (152, 153).  
Increasing the number of MREs repeats, adding MREs at different 
sites, incorporating multiple, different MREs in the viral genome, 
or combining MREs with other genome alterations that attenuate 
viruses has been shown to ameliorate this (153, 211).

MicroRNA could also be used as adjuvants to regulate proteins 
which could inhibit vaccine response. Protein kinase R-like endo-
plasmic reticulum kinase (PERK) triggers apoptosis in response 
to viral infection which can inhibit DNA vaccines from working. 
Wheatley et al. developed a plasmid-based HIV vaccine which 
expressed HIV-1 envelope (Env) antigens as well as a miRNA 
designed to inhibit PERK (an in silico designed miRNA named 
miR-huPERK) (212). To make this plasmid the sequence encod-
ing miR-huPERK inserted into the miR-155 gene (the mature 
miR-155 sequence was removed but the rest of the pri-miR-155 
sequence remained) and then cloned into the plasmid along with 
Env. Transfecting cell lines with this plasmid reduced PERK 
expression only when the mir-155 gene was used as a scaffold for 
miR-huPERK. Vaccinating BALB/c mice with this modified DNA 
vaccine augmented Env-specific CD8+ T-cell immunity. The 
study provides proof of principle that incorporation of miRNAs 
into vaccine constructs can ameliorate innate antiviral pathways 
which usually limit maximal antigen expression; the result is 
enhanced immunogenicity of DNA vaccines; potentially enabling 
development of novel DNA vaccines (212).

CONCLUSiON

MicroRNAs are essential mediators of host response to patho-
gens. They have pleiotropic roles which microbes have evolved 

to exploit. Elucidating the roles miRNAs in host response 
to infectious disease is inherently interesting at it provides a  
tool for identifying key genes and pathways that must be acti-
vated, enhanced, repressed, or silenced to facilitate an effective 
immune response. The complex regulatory network within which  
miRNAs are embedded, make unpicking the roles of miRNAs 
tough but not impossible. Integrating large miRNA and mRNA 
datasets using advanced statistical techniques (in a “systems 
biology” approach) will facilitate the unpicking of these complex 
networks.

Clinical applications of miRNAs are on the horizon. The novel 
anti-miRNA treatment miravirsen is already in phase 2b trials 
suggesting miRNA-based treatments may well become a reality; 
viral vaccines attenuated through incorporation of miRNA target 
sequences are at the preclinical stage; and miRNA biomarkers 
of infection hold promise. In all cases however there are chal-
lenges that must be overcome. miRNAs have multiple targets and 
therefore any vaccines or treatments that harness miRNAs may 
produce off-target effects compromising safety. In the context of 
ex-miRNA biomarkers identification of universal endogenous 
controls are needed to improve cross study reproducibility of 
findings, and a more standardized approach to biomarker studies 
may also help. Initiatives devoted to harnessing the diagnostic 
and therapeutic potential of extracellular RNAs like The National 
Institute for Health Extracellular Communication Consortium 
can facilitate this (213).

As the literature on miRNAs grows, the potential for new 
miRNA therapeutics, diagnostics/prognostics, and vaccines 
becomes tangibly closer. Translating the insights of miRNA 
studies into improving the lives of patients is the critical next 
step.
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