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Invariant natural killer T (iNKT) cells are a unique innate T  lymphocyte population that 
possess cytolytic properties and profound immunoregulatory activities. iNKT cells play 
an important role in the immune surveillance of blood cancers. They predominantly 
recognize glycolipid antigens presented on CD1d, but their activation and cytolytic activ-
ities are not confined to CD1d expressing cells. iNKT cell stimulation and subsequent 
production of immunomodulatory cytokines serve to enhance the overall antitumor 
immune response. Crucially, the activation of iNKT cells in cancer often precedes the 
activation and priming of other immune effector cells, such as NK  cells and T  cells, 
thereby influencing the generation and outcome of the antitumor immune response. 
Blood cancers can evade or dampen iNKT cell responses by downregulating expression 
of recognition receptors or by actively suppressing or diverting iNKT cell functions. This 
review will discuss literature on iNKT cell activity and associated dysregulation in blood 
cancers as well as highlight some of the strategies designed to harness and enhance 
iNKT cell functions against blood cancers.

Keywords: invariant natural killer T, natural killer T  cells, blood cancer, immunosurveillance, immunotherapy, 
tumor immune evasion

inTRODUCTiOn

Blood cancers are a heterogeneous group of malignancies broadly encompassing leukemia, 
myeloma, and lymphoma. As these cancers develop largely in lymphoid tissues, immune surveil-
lance mechanisms are engaged, but inevitably fail due to changes in the microenvironment which 
are permissive to tumor growth but impede the development of antitumor immunity. Invariant 
natural killer T (iNKT) cells, an innate-like lymphocyte population defined by their semi-invariant 
T  cell receptor (TCR)—Vα14Jα18 in mice and Vα24Jα18 in humans, have important roles in 
helping to regulate antitumor responses to cancer (1). These cells share similar properties to that 
of NK and T cells. The discovery of a potent prototypical NKT cell-activating glycolipid ligand 
known as α-galactosylceremide (αGalCer) (2, 3) prompted extensive attempts to manipulate this 
population to enhance antitumor immunity, both in solid and blood cancers. This review focuses 
on the activities of iNKT  cells in blood malignancies and discusses the potential avenues for 
therapeutic targeting of iNKT cells in humans based on preclinical evidence (Table 1).
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TaBle 1 | Evidence for the involvement and effective targeting of iNKT cells for blood cancer control in mice and humans.

Blood cancer type Mouse Human

Lymphoma •	 CD1d+ tumors can be recognized by NKT cells in vitro (4)
•	 Altered glycosphingolipids secreted by T lymphoma cell line 

shield iNKT cell recognition (5)
•	 αGalCer-pulsed tumor cells ± checkpoint agonist provide 

protection (6, 7)
•	 Pulsing of DCs with αGalCer and tumor antigen provides 

protection (ATOO) (8)
•	 Adoptive transfer of ex vivo activated iNKT cells provides 

protection (ALC) (9)
•	 NKT cells transduced with CD62L CAR persist in vivo and 

prevents tumor growth (10)
•	 DC-targeted nanoparticle provides prophylactic and  

therapeutic protection (11)

•	 Frequency of iNKT cells varies between loci of disease,  
disease stage, and subtypes (12, 13)

•	 CIK cells activated and expanded ex vivo show partial clinical 
efficacy against advanced lymphoma [reviewed (14, 15)]

Acute/chronic myeloid 
leukemia

•	 αGalCer-pulsed tumor cells provide protection (7) •	 Low expression of CD1d correlate with poorer prognosis (16)
•	 Functional defects in NKT cells and CD1d downregulation  

induced by oncogene expression (17, 18)
•	 Tyrosine kinase inhibitor can restore iNKT cell functions (17)
•	 Activated iNKT cells is cytotoxic against CD1d+ tumor cells  

in vitro (19, 20)

Acute lymphocytic 
leukemia

•	 αGalCer-pulsed tumor cells provide  
protection prophylactically. Therapeutic vaccine combined  
with chemotherapy is protective (C1498) (21)

•	 NKT-like cells transduced with CD19-directed CAR is  
protective and promotes long term survival (22)

•	 Low expression of CD1d may contribute to progression (16),  
yet CD1d+ leukemia can also associate with poor prognosis (23)

•	 CIK cells transduced with CD19-directed CAR kill tumor cells 
in vitro (22)

Chronic lymphocytic 
leukemia

•	 CD1d-deficiency shortens survival (TCL1) (24)
•	 NKT cells delay disease onset but become functionally  

impaired

•	 Reduced frequency, function and expression of CD1d on  
tumors is associated with progression of disease (13, 24–28)

•	 Higher CD1d expression can also be associated with poor 
prognosis (27, 29)

•	 Higher presentation of tumor-associated lipids on CD1d can lead  
to impairment of CD3ζ signaling and poorer prognosis (29)

•	 Cultured iNKT-like/CIK cells are cytotoxic against tumor  
in vitro (30–33)

Multiple myeloma •	 αGalCer-pulsed DCs improves survival outcome of mice 
(5T33MM) (34)

•	 αGalCer-pulsed tumor cells provides protection (Vk*myc, 
MOPC315.BM) (7, 35)

•	 Reduced frequency and function of iNKT cells correlates  
with disease progression (36)

•	 Inflammation associated lipids skew Th2 responses in  
iNKT cells (36, 37)

•	 Cultured expanded NKT cells are cytotoxic against CD1d+  
myeloma cells in vitro (20, 36)

•	 αGalCer-pulsed DCs ± lenalidomide induce NKT cell expansion 
(38, 39)
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iMMUnOReGUlaTORY anD DiReCT 
CYTOTOXiC aCTiviTieS OF inKT CellS 
in BlOOD CanCeRS

Invariant natural killer T  cells recognize glycolipid antigens 
presented on the MHC Class I-like molecule CD1d, which are 
expressed on many cell types, but most highly expressed on 
antigen-presenting cells (APCs) (40, 41). Both human and murine 
iNKT cells were found to recognize glycolipid antigens derived 
from components of bacteria (42, 43), as well as the syn thetic 
molecule, αGalCer (44). However, iNKT  cells have also been  
shown to recognize and respond to a variety of endogenous lipids 
including lysosomal glycosphingolipids such as isoglobotrihexo-
sylceramide (iGb3) (45–48). iNKT cells were shown to directly 
recognize and kill various human tumor cell lines in vitro and 
murine tumors in  vitro and in  vivo through the recognition of 
endogenous lipids expressed on CD1d (36, 49, 50). The identities 

of these tumor-associated lipid antigens are mostly unknown. 
However, the tumor-associated ganglioside GD3 can be presented 
on CD1d for the activation of iNKT cells in vivo (45).

Early preclinical studies demonstrated that engagement of lipid 
antigen-CD1d complexes via the iNKT TCR results in the pro-
duction of a diverse range of Th1/Th2 cytokines and chemokines 
(51–53), which can subsequently modulate both innate and 
adaptive immune cells. Notably, activation of iNKT  cells leads 
to the downstream activation of NK  cells and enhanced IFNγ 
production (54, 55), dendritic cell (DC) maturation and IL-12 
production, and the induction of CD4 and CD8 T cell responses 
(56–59). Consequently, this cascade of events constitutes the 
indirect antitumor immunity imparted by activated iNKT cells 
(transactivation). Indeed, mice lacking iNKT cells (CD1d−/− and 
Jα18−/− mice) are more susceptible to tumor development in sev-
eral spontaneous, oncogenic and carcinogenic models (60–63). 
In recent years, several studies have established the direct and 
spontaneous role of iNKT cells in the initiation of innate immune 
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FiGURe 1 | Invariant natural killer T (iNKT) cell-mediated immune surveillance of blood cancer and counteractive evasion strategies utilized by blood cancer cells. 
(Left) iNKT cells recognize glycolipid antigens presented on CD1d, commonly expressed by blood tumor cells. Recognition of glycolipid:CD1d complex via the 
invariant T cell receptor (TcR) leads to a cascade of events: the production of immunomodulatory cytokines such as interleukin-2 (IL-2), interferon-γ (IFNγ), tumor 
necrosis factor-α (TNFα), and granulocyte-macrophage colony-stimulating factor (GM-CSF), release of cytolytic mediators such as perforin/granzyme, activation of 
antigen-presenting cells (APCs) such as dendritic cells (DCs) and IL-12 production, as well as the rapid transactivation of NK cells and T cells. iNKT cells can also 
recognize tumor and degranulate in a CD1d-independent manner via Natural Killer Group 2D (NKG2D) receptors. (Right) In turn, tumor cells can evade recognition 
and killing by downregulating CD1d, NKG2D-L, TNF-related apoptosis-inducing ligand (TRAIL-L) and FAS/CD95. In addition, certain blood tumors can disrupt death 
signaling pathways to avoid killing. Some blood tumors express aberrant levels of glycolipids or shed soluble glycolipids and NKG2D-L which in turn dysregulate 
normal signaling pathway in iNKT cells. Blood tumors cells can also skew the production of Th2 cytokines (IL-4 and IL-13) in iNKT cells. IL-4 is associated with the 
activation of regulatory T cells (Treg) which are involved in dampening of antitumor responses. Dysfunction of iNKT cells have also been associated with tumor-
associated macrophages (TAMs) and their ability to induce hypoxia in the tumor microenvironment.
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responses against blood cancers such as B/T  cell lymphomas, 
chronic lymphocytic leukemia (CLL) and multiple myeloma 
(MM) (25, 36, 64–66). These studies show that iNKT cells have 
the potential to control or delay the progression of premalignant 
or early stage disease in a CD1d-dependent manner, as seen using 
murine models and iNKT cells derived from patients (4, 19, 49, 
67–69). In addition, innate immune control of blood cancers was 
found to correlate to the functional ability of iNKT cells to pro-
duce inflammatory cytokines IFNγ, and TNFα and as well as the 
induction of IL-12 production in APCs (64, 70, 71) (Figure 1).

In addition to their immunostimulatory effects, activated 
iNKT  cells possess direct cytotoxic activity against blood 
cancers through the production of cytolytic molecules such as 
granzyme B and perforin, and through the interaction of death-
inducing receptors such as Fas and TRAIL (19, 49, 72–75). More 
than half of all iNKT cells also express the NKG2D activating 
receptor enabling direct cytotoxicity against tumors expressing 
NKG2D ligands (76, 77). More broadly, NKG2D expression 
on immune effector cells is important for protection against 

hematological malignancy (78) (Figure 1). This was supported 
by two recent studies performed in NKG2D-deficient mice, 
which developed spontaneous lymphomas significantly faster 
than NKG2D-competent mice (79, 80). Similarly, the success 
of various inhibitors administered in mice that prevent the 
shedding of NKG2D ligands (NKG2D-L) or induce NKG2D-L 
expression on leukemic cells, and thereby enhancing cytotoxic 
killing, further demonstrates the significant role of NKG2D 
expression in immune surveillance of blood cancers (81, 82). In 
contrast, the functional role of NKG2D on human iNKT cells 
against tumors is less well defined. It has, however been dem-
onstrated that human CD3+CD56+ NKT-like cells derived from 
the blood of healthy individuals are sensitive towards NKG2D-
L-expressing cell lines including monocytic lymphoma (U937) 
and Burkitt’s lymphoma cell lines (Raji) (77, 83). More studies 
are required to understand the extent to which NKG2D expres-
sion on human iNKT cells is effective against blood cancers.

Invariant natural killer T  cells have also been identified 
in the control of host response against allogenic donor cell 
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rejection in leukemic patients receiving allogeneic HSCT. 
The suppression of graft-versus-host-disease (GvHD), while 
maintaining graft-versus-tumor effect has been shown to be 
highly dependent on the engraftment of donor iNKT cells, as 
failure to reconstitute iNKT cells after transplantation strongly 
correlated with disease relapse (84–87). Studies into the mecha-
nisms of GvHD suppression show that iNKT cells modulate the 
overall immune response through production of Th2 cytokines 
such as IL-4, which in turn dampen inflammatory donor 
T cells, and promote Treg proliferation against both acute and 
chronic GvHD (88–91). These studies therefore highlight an 
importance function of the Th2 arm of activated iNKT cells in 
the facilitation of engraftment of allogenic donor cells against 
recurrence of leukemia.

inKT Cell DYSFUnCTiOn anD evaSiOn 
OF inKT Cell ReCOGniTiOn in BlOOD 
CanCeRS

Tumor Cell evasion of inKT Cell 
Recognition and Killing
Blood tumor cells possess intricate methods of evading detection 
and elimination by the immune system (92–94). The downregula-
tion of CD1d on malignant cells is one of the major contribut-
ing factors to the evasion of iNKT  cell immunosurveillance in 
blood cancers (34, 95). In fact, lower expression levels of CD1d 
on a variety of blood cancers is associated with progressive and 
advanced stages of disease in both murine models and in humans 
(16, 25, 26, 64, 96). Various mechanisms have been associated 
with downregulation of CD1d expression in blood cancers. 
For example, surface CD1d downregulation in Epstein–Barr 
virus-transformed B cells is thought to be attributed to posttran-
scriptional mechanisms commonly employed by herpes viruses 
(97, 98). Downregulation of CD1d expression on CLL B cells is 
believed to be associated with the elevated levels of a transcrip-
tional protein called lymphoid enhancer-binding factor-1 (26).

Aside from regulation of CD1d expression, blood cancers 
may also be able to evade recognition by NKG2D on iNKT cells. 
This assumption is derived from previous observations in solid 
tumors. In one particular study, serum samples taken from 
patients with ovarian and prostate cancer had elevated levels 
of tumor-derived soluble NKG2D ligands, namely MHC class 
I chain-related (MIC) proteins. When cocultured with freshly 
isolated iNKT-like CD3+CD56+ cells in  vitro, the cytotoxic 
activity of these cells was compromised and NKG2D expres-
sion was downregulated (83). In a more recent study, Lu et al. 
(99) demonstrated that antibody blockade of soluble MIC in a 
model of adenocarcinoma could potentiate IFNγ production 
upon stimulation (100) As elevated levels of soluble NKG2D 
ligands in the plasma of patients with MM, acute lymphoblastic 
leukemia (ALL), chronic myeloid leukemia (CML), Hodgkin’s 
lymphoma (HL), and non-HL have been observed (101–105), 
it is predicted that NKG2D-expressing iNKT cells will be dys-
regulated in these tumor microenvironments. With evidence 
showing the capacity for iNKT  cells to utilize TRAIL to kill 
leukemic cells in vitro (19), it is anticipated that blood tumors 

would be able to evade recognition by iNKT cells by altering 
TRAIL receptor expression. Indeed, myeloma and B cell lym-
phomas have been reported to resist TRAIL-induced killing 
(106), by downregulating TRAIL receptors—death receptor 4  
(DR4) and DR5 (107, 108), or by dysregulating receptor 
signaling to evade killing (109, 110). Likewise, AML tumors 
have been observed to utilize decoy TRAIL receptors to resist 
apoptosis (111, 112).

immunosuppressive effects of Tumors  
on inKT Cells
Blood cancer disease progression in humans is associated with 
a profound decrease in the frequency and function of circulat-
ing iNKT  cells (12, 113–119). Although iNKT  cell numbers 
have been shown to vary between subtypes and grade of B cell 
neoplasms in humans (13), this parameter has been used as an 
independent factor for predicting disease stage and progression 
in blood cancer patients (25, 36, 118). It is currently unclear how 
disease progression causes these defects in iNKT cells. Several 
studies have suggested that iNKT  cell dysfunction caused by 
tumors are indirect, as iNKT cell function and expansion can be 
rescued upon administration of αGalCer-based treatments (36, 
67, 120, 121), or lenalidomide treatment (122, 123). In stud-
ies in CML patients, aberrant tyrosine kinase expression and 
dysfunctional Rho-associated protein kinase (ROCK) expres-
sion have been suggested to exert suppressive effects on iNKT 
cells by regulating the transcription factor PLZF, expression of 
CD95L and perforin (17) as well as altering CD1d expression 
on myeloid DCs (mDCs) (18). Indeed, in CML patients who 
had undergone treatment using a tyrosine kinase inhibitor, 
iNKT cell functions could be restored (17). Likewise, in vitro 
treatment of CML mDCs with ROCK inhibitors was found to 
partially restore CD1d expression (18). iNKT cell dysfunction 
has also been associated with tumor-associated lipid antigen 
production, such as altered glycosphingolipids secreted by a 
murine T cell lymphoma cell line. The shedding of these lipid 
antigens were suggested to shield from iNKT cell recognition, 
as inhibition of the release of these lipid antigens could rescue 
iNKT cell functions (5). Interestingly, in certain patients with 
leukemia, higher CD1d levels have been detected on malignant 
cells that correlated with poorer prognosis and lower iNKT cell 
numbers (23, 27, 29). In this instance, higher presentation of 
tumor-associated lipids on CD1d by leukemic cells was sug-
gested to cause iNKT cell hyporesponsiveness attributed to an 
impairment of CD3ζ signaling (29). In MM patients, inflamma-
tion-associated lysophospholipids and other glycolipids found 
to be elevated in the plasma were shown to induce iNKT cells to 
produce the Th2 cytokine IL-13 (36, 37), an anti-inflammatory 
cytokine associated with downregulation of tumor immuno-
surveillance (124). iNKT cell dysfunction has also been linked 
to hypoxia and tumor-associated macrophages (125), as well 
as interruptions in metabolic signaling caused by acidity of the 
tumor microenvironment (126) (Figure  1). These conditions 
have been implied to promote lymphoma tumor progression 
(127, 128). Better understanding of these immunosuppressive 
strategies of blood cancers will help with designing strategies 
that better harness the antitumor effects of iNKT cells.
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STRaTeGieS TO MODUlaTe inKT Cell 
aCTiviTY in BlOOD CanCeRS

early Use of inKT Cell adjuvants
Over the past couple of decades, strategies to exploit iNKT cells 
have been explored to treat various types of cancer, including 
blood cancers. Early studies in preclinical models showed that 
direct injection of αGalCer or its derivatives could induce 
potent iNKT  cell activation and subsequent innate and adap-
tive immune suppression of tumors, but was also associated 
with significant liver toxicity (63, 71, 129, 130). Unfortunately 
however, this antitumor effect was not recapitulated when tested 
against human cancers. A phase I clinical trial using αGalCer 
instead found limited value as a direct immunotherapeutic agent 
against advanced solid cancers, despite a relatively safe toxicity 
profile tested in dose-escalating studies (131, 132). Patients with 
a higher frequency of circulating iNKTs did however respond 
better to treatment and produce enhanced immunological 
responses (133). Yet, the induction of immunological activ-
ity in these patients did not result in any partial or complete 
responses, and only disease stabilization in some patients could 
be achieved (131, 132).

DC vaccines
Subsequently, it was revealed that free-form αGalCer causes 
profound and enduring hyporesponsiveness in iNKT  cells 
(134, 135). To overcome this treatment-induced anergy, vari-
ous other delivery strategies have been designed, including the  
ex vivo stimulation and loading of autologous DCs with αGalCer. 
Initial studies in solid tumor preclinical models showed that 
administration of αGalCer-pulsed DCs could enhance the 
frequency of iNKT cells and circulating IFNγ-producing cells, 
as well as Th1 antitumor responses when compared to free-form 
αGalCer (38, 136, 137). In addition, αGalCer-pulsed DCs can 
also efficiently promote the infiltration of lymphocytes includ-
ing iNKT cells into tumors, enhance circulating levels of IFNγ  
(138, 139), and promote iNKT  cell-induced immune memory 
upon secondary administration (140). These properties are 
believed to contribute in part to the long-term survival of tumor-
bearing mice receiving DC therapy. For example, αGalCer-
pulsed DCs has been shown to improve overall survival of mice 
with MM (5T33MM model) (34). When tested in patients with 
advanced MM, administration of αGalCer-pulsed DCs was 
found to sufficiently induce iNKT cell expansion and persistence 
in the blood (38). However, this study did not observe any over-
all clinical improvement in these patients. In a Phase I/II study 
in six patients with asymptomatic myeloma, the combination 
therapy of αGalCer-pulsed monocyte-derived DCs with low-
dose lenalidomide, resulted in improved modulation of both 
iNKT and NK  cell responses, including the increased surface 
expression of NKG2D on NK cells. The addition of lenalidomide 
was intended to augment the effects of DC vaccination (39), as 
lenalidomide have been previously suggested to skew iNKT cell 
and cytokine induced killer (CIK) cell responses toward a 
protective Th1 profile in MM patients (123, 141, 142). Similarly, 
coloading of DCs with αGalCer and irradiated tumor cells has 

also been shown to be highly protective against B cell lymphoma 
in mice (4TOO model) (8). In this instance, the pulsing of  
DCs with tumor cells served to provide a source of undefined 
tumor antigens to initiate tumor-specific immune responses 
enhanced by the adjuvanting effects of αGalCer.

Tumor Cell-Based vaccines
We and others have previously attempted to use autologous 
tumor cells as vaccine vehicles for αGalCer delivery in mice. 
Single administration of an αGalCer-loaded tumor cell vac-
cine could induce potent antitumor immunity and prolong 
overall survival in mice with various blood cancers, including  
B lymphoma (Eμ-myc), acute myeloid leukemia (AML-ETO9a), 
and myeloma (Vk*myc) (6, 7, 130, 143, 144). In addition, 
therapeutic effect of this vaccine approach was significantly 
enhanced when used in combination with immune checkpoint 
agonists, such as anti-4-1BB mAb (6). In other studies, the use 
of αGalCer-loaded tumor vaccines was also demonstrated to 
induce potent therapeutic responses against a murine model of 
MM (MOPC315.BM model) and found to generate long-term 
protection against tumor rechallenge (35). Interestingly, in a 
murine model of acute leukemia (C1498), the administration of 
αGalCer-loaded leukemic cells alone was found to be effective 
as a prophylactic vaccine but ineffective against established 
leukemia. The study found that while iNKT  cells could be 
effectively activated, the downstream leukemia-specific T cell 
responses were suppressed. Instead, the benefit of vaccination 
became apparent following chemotherapy treatment, to prevent 
relapse of leukemia, and protect against rechallenge (21).

adoptive Transfer of inKT Cells  
and CiK Cells
While the use of autologous cell-based vaccines has proven to 
be effective in animal models, a potential limitation in human 
patients is the high variability of iNKT  cell frequency. Also, 
the functionality of iNKT  cells often diminishes with tumor 
progression. Therefore, to circumvent this issue, adoptive 
transfer of activated and expanded iNKT  cells derived from 
patient peripheral blood mononuclear cells (PBMCs) have been 
explored. Notably, CD3+CD56+ CIK cells, which represent a 
mixture of NK cell-like T cells, and incorporate an iNKT popu-
lation, possess non-MHC-dependent tumor activity mediated 
through perforin and NKG2D expression (14, 15). By culturing 
autologous PBMCs under various conditions (e.g., αGalCer in 
the presence of GM-CSF and/or IL-2, or with a combination of 
cytokines such as IFNγ, OKT3, IL-2, and IL-15), ex vivo expan-
sion of autologous activated iNKT/CIK cells from patients can 
be achieved (20, 30, 145). Successful expansion of functional 
iNKT  cells from adult hematopoietic stem-progenitor cells 
using artificial APCs coated with CD1d-immunoglobulin (146, 
147) as well as iNKT cell generation from induced pluripotent 
stem cells have also been explored (148). Adoptive transfer 
of ex vivo expanded iNKT cells in conjunction with αGalCer 
administration is an effective treatment against CD1d+ leuke-
mic cells implanted in immunodeficient NOD/SCID mice (67). 
Similarly, adoptive transfer of iNKT cells activated ex vivo with 
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IL-12 and IL-18 could initiate protection against lymphoma 
(ALC model) in mice (9). In humans, cultured iNKT/CIK cells 
are able recognize autologous or allogenic blood tumor cells 
in vitro (20, 30–32, 149). However, therapeutic use of in vitro 
expanded iNKT cells against blood cancers in humans is limited. 
Thus far, three phase I trials and a phase II trial have looked into 
the safety profile and efficacy of expanded activated autologous 
iNKT  cells in patients with solid tumors (150–153). All of 
these studies demonstrated safety and feasibility of treatment 
as well as induction of IFNγ in circulating iNKT in patients. 
In the phase II study, αGalCer-loaded APCs administered 
alongside activated iNKT cells led to iNKT cell accumulation 
at tumor sites and some clinical efficacy in 50% of patients  
enrolled (153).

Notably, the use of expanded CIK cells in association with 
other treatments has led to complete cancer remissions in 
patients with hematological malignancies [reviewed in Refs. 
(14, 15)]. CIK cells have also been used in combination with 
HSCT in a bid to potentiate the overall inhibitory effects of 
GvHD in blood cancer patients receiving transplants (154).  
In a phase I study published by Luo et  al. (154), patients 
enrolled were refractory to chemotherapy or had relapsed after 
early allogenic HSCT treatment. While some patients displayed 
a response to engraftment of donor cells, and infusion of CIK 
cells appeared to contribute to the prolonged survival in these 
patients, the overall efficacy of the combination treatment 
remains limited for this small cohort of patients with highly 
aggressive hematological malignancies (154). The extent to 
which these responses can be attributed to iNKT-like cells 
specifically, is unknown.

Chimeric antigen Receptor (CaR) 
Modified inKT Cells and CiK Cells
Most recently, several studies have explored CAR engineering of 
iNKT/CIK cells (10, 22, 155). A summary of the proof of concept 
findings to date indicate that both CAR-NKT  cells and CAR-
CIK cells possess greater antitumor activity than their iNKT 
and CIK cell counterparts [recently reviewed in Ref. (156)]. In 
one example, donor CD62L+ iNKT cells that were identified to 
be highly proliferative in  vitro were transduced with a CD19-
specific CAR and tested for therapeutic activity against human-
ized mouse models of lymphoma and neuroblastoma. These 
CD62L+ CAR-NKT cells were demonstrated to persist long-term 
in vivo and were also highly effective at inhibiting tumor growth 
(10). The use of CAR-NKT  cells was demonstrated to be safe 
and did not induce graft-versus-host disease (GvHD) in mice 
with neuroblastoma (155). In addition, the antitumor effects of 
CIK cells generated from donor PBMCs could also be further 
enhanced when transduced with CAR specific for CD19 and the 
CD28-CD3ζ signaling domain (22). These CAR-CIK cells were 
found to be highly effective against B-cell ALL (B-ALL) in vitro, 
including against CIK-resistant tumor cells. When tested in vivo, 
CAR-CIK cells were described to be more effective than non-
CAR CIK cells in eliminating B-ALL tumors and promoting 
long-term survival in mice (22). We foresee that these studies 
will serve to accelerate research into modifying donor iNKT cells 

for adoptive therapies for blood cancers to complement other 
CAR-T cell-based therapies (157).

nanoparticle-Based Delivery Systems  
for inKT Cell adjuvants
To overcome some of the limitations associated with adoptive 
NKT  cell-based approaches and to provide less costly and 
time-consuming alternatives for NKT  cell-targeting immuno-
therapy, research into the use of nanoparticle-based systems 
are emerging [reviewed in Ref. (158)]. Briefly, nanoparticle 
vectors are delivery vehicles less than 1  µM in size and have 
wide applications in various diagnostic and treatment settings, 
including tumor immunotherapy (159). Delivery of glycolipid 
adjuvants in suitable nanoparticles presents several advantages 
over delivery in soluble form, such as reduced toxicity profile 
(owing to the reduced amount required to elicit a biological 
response), the ability to overcome iNKT cell anergy (160) and 
the preferential targeted delivery to APCs in vivo (158). To date, 
there exists various published studies in preclinical models of 
solid cancers on the nanoparticulate delivery of αGalCer alone 
or co-delivered with tumor-associated antigens (11, 161–164). 
By comparison, few therapeutic applications of nanoparticle 
delivery of glycolipid adjuvants have been reported for blood 
cancers. One such study utilized a targeted PLGA nanoparticle 
to codeliver a model tumor antigen ovalbumin (OVA) and 
αGalCer to DEC205+ CD8α+ DCs. iNKT  cells were rapidly 
activated using this approach and could drive the induction 
of cytolytic tumor-specific CD8 T cells. When assessed in pro-
phylactic and therapeutic settings against a model of thymoma, 
administration of targeted nanoparticles could significantly 
suppress early tumor growth (11). Recently, a liposomal form 
of αGalCer (RGI-2001) has been designed to circumvent GvHD 
after HSCT. Initial preclinical studies show that RGI-2001 could 
aid in graft-versus-leukemia effect and significantly prevented 
acute GvHD in lethally irradiated leukemia-bearing mice given 
allele-mismatched donor bone marrow cells or spleen cells. This 
effect was believed to be largely due to the enhanced expansion of 
donor-derived CD4+ regulatory T (Treg) cells that could exert its 
effects in an antigen-specific manner (165). Although RGI-2001 
was demonstrated to induce expansion of NKT cells as well as 
higher IL-4 levels early after treatment, the correlation between 
NKT cell expansion and Treg induction was not clearly demon-
strated. In a Phase II study in blood cancer patients, RGI-2001 
was administered as a single dose in combination with HSCT. 
Similar to findings in mice, this study showed that RGI-2001 was 
generally tolerable in most patients and suggested that immu-
nosuppressive Treg cells could be efficiently induced in vivo in 
a small proportion of patients. However, due to limited patient 
recruitment and difficulties in the detection of NKT cells in the 
blood in this particular study, the extent to which NKT  cells 
contributed to overall GvL response remained inconclusive (89).

COnClUDinG ReMaRKS

Increasing knowledge of how different blood cancers modulate 
their environment to avoid or suppress antitumor immunity 
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has advanced the development of counteractive measures 
with immunotherapies. The fortuitous discovery of the potent 
NKT cell-stimulatory properties of αGalCer has enabled us to 
better understand how iNKT  cells function to transactivate 
both the innate and adaptive immune system, and importantly, 
their unique role in antitumor immunity. However, encourag-
ing findings in preclinical studies have not yet convincingly 
translated to similar outcomes in human cancers. In fact, the 
number of human trials testing the therapeutic use of various 
glycolipid compounds against cancer is limited, perhaps not 
only due to interindividual variability between patients but 
also due to the lack of understanding on the effects of tumors 
on decreasing iNKT frequencies and function. This is also true 
in harnessing the functions of NKT cells against GvHD after 
HSCT. In general, there still exists an uncertainty on the proper 
manipulation of iNKT  cells and their different responses to 
a variety of glycolipids. We should continue to fully utilize 
preclinical models to understand how to best influence the 
functions of iNKT cells through synthetic glycolipid ligands, 
but also place more emphasis on the translation of these 

findings into the clinical setting, with the goal to rescue or 
enhance iNKT cell functions in different human blood cancer  
settings.
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