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Plasmacytoid dendritic cells (pDCs), also called natural interferon (IFN)-producing cells, 
represent a specialized cell type within the innate immune system. pDCs are specialized 
in sensing viral RNA and DNA by toll-like receptor-7 and -9 and have the ability to rapidly 
produce massive amounts of type 1 IFNs upon viral encounter. After producing type 1 
IFNs, pDCs differentiate into professional antigen-presenting cells, which are capable of 
stimulating T cells of the adaptive immune system. Chronic activation of human pDCs 
by self-DNA or mitochondrial DNA contributes to the pathogenesis of systemic lupus 
erythematosis and IFN-related autoimmune diseases. Under steady-state conditions, 
pDCs play an important role in immune tolerance. In many types of human cancers, 
recruitment of pDCs to the tumor microenvironment contributes to the induction of 
immune tolerance. Here, we provide a systemic review of recent progress in studies on 
the role of pDCs in human diseases, including cancers and autoimmune/inflammatory 
diseases.
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iNTRODUCTiON

Plasmacytoid dendritic cells (pDCs) were first described in 1958 by pathologists Lennert and 
Remmele (1). Human pDCs are often identified and classified based on the coexpression of CD123 
and CD303, whereas mouse pDCs express B220 and CD11c. pDCs recognize RNA and DNA viruses 
through toll-like receptor (TLR)-7 and -9, leading to activation of pDCs, and release high amounts of 
type I interferon (IFN-I) (2). Activated pDCs express high levels of major histocompatibility complex 
class II (MHC II), and costimulatory molecules (CD40, CD80, CD83, and CD86) enable pDCs to 
act as antigen-presenting cells to present antigens to CD4+ T cells. Moreover, pDCs secrete other 
proinflammatory cytokines and chemokines, such as interleukin-6 (IL-6), IL-12, CXC-chemokine 
ligand 8 (CXCL8), CXCL10, CC-chemokine ligand 3 (CCL3), and CCL4. Thus, the biology of pDCs 
is multifaceted (2, 3).

Plasmacytoid dendritic cells were originally derived from bone marrow hematopoietic stem cells 
(HSCs) (4). In the presence of Fms-like tyrosine kinase ligand (Flt3L) and Flt3L receptor signaling, 
HSCs could differentiate into pDCs and other DC subsets, such as conventional dendritic cells (5). 
In the presence of some special factors, such as IFN regulatory factor 8 (IRF8), E2-2, basic leucine 
zipper transcription factor ATF-like 3 (Batf3), and IFN-I, molecular signaling restricts the develop-
ment of common lymphoid progenitor and common myeloid progenitor (CMP) lineages into pDCs 
(2, 6, 7). Recently, Reis and Sousa’s group demonstrated that besides CMP, human pDCs could also 
arise from multipotent lymphoid progenitors (MLPs). Compared with CMPs, MLPs show better 
potential for pDC production (8). The biology of pDCs is multifaceted, and analysis of the different 
origins of pDCs may help to explain the biology of pDCs and their functional heterogeneity in health 
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TAble 1 | Changes in pDCs in different diseases.

Disease location Number Production of 
iFN-i

Upregulated 
molecules

Downregulated molecules Upregulated 
chemokines

Reference

Melanoma Tissue (LN/
melanoma)

Increased Decreased IL-6, IDO, OX40L, 
ICOSL

(27, 31–33)

Blood Decreased CD62L, CD86 CD80, CD83 CCR6, CXCR4, 
CXCR3, CCR7

(34)

Ovarian cancer Ovary Increased Decreased CD40, CD86 IFN-α, TNF-α, IL-6, MIP-1β, 
RANTES

CMKLR1, CXCR4 (35–37)

Ascites Increased ICOSL None None (37)
Blood Increased

SLE Skin Increased Increased CCR9, Chemerin (38)
Blood Decreased Increased IgE, CD123 HMGB1, CD80, CD86 (39–41)

Rheumatoid arthritis Blood Decreased Decreased IDO, IL-10 CD40, CD83, CD86, CD62L CXCR3, CXCR4 (42, 43)
Synovial fluids Increased Decreased CD40, CD83, CD86, CD62L CXCR3, CXCR4 (43)

Lung cancer Lung Increased CD33, IL-1α, PD-L1 CD80, CD83 None (44, 45)

Atherosclerosis Plaques Decreased Increased IDO, granzyme B MHC II None (46–49)
CD83

Blood Decreased (49)

SLE, systemic lupus erythematosus; IDO, indoleamine 2,3-dioxygenase; ICOSL, inducible costimulator ligand; TGF-β, transforming growth factor beta; LN, lymph node.
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and disease; however, further studies are needed to explore these 
aspects of pDC biology.

After leaving the bone marrow, blood pDCs directly migrate 
into primary lymphoid organs and reach T cell-rich areas of sec-
ondary lymphoid tissues via high endothelial venules (HEVs) in 
lymph nodes and mucosa-associated lymphoid tissues. Normally, 
pDCs are limited to primary and secondary lymphoid organs; 
however, under pathological conditions, functional chemotactic 
receptors expressed on circulating pDCs interact, and the cor-
responding ligands expressed by lymph nodes and non-lymphoid 
tissues facilitate pDCs trafficking to lymph nodes and diseased 
tissues through HEVs (9, 10).

pDCs iN TUMOR MiCROeNviRONMeNTS

Malignant cells strongly interact with their microenvironment 
and modulate the cells in this niche to promote tumor growth 
and metastasis. The circulating pDCs recruited into the tumor 
microenvironment are characterized by decreased expression 
of costimulatory molecules and a reduced ability to produce 
IFN-I. Similarly, pDCs frequently display an inhibitory pheno-
type and promote a tolerogenic microenvironment through the 
activation of regulatory T cells (Tregs) (11). Malignant-derived 
immunosuppressive factors facilitate the infiltration of pDCs into 
disease tissue and interact with components derived from pDCs 
to inhibit the immune response. Tumor-associated pDCs then 
respond to malignant-derived immunosuppressive factors dur-
ing the disease process through regulatory factors from TLR-7/9 
signaling pathways and components produced by pDCs. Thus, 
pDCs promote tumor progression and attenuate immune regres-
sion (12, 13).

There are several mechanisms mediating the pathogenicity of 
disease-associated pDCs in different tumors. One of these mecha-
nisms is inhibition of IFN-I, IL-6, tumor necrosis factor (TNF)-α, 

and IFN-inducible protein-10 (IP-10) release. Regulatory factors 
are expressed by pDCs via TLR-7/9 pathway, causing the signaling 
to proceed in the wrong direction and resulting in dysfunctional 
secretion of IFN-I e.g., IRF7 (14–16), indoleamine 2,3-dioxyge-
nase (IDO) (17, 18), and immunoglobulin-like transcript 7 (ILT7) 
(19). In comparison, IFN-I secretion is also strongly disrupted by 
factors present in the disease microenvironment derived from 
necrotic cells or other immune cells, such as prostaglandin E2 
(PGE2) (20), transforming growth factor beta (TGF-β) (21), 
IL-3 (22, 23), IL-10 (24), vasoactive intestinal peptide (VIP) 
(25), Wnt5a (26, 27), and high-mobility group box-1 protein 
(HMGB1) (28). In the second escape strategy, immunosuppres-
sion mediators decrease levels of costimulatory molecules and 
cause accelerated production of pDCs with immature character-
istics, as demonstrated by VIP, Wnt5a, TNF-α, and HMGB1 (11). 
A third mechanism is via interactions between pDCs and other 
immune cells or malignant cells, wherein pDCs inhibit CD4 and 
CD8 T-cell proliferation and induce the differentiation of IL-10-
producing T cells. Associated immaturity and coinhibitory mol-
ecules include IL-6, IL-8, CXCL12, HMGB1, IDO, ICOSL (29), 
granzyme B, OX40L, B-cell activating factor (BAFF), receptor 
activator of nuclear factor kappa B (RANK) (22), and granulocyte 
macrophage colony-stimulating factor (GM-CSF) (30).

In the following sections, we will discuss the functional sig-
nificance of pDCs in various tumors and their role in mediating 
immunosuppression in the tumor microenvironment (Table 1). 
Thus, understanding the regulation of these mechanisms may 
contribute to the development of strategies to overcome tolerance 
in the tumor microenvironment.

Melanoma
Plasmacytoid dendritic cells have been shown to accumulate 
in the sentinel and metastatic lymph nodes in melanoma (31). 
Circulating pDCs from patients with melanoma have been found 
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FigURe 1 | Dysregulation of plasmacytoid dendritic cells (pDCs) in melanoma. (A) Melanoma cells produce the immunosuppressive cytokines prostaglandin E2 
(PGE2), interleukin-10 (IL-10), and transforming growth factor beta (TGF-β), which directly suppress type I interferon (IFN-I) production by inhibiting toll-like receptor 
(TLR) expression on pDCs. Additionally, melanoma-associated pDCs express Wnt5a, which blocks the upregulation of the activation markers CD80 and CD86 on 
human pDCs and inhibits toll-like receptor (TLR)-mediated pDC activation and production. Wnt5a can also promote melanoma metastasis. This inhibits antitumor 
function depending on IFN-I. (b) IDO expression in pDCs promotes immune evasion by the tumor. (C) Resident pDCs trigger IL-5/IL-13-secreting Th2 cells and 
IL-10-secreting Tregs through OX40L/OX40 and ICOSL/ICOS interactions. These cytokines inhibit cytotoxic T cell function and directly favor melanoma growth.  
(D) LAG3+ pDCs produce IL-6 without inducing IFN-I. pDC-derived IL-6 induces the production of CCL2—a key chemokine in the recruitment of myeloid-derived 
suppressor cells (MDSCs)—at the tumor site. LAG3+ pDCs and migratory MDSCs induce Tregs directly. Thus, through this alternative activation, LAG3+ pDCs 
promote immunosuppression.
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to express higher amounts of CCR6 and CXCR4, while their 
corresponding ligands CCL20 and CXCL12 are expressed on 
melanoma cells, suggesting that the CCR6/CCL20 and CXCR4/
CXCL12 axes promote pDC migration from blood to melanoma 
foci (27, 34, 50, 51). Remarkably, CCL17, CCL22, and matrix 
metalloproteinase-2 found in the melanoma microenvironment 
have been shown to be associated with pDC accumulation (32). 
Some studies have also shown that pDCs migrating into the 
melanoma microenvironment are associated with early relapse 
and poor prognosis (26, 27, 30, 31).

Mediators of the tumor microenvironment act on tumor-
infiltrating pDCs directly to suppress the production of IFN-I 
and mediate immunosuppression. Melanoma cells produce the 
immunosuppressive cytokines PGE2, IL-10, and TGF-β, which 
directly suppress IFN-I production by inhibiting TLR-7/9 and 
IRF7 expression on pDCs. Moreover, melanoma cells express 
Wnt5a, which inhibits TLR-mediated pDC activation and IFN-I 
production. Wnt5a potentiates melanoma metastasis via induc-
tion of the epithelial-to-mesenchymal transition in a protein 
kinase C-dependent manner (26, 27) (Figure  1A). IFN-I pro-
duction may also be inhibited by ILT7, a ligand combined with 
BST2, which is expressed on melanoma cells. pDCs preferentially 
express ILT7, and the interaction between ILT7 and BST2 is 
involved in pDC and tumor crosstalk (52, 53).

Besides low IFN-α production, immunosuppressive mediators 
secreted by pDCs induce Tregs or suppress Th2 cell secretion to 
prevent an effective antitumoral response. pDCs in the tumor site 
express the immune-suppression molecules OX40L and ICOSL, 
which support melanoma progression (30). pDC infiltration 
is strongly associated with primary melanoma cell expression 
of activated signal transducer and activator of transcription 3, 
which is constitutively expressed in cancer and is thought to be 
a significant mediator of tumor-induced immunosuppression 
(31). Melanoma-associated pDCs have been shown to express 
high levels of IDO, suggesting that melanoma-derived signals 
may block pDC activation, thereby contributing to immune 
evasion (27, 31, 54, 55) (Figure  1B). Moreover, pDCs in the 
tumor microenvironment trigger IL-5/IL-13-secreting Th2 cells 
and IL-10-secreting Tregs through the expression of OX40L and 
ICOSL. These cytokines may inhibit cytotoxic T-cell functions 
and directly favor melanoma growth (32) (Figure 1C).

The interaction between tumor-infiltrating pDCs and other 
immune cells results in immunosuppression. MHC II molecules 
on melanoma cells bind to lymphocyte-activated gene 3 (LAG3) 
expressed on the surface of pDCs, resulting in their tolerogenic 
activation. Accordingly, LAG3+ pDCs display a slightly activated 
phenotype and produce IL-6 in vivo. IL-6 production by pDCs 
induces CCL2 production by monocytes. CCL2 is an essential 
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chemokine that functions during the recruitment of myeloid-
derived suppressor cells (MDSCs) to the tumor site. Hence, the 
recruitment of LAG3+ pDCs into the tumors and their activa-
tion in the absence of IFN-I production drive MDSC-mediated 
immune suppression (56, 57) (Figure 1D). As such, the counter-
regulatory immune mechanisms in melanoma exhibit extensive 
signaling crosstalk. IDO is expressed by pDCs, whereas MDSCs, 
programmed death ligand 1 (PD-L1)+ T cells, and CTLA-4+ Tregs 
are strongly interconnected and associated with advanced disease 
and negative outcome. Thus, combination treatments targeting 
these markers can lead to a synergistic response (55, 58).

Hematological Malignancies
Various types of leukemia, multiple myeloma (MM), and 
malignant lymphoma are collectively defined as hematological 
malignancies. Among these hematological malignancies, pDCs 
have been reported to be mostly associated with the pathophysi-
ology of MM, chronic lymphocytic leukemia (CLL), and chronic 
myelomonocytic leukemia.

Multiple Myeloma
Plasmacytoid dendritic cells from patients with MM exhibit 
increased numbers in the bone marrow compared with those in 
normal donors; moreover, pDCs are more frequently localized in 
MM bone marrow than in MM peripheral blood, representing a 
functional impairment (22, 59). The interaction between pDCs 
(BDCA2) and MM cells (CD138) increases the production of 
cytokines and chemokines, which can not only prolong the sur-
vival of pDCs but also confer growth, survival, and drug resistance 
in MM cells (59). Finally, pDC-MM cells surface receptor-ligand 
interactions (BAFF/APRIL and RANK/RANKL) trigger MM cell 
growth/survival through the nuclear factor (NF)-κB pathway. 
Thus, cytokines, chemokines, and direct contact between pDC 
and MM cells may play critical roles in mediating pDC survival 
and MM cell growth (22). Ray et al. further demonstrated that 
treatment with a TLR-9 agonist restored the ability of MM 
patient-pDCs to stimulate T-cell proliferation and enhance the 
cytotoxicity of bortezomib (60).

Multiple myeloma cells produce low levels of IL-3. However, 
when cocultured with pDCs, IL-3 secretion is increased. In vitro 
and in  vivo studies have revealed that IL-3 can prolong pDC 
survival (22). Ray et  al. recently demonstrated that SL-401, a 
novel anti-IL-3R antibody, blocks pDC-induced MM cell growth 
by targeting pDCs (59). These studies therefore validated the 
targeting of pDC-MM interactions as a therapeutic strategy to 
overcome drug resistance in MM.

Microenvironmental interactions between pDCs and other 
immune cells could lead to a poor prognosis in MM and pro-
mote tumor cell growth and survival indirectly. Additionally, the 
increased numbers of pDCs in the bone marrow of MM patients 
enhances Th22 cell polarization through TNF-α and IL-6 secre-
tion. Th22 cells contribute to the increased abundance of IL-22+/
IL-13+ T cells, thereby leading to poor prognosis in MM based on 
the effects of pDCs in the tumor microenvironment (61).

Chronic Lymphocytic Leukemia
Lower numbers of pDCs cells are found in the peripheral blood 
and bone marrow of patients with progressive CLL and functional 

impairments (62, 63). IFN-I production is attenuated owing to 
decreased TLR-9 expression by pDCs, resulting in dampened 
effector immune cell activity (63). In addition, factors derived 
from the tumor microenvironment facilitate the dysfunction of 
pDCs in CLL. Vascular endothelial growth factor (VEGF) receptor 
neuropilin-1 (NRP1) is a critical link between angiogenesis and 
immune tolerance. VEGF overexpression has been established 
in CLL and has been shown to stimulate higher NRP1 expres-
sion. Accordingly, the expression of NRP1 has been found to be 
considerably higher in pDCs from patients with CLL compared 
with those in healthy volunteers. This increased NRP1 expres-
sion mediates tumor escape from immune surveillance (64, 65). 
However, few studies have assessed the relationships among pDCs, 
tumor cells, and other immune cells in CLL, and more in-depth 
investigations are needed to explore these mechanisms further.

breast Cancer and Ovarian Cancer
Breast cancer and ovarian cancer frequently occur in women. 
Most patients present with metastases, leading to increased num-
bers of dysfunctional pDCs at both primary and metastatic sites, 
such as the bone or enterocyte (28). pDC infiltration in primary 
localized breast cancer is correlated with poor survival, suggest-
ing that these immune cells may contribute to tumor progression 
and tumor metastases (35, 66).

Breast Cancer
In breast cancer, pDCs exhibit a slightly activated phenotype and 
produce decreasing amounts of IFN-I after TLR activation in vitro 
compared with pDCs from healthy human peripheral blood. One 
study showed that the synergistic response of TGF-β and TNF-α 
is an important in vivo mechanism blocking IFN-I production by 
tumor-associated pDCs through the inhibition of IRF7 signal-
ing and nuclear translocation in gynecological malignancy. This 
finding indicated that targeting tumor-associated pDCs to restore 
their IFN-α production may be a promising strategy, achieved 
by combining TLR-7/9-based immunotherapy with TGF-β and 
TNF-α antagonists, in breast cancer (67). Interestingly, partial 
tumor-associated pDCs cause selective suppression of IFN-I 
production and possess the unique capacity to sustain the expan-
sion of FoxP3+ Treg cells, which may contribute to breast cancer 
progression (68).

Certain relevant mechanisms of pDCs not only depend on 
IFN-I but also function as immunosuppression mediators to 
induce tumor progression through the receptor/ligand axis. In 
breast carcinoma, tumor-associated pDC expression of ICOSL 
drives the expansion and suppressive function of ICOS+ Tregs, 
leading to preferential accumulation of this Treg subset in the 
close vicinity of pDCs in the tumor microenvironment and a 
secretion of the immunosuppressive mediator IL-10 by stimula-
tion with tumor-associated antigen (TAA). These results showed 
that the ICOS/ICOS-L interaction is a central event in immuno-
suppression of tumor-associated T cells. Thus, the infiltration of 
pDCs in neoplastic lesions favors the establishment of a tumor 
microenvironment by the activation and expansion of ICOS+ 
Tregs, accelerating disease progression (13, 69). Another crucial 
factor inducing tumor progression in breast cancer is GM-CSF, 
via the GM-CSF/pDC axis. GM-CSF produced by primary 
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breast tumor cells induces the activation of pDCs expressing the 
GM-CSF receptor. The GM-CSF/pDC axis is also significantly 
associated with more aggressive breast cancer subtypes (30).

Breast cancer differs from other malignancies in its specific 
dissemination pattern. In breast carcinoma, increasing infiltration 
of pDCs is related to high levels of IL-3, IL-6, IL-10, IL-15, IP-10, 
monocyte chemotactic protein-1, and RANTES (66, 70). Besides 
being immunosuppressive, these chemokines and cytokines are 
known to directly or indirectly induce tumor metastasis. These 
soluble factors induce the expression of RANKL, which is impor-
tant for osteoclast-mediated bone resorption, thereby helping 
metastatic cells to grow (66, 71). Upon breast cancer dissemina-
tion, there is a steady increase in pDCs numbers within the bone, 
resulting in a sustained Th2 response along with elevated levels of 
Tregs and MDSCs. Subsequently, pDCs and CD4+ T cells produce 
osteolytic cytokines and cause severe bone damage (66, 72, 73).

Ovarian Cancer
In ovarian cancer, pDCs were reported to be attracted to primary 
ovarian cancer and ascites through stromal-derived factor-1 
(SDF-1)/CXCL12 (36, 74, 75). In addition, SDF-1 attracts pDCs 
to the tumor environment, where they induced angiogenesis 
through production of TNF-α and IL-8 to promote ovarian tumor 
angiogenesis (74).

Gilliet et al. found that the numbers of Foxp3+ Tregs accumu-
lating in the tumor microenvironment of ovarian cancers could 
be attributed to the expression of ICOS on Tregs. Moreover, the 
expansion and suppressive functions of Tregs are strictly depend-
ent on ICOSL costimulation provided by tumor-associated pDCs. 
Accordingly, ICOS+ Tregs were found to localize near tumor 
pDCs, and the number of Tregs is directly correlated with the 
numbers of pDCs in the tumors. These findings suggest an impor-
tant role for the interaction between ICOSL+ pDCs and ICOS+ 
Foxp3+ Tregs, leading to tumor progression in ovarian cancer 
(35). Another Treg subset in ovarian cancers induced by pDCs is 
CD8+ Tregs. CD8+ Tregs significantly suppress myeloid dendritic 
cell-mediated TAA-specific T  cell effector functions through 
IL-10 (36). In general, breast cancer and ovarian cancer have 
similar mechanisms for both tumor promotion and metastases.

Interestingly, a clinical trial indicated that pDCs might have 
a subtle relationship with sex (76–79). The production of IFN-α 
in response to pDCs via TLR-7 activation is higher in the pres-
ence of estrogens, indicating that estrogens may be an attractive 
target for specific regulation of this pathway (80). A recent study 
suggested that estrogens regulate pDC IFN-I production through 
IRF5, which may act by enhancing IFN-α production in synergy 
with IRF7 (81). Besides the role of estrogens, X-linked genetic 
factors could also be involved in the sex-dependent differences 
in the TLR-7-mediated responses of pDCs. The TLR-7 gene is 
located on the X chromosome. While no sex-based biases have 
been observed linking pDCs with neoplastic disease, these cells 
are significantly associated with more aggressive gynecological 
carcinomas (30, 37).

Hepatocellular Carcinoma (HCC)
Hepatocellular carcinoma is the most common type of liver can-
cer; however, the role of pDCs in HCC is not clear. Recent studies 

have demonstrated that the numbers of pDCs are increased in 
tumor tissue and decreased in blood of patients with HCC (82, 
83), suggesting that peripheral pDCs migrate to liver lesions in 
patients with HCC. In addition, pDCs exposed to tumor-derived 
factors would enhance IL-10 production by CD4+ Tregs through 
upregulation of ICOSL (83). This can help tumor cells escape 
the immune system. In vitro, HSC-derived pDC-based vaccines 
are highly potent inducers of tumor-reactive T-cell and NK cell 
responses (84). These finding may provide insights into appropri-
ate immunotherapies for HCC using pDCs.

gastrointestinal Cancer (gC)
To date, few studies have explored the role of pDCs in GC. Yu et al. 
found a positive correlation between pDCs and ICOS+ Tregs in 
peripheral blood and peritumor tissue from patients with GC (12).  
Additionally, Yang et  al. demonstrated that CD123+ pDCs in 
tumor tissue and tumor draining lymph nodes may contribute 
to Treg development and promote tumor tolerance in the colo-
rectal cancer (CRC) tolerogenic milieu (85). Briefly, pDCs play 
a potential role in recruiting Tregs, and both participate in the 
immunosuppression microenvironment of GC and CRC.

lung Cancer
Studies of pDCs in lung cancer have mostly focused on non-
small cell lung carcinoma (NSCLC). The proportion of pDCs is 
significantly increased in the peripheral blood and tumor tissues 
of patients with NSCLC (44, 45).

In NSCLC, pDCs show immunosuppressive phenotypes, as 
determined by higher levels of CD33 and PD-L1. Based on the 
characteristics of lung tumor-associated pDCs, pDCs are able 
to produce high levels of IL-1α in an AIM2-dependent manner, 
facilitating tumor cell proliferation in the lung (45). Moreover, a 
study of pDCs in NSCLC patients with different clinical stages 
demonstrated that elevated pDC numbers were observed in 
cases with higher disease stages (III/IV) compared with those in 
cases with lower stages (I/II) (44), suggesting a close relationship 
between tumor-associated pDCs and tumor progression (86). 
Interestingly, patients with NSCLC who smoke exhibited elevated 
pDC numbers compared with those of nonsmokers (44). Exploring 
the role of pDCs in lung cancer may lead to the development of 
novel therapeutic strategies.

AUTOiMMUNe DiSeASe

Aberrant pDC function has been shown to be involved in psoria-
sis, systemic lupus erythematosus (SLE), and rheumatoid arthritis 
(RA). Autoimmune disease arises from an abnormal immune 
response of the body against certain substances and normal tis-
sues under physiological conditions. Notably, peripheral pDCs 
and conventional DCs are significantly reduced in patients with 
autoimmune diseases (87–91); however, an increased number of 
pDCs has been found in human tissue lesions (92, 93). These find-
ings could be attributed to the role of pDCs in inflamed tissue; 
in autoimmune disease, these cells are recruited from the blood 
(94). pDCs are normally absent from the skin. However, they 
accumulate in inflammatory dermatoses from peripheral blood, 
where they organize local immune responses (94–96).
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Several chemokines expressed on pDCs have been shown 
to participate in migration from the peripheral blood to tissue 
lesions. In psoriasis and SLE, chemerin is abundantly produced 
by HEVs in reactive lymph nodes, whereas skin-infiltrating 
pDCs strongly express ChemR23 in pathological conditions. 
pDCs may be recruited to disease foci through the chemerin/
ChemR23 axis (97–99). Moreover, in RA, CXCR3, CXCR4, and 
CCR7 are expressed on both blood-derived pDCs and synovial 
tissue-derived pDCs. Their corresponding ligands, CXCL-10, 
CXCL-11, and CXCL-12, are present in RA and multiple sclerosis 
and stimulate the chemotaxis of blood-derived pDCs (43, 100, 
101). Here, we discuss the roles of pDCs in SLE and other autoim-
mune diseases, include psoriasis, RA, and type I diabetes (T1Ds).

Systemic lupus erythematosus
In autoimmunity, pDCs may exhibit both immunogenic and 
tolerogenic functions according to the development of inflam-
matory autoimmune disorders (102). Accumulating evidence 
has suggested that pDCs can aggravate disease development in 
autoimmune disease, and this immunogenic function appears to 
be mediated partly by the overproduction of the inflammation-
specific cytokine IFN-I (39, 103). IFN-I hyperproduction by 
pDCs is involved in the pathogenesis of SLE (104) (Figure 2A). 
Accordingly, the production of IFN-I depends on changes in 
the functions of mediators derived from autologous pDCs and 
lesion cells. For example, activation of IFN-I occurs via HMGB1 
secreted by necrotic cells and inflammatory cells. HMGB1 then 
interacts with the receptor for generation of advanced glycation 
end products, which induces the activation of pDCs via the TLR-
9-MyD88 pathway (105).

In addition, IFN-I overproduction may induce feedback 
regulation to target pDCs or other immune cells. In healthy 
individuals, pDCs promote the differentiation of immature 
B  cells into IL-10-producing Bregs with stimulation by high 
concentrations of IFN-α, which subsequently suppresses IFN-α 
production by pDCs via IL-10 release. In SLE, despite aberrant 
Breg function, IFN-α overexpression may still result in regula-
tory feedback between pDCs and Bregs. Thus, altered pDC-Breg 
interactions contribute to the pathogenesis of SLE (106). IFN-I 
can also upregulate serum lupus autoantigens, such as Ro52 and 
laminin-1b, which could influence SLE progression (107, 108). 
Therefore, analysis of the functions of pDCs in SLE can help to 
develop new therapeutic strategies.

Other Autoimmune Diseases
Interferon I production by pDCs also plays an immunogenic role 
in other autoimmune diseases. LL37, an antimicrobial peptide 
that is highly expressed in psoriatic lesions, binds self-DNA to 
form aggregated and condensed structures that are potent activa-
tors of pDCs in vitro. These complexes are delivered to pDCs to 
trigger TLR-9 expression and local IFN-I production (109). As 
a result, IFN-I released from pDCs in tissue lesions initiates the 
autoimmune T-cell cascade, facilitating autoimmunity (110).

In contrast to the immunogenic function of pDCs, increas-
ing evidence has supported that unstimulated or alternatively 
stimulated pDCs can act as tolerogenic cells in autoimmune 
disease. Siglec-H is a surface molecule specifically expressed on 

mouse pDCs. Siglec-H-mediated antigen delivery was found to 
induce a hyporesponsive state in CD4+ T cells, leading to reduced 
expansion and inhibition of Th cell-dependent immunity (111). 
In addition, in the disease microenvironment, IL-3 and CD40L 
can activate pDC precursors, which are able to induce the 
differentiation of IL-10-producing CD8+ Tregs (112–114). In 
patients with juvenile idiopathic arthritis and cutaneous lupus 
erythematosus, pDCs can secrete large amounts of granzyme B 
in response to immunomodulatory cytokines, such as IL-3, IL-10, 
and IL-21. Moreover, pDC-derived granzyme B suppresses T-cell 
proliferation in a cell contact-dependent manner, similar to Tregs 
(115, 116) (Figure 2C). IDO can suppress the antigen-presenting 
ability of pDCs (117). In addition, studies have demonstrated that 
IDO can induce tolerogenic pDC function, although the underly-
ing mechanism needs to be evaluated in animal models (42, 118) 
(Figure 2B).

Plasmacytoid dendritic cell function is tightly regulated 
in immune disorders by iNKT  cells. pDCs are an essential 
partner of iNKT cells in T1D. Upon viral infection, iNKT cells 
induce TGF-β-producing pDCs in the pancreatic lymph 
nodes. These tolerogenic pDCs convert naive anti-islet T cells 
into Foxp3+CD4+ Tregs in pancreatic lymph nodes. Tregs are 
then recruited to pancreatic islets, where they produce TGF-β, 
which dampens the activity of viral- and islet-specific CD8+ 
T cells, thereby preventing T1D development in animal models 
(119–121) (Figure 2D).

Plasmacytoid dendritic cells exhibit different functional 
mechanisms during the development of inflammatory autoim-
mune disorders. Immunogenic pDC functions contribute to dis-
ease pathogenesis, e.g., SLE, through IFN-I production; however, 
tolerogenic pDCs may promote self-antigen-specific CD4+ T-cell 
tolerance and induce Treg differentiation, as observed in RA and 
T1D. Further studies of pDCs functional mechanisms in different 
diseases may facilitate the development of novel therapies.

THeRAPeUTiC PROSPeCTS

Plasmacytoid dendritic cells induce immunosuppression and 
immune tolerance, thereby promoting disease progression. 
Potential solutions for disruption of tolerance include con-
trolling IFN-I production by blocking IDO or TLR pathway 
activation or suppression of other inhibition molecules. IDO is 
highly expressed on pDCs when stimulated with IFN-I and TLR 
agonists in leukemia. Yamahira et al. investigated the effects of 
a novel IDO inhibitor, Toho-1, and found that it is efficient for 
potentiating antigen presentation of pDCs and may be applicable 
for pDC-based immunotherapy in tumors and severe viral infec-
tions (122).

Plasmacytoid dendritic cells are also thought to be involved 
in the pathogenesis of tumor and autoimmunity characterized 
by IFN-I via TLR-7/9 ligands in breast cancer and melanoma  
(123, 124). In melanoma treatment using the TLR-7 agonist 
imiquimod, infiltrating pDCs are capable of producing IFN-α 
and inducing complete regression or significant reduction of 
melanomas (11, 123, 125–127). Moreover, the TLR-9 agonist CpG 
activates the TLR signaling pathway and inhibits tumor growth in 
both breast cancer and melanoma mouse models (76, 124, 128).  
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FigURe 2 | Dysregulation of plasmacytoid dendritic cells (pDCs) in autoimmune disease. (A) Hyperproduction of type 1 interferon (IFN-I) by pDCs. In psoriasis, 
systemic lupus erythematosus (SLE), and most autoimmune inflammations, constitutive expression of toll-like receptor (TLR)-7/9 leads to excessive activation of 
pDCs in the skin of patients by molecules from lesion cells or autologous pDCs. IFN-I produced by pDCs initiates abnormal production of T cells.  
(b) Immunosuppressive role of IDO. The inhibitory molecule IDO acts as a signaling protein in response to TGF-β, inducing the conversion of naive CD4+  
and CD8+ T cells into Tregs. IDO can also dampen the antigen-presenting ability of pDCs. (C) In JIA, Tregs secrete low levels of IL-3 and IL-10. In response to  
these regulatory molecules, pDCs produce granzyme B to suppress the proliferation of effector T cells. (D) In type I diabetes (T1D), the interactions between pDCs 
and iNKT cells induce the T cells to differentiate into Foxp3+CD4+ Tregs.

TAble 2 | Clinical trials of pDCs in various diseases.

Target Disease Progress Phase Clinical trial no. Combination

pDC vaccination Prostatic neoplasms Recruiting II NCT02692976 mDCs
Melanoma Recruiting II NCT02574377 mDCs
Melanoma Completed I NCT01690377 mDCs

TLR-7 agonist Cancer, melanoma Ongoing II NCT00960752
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After activation of the TLR-7/9 pathway, pDCs promote the 
secretion of cytokines and initiate the activation of NK cells and 
CD8+ T cells. Synthetic TLR-7/9 agonists as adjuvants to cancer 
vaccines are currently being tested in human clinical trials and 
in combination with conventional chemotherapy and other 
protocols (Table 2).

A previous report demonstrated that targeting pDCs with 
nanoparticles via the C-type lectin DEC-205, DC immu-
noreceptor, blood DC Ag-2, or the FcR CD32 led to uptake, 
processing, and (cross-)presentation of encapsulated Ag to both 
CD4+ and CD8+ T  cells. Thus, these receptors may be viable 
candidates to target pDCs with nanocarriers. pDCs induce 
potent antitumor responses because of their crosspresentation 
capacity (129, 130).

Plasmacytoid dendritic cells produce a systemic type I IFN 
response, which is critical to NK activation and subsequent inhi-
bition of tumor metastasis. When compared with pDCs isolated 

from peripheral blood, in  vitro differentiated pDCs exhibit an 
increased capacity to induce NK  cell-mediated killing in acute 
lymphoblastic leukemia (131). Moreover, mDCs and pDCs have 
also been successfully utilized in combination in clinical vaccina-
tion trials against melanoma, wherein both mDCs and pDCs 
were found to enhance NK  cell cytotoxicity to reach optimal 
activity (132, 133). Combination vaccination with distinct DC 
subsets may be required to simultaneously promote CD4+, CD8+ 
T-cell, and NK-cell responses (134).

Clinical
Dendritic cell-based vaccines against cancer have also been 
developed during the past two decades. Clinical evidence showed 
that TAA-derived peptides loaded onto pDCs or CD1c+ DCs 
achieve promising efficacy in patients with melanoma (135, 136). 
Confronting immune checkpoint inhibitors targeting CTLA4, 
PD1, and PD-L1 may lead to clinical benefits in patients with 
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various types of cancers, and next-generation DC vaccines are 
expected be developed by integration of DC-based vaccines with 
combinatorial immunotherapy regimens (137).

Besides potential therapeutic applications in cancer, 
pDCs have also been shown to have important properties in 
autoimmune diseases. For example, pDCs are major immune 
contributors in lupus via IFN-I overexpression. Early studies 
have shown that congenic lupus-predisposed mice lack pDCs 
because of IRF8 deficiency or SLC15A4 mutation. Moreover, 
the results indicated absence of autoantibodies, reduced 
lymphadenopathy and splenomegaly, and extended survival. 
IRF8 and SLC15A4 may therefore be important targets for 
therapeutic intervention in lupus (40). Notably, both IRF8 and 
SLC15A4 are upstream molecules of the TLR pathway and are 
important for IFN secretion. As abnormal pDC activation and 
deregulated IFN-I production appear to be contributing fac-
tors in autoimmune disease pathogenesis, future studies should 
be performed to determine whether IFN-I blockade or pDC 
depletion would be an effective method for the treatment of 
autoimmune diseases (138).

Recent findings of DCs could make us redefine our percep-
tion of DC populations. For example, See’s group defined a 
population of CD123+CD303+CX3CR1+CD33+ cells as DC 
precursors (pre-DCs), which share surface markers with clas-
sically defined pDCs and exhibit distinct functional properties. 
After removal of pre-DCs from the classically defined “pDC” 
population, the induction of T-cell proliferation and produc-
tion of T-cell stimulatory ligands by pDCs is decreased (139). 
Additionally, Villani et al. demonstrated six DC and four mono-
cyte cell clusters using single-cell RNA-sequencing. The authors 
validated the presence of Axl+Siglec6+ DCs (AS DCs), which 
share transcriptional modules with classically defined “pDCs,” 
but do not secrete IFNα and have stronger capacity to activate 
T cells (140). To date, pre-DCs and AS DCs have been shown 
to have similar functions; therefore, further studies are needed 
to verify their identities. The discovery of these two subtypes 
improves our understanding of classically defined pDCs, which 

should be reconsidered based on the antigen presenting and 
cytokine-secretion functions of pDCs; the taxonomy may also 
need to be revised accordingly. These concepts are expected to 
facilitate more precise analyses of DC subset-specific targeting 
in health and disease.

Plasmacytoid dendritic cells are thought to be involved in the 
pathogenesis of a variety of diseases. Given the capacity of pDCs 
to easily switch phenotypes and functions according to disease 
microenvironmental signals, this plasticity may be harmful when 
disorders occur in individuals. In this review, we summarized the 
possible mechanisms of deterioration induced by pDCs. Different 
immunotherapeutic approaches, as well as combinations with 
other local or systemic disease therapies, may be required to real-
ize synergistic benefits. Immunotherapy induced by pDCs will 
cover many nonclassic diseases. However, further clinical trials 
are necessary to identify the effective dose and criteria for suitable 
patients.
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