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Dendritic cells (DCs) and macrophages (Mph) share many characteristics as compo-
nents of the innate immune system. The criteria to classify the multitude of subsets 
within the mononuclear phagocyte system are currently phenotype, ontogeny, tran-
scription patterns, epigenetic adaptations, and function. More recently, ontogenetic, 
transcriptional, and proteomic research approaches uncovered major developmental 
differences between Flt3L-dependent conventional DCs as compared with Mphs 
and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine 
bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. 
Conversely, in  vitro GM-CSF-dependent monocyte-derived Mphs largely resemble 
MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk 
sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened 
discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments 
to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of 
terminology for all DC subsets that attempts to encompass both ontogeny and function.
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iNTRODUCTiON

Dendritic cells (DCs) are major players to direct adaptive immunity or tolerance. More recently, the 
origins and possible subdivisions into DC subsets and the DC commonalities with macrophages 
(Mphs) have been discussed by numerous papers and reviews (1–7).

In their peripheral tissue-resident state, DCs act as immune sensors that recognize pathogens and 
then convert into a mature or activated state enabling their migration to the draining lymph node to 
stimulate T cell immunity (8). By contrast, during homeostasis lymphatic organ-resident DCs and 
steady-state migratory DCs contribute to immune tolerance (9).

This functional capacity of antigen transport from the periphery to the lymph nodes has been one 
of their major cellular characteristics distinguishing them from Mphs. Marked differences between 
DCs and Mphs have recently also been observed by quantitative proteomic analyses that point out 
differential and specific epigenetic programming of each cell type (10) or, at a more functional level, 
by dissecting and defining differential cellular mechanisms in endocytic recycling pathways of MHC 
I molecules for cross-presentation (11).

Several data indicate that murine bone marrow-derived DCs (BM-DCs), human monocyte-
derived DCs (MoDCs), and Langerhans cells (LCs) show considerable transcriptional overlap and a 
common ontogenetic origin with Mphs (12–15). This raised doubts whether the name “DC” is still 
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correct. On the other hand, there are also data showing mouse and 
human LC hierarchical clustering with subsets of conventional 
DCs (cDCs) (16). Here, we recall several aspects of the biology 
of these cell types, and we suggest to retain their name, not least 
for historic reasons allowing a better online search on a cell type. 
For example, follicular DC and pDC neither share overlaps in 
transcriptional profiling with cDCs nor do they exert typical DC 
functions. Yet, there is no discussion that they are both called 
DCs. In fact, human and mouse pDC share less transcriptional 
overlap with cDCs as compared with LC and MoDCs (17, 18), 
while follicular DCs are derived from marginal reticular cells, a 
population of mesenchymal stroma cells lining the lymph node 
subcapsular sinus (19). Evidence suggests that a subset of pDCs 
may derive from common lymphoid progenitors (CLP) and not 
from a common myeloid progenitor (CMP) (20) or might even 
derive from an own lineage (21) Nevertheless, all these cells retain 
their name “DC” independent from either their function or their 
origin from CMP, CLP, CDP (common DC progenitor), or even 
from non-hematopoietic progenitors.

To restructure the DC nomenclature on the basis of ontoge-
netic data alone may be highly confusing since two names or 
designations for the same cell will be perpetuated. For example, 
LCs would appear in older literature as “epidermal DCs” and 
newly “epidermal Mphs.” Here, we review LCs as well as GM-CSF-
dependent DC and Mph generation from BM or monocytes and 
their functions. We believe that that functional aspects can and 
should be integrated in the definition of DCs (Figure 1).

GM-CSF iN DC GROwTH, SURvivAL,  
AND FUNCTiONAL ACTivATiON

GM-CSF supplemented BM-DC cultures for murine DC genera-
tion are under debate for their usefulness to study DC biology, 
mainly since Mphs and neutrophils are generated by the same 
cytokine in these cultures. Similarly, human MoDCs may more 
closely mimic Mphs rather than DCs. Factors promoting DC ver-
sus Mph development from monocytes and myeloid progenitor 
cells have been reported. Human monocytes differentiate toward 
Mphs upon exposure to IL-6, which upregulated the M-CSF 
receptor (M-CSFR) expression to enable consumption of their 
autocrine M-CSF (26). Human MoDCs can be selectively gener-
ated from monocytes in cultures by combined use of GM-CSF 
and IL-4 (27, 28) by inducing TNF-converting enzyme (TACE) 
that cleaves the M-CSFR thereby disabling autocrine M-CSF-
dependent Mph generation (29). IL-4 imprinted differential 
epigenetic signatures for both DCs and Mphs influencing their 
further response to LPS (30, 31). Addition of TNF can further 
stabilize GM-CSF/IL-4 mediated DC skewing (32). MoDC 
development from monocytes is characterized by specific epi-
genetic programming such as histone H4K16 acetylation that 
was not observed in monocytes or Mphs (10). Thus, M-CSF/IL-6 
promotes Mph growth while GM-CSF/IL-4 suppresses M-CSF 
signals and thereby support DC development.

Murine BM cells cultured with GM-CSF contain neutrophils 
for up to 5 days before they die and finally only loosely adherent 
MHC IIlow cells and strongly adherent MHC IIneg Mphs remain 

(33–35). The MHC IIlow cells are composed of immature DCs 
with the potential to become mature DCs and Mph progenitors 
developing into MHC IIneg Mphs (36, 37). Unlike for human 
MoDC cultures, the addition of IL-4 to murine BM-DCs does 
not prevent Mph growth but fulfills other functions reviewed 
elsewhere (38). Reversely, the generation of human BM-DCs with 
GM-CSF with or without IL-4 can be used to generate immu-
nogenic or tolerogenic DCs similar as found in murine settings 
(39–42). Comparative analyses showed that murine BM-DCs and 
human MoDCs are highly similar and therefore can be consid-
ered as functional homologs (43, 44). BM-DC cultures contain 
proliferating cells (35). The proliferating cells mostly represent 
macrophage-DC progenitors (MDP) and common monocyte 
progenitors while differentiated Ly-6Chigh monocytes fail to 
proliferate in GM-CSF cultures and therefore do not contribute 
substantially to the BM-DC progeny (37) and as observed in mice 
under steady-state conditions (45). The lack of proliferation has 
been described for human CD14+ monocytes undergoing MoDC 
differentiation (46).

Murine BM-DCs are typically generated in vitro with GM-CSF. 
However, protocols are available that employ Flt3L instead of 
GM-CSF to generate bulk populations containing mixtures 
of CD103+ cDCs, CD11b+ cDCs, and pDCs from mouse bone 
marrow (47–49) or similarly but less well defined from human 
peripheral blood (50, 51). The generation of such DC subtypes 
in vitro is similar to what is observed in vivo (Figure 2). Two arti-
cles nicely dissected the precursors of human pDCs and CD1c+ 
cDCs as well as CD141+ cDC and claimed to provide a method 
to selectively generate all three cell types from CD34+ progenitors 
(52, 53). Already earlier, a protocol for the bulk generation of all 
three human cDC subsets had been reported also using CD34+ 
cells (54).

A massive expansion of monocyte and dendritic cell 
progenitor (MDP), but very low effects on common DC pro-
genitors (CDPs), have been found in GM-CSF supplemented 
BM-DC cultures (37), confirming major effects of GM-CSF on 
myelomonocytic cells rather than committed DC precursors 
(CDP) developing into Zbtb46 expressing cDCs. Although the 
transcription factor Zbtb46 had been considered to be specific 
for cDCs (57), recent data indicate that LCs co-express Zbtb46 
in addition to the Mph-specific transcription factor KLF4 (58). 
Moreover, Ly-6ChiTREML4neg monocytes can differentiate into 
Zbtb46+ MoDCs in response to GM-CSF and IL-4. This occurred 
independent of Batf3 but dependent on Irf4 and although IL-4 
induced both transcription factors in murine MoDCs (59). Thus, 
the so far DC subset-specific transcription factors may not be 
restricted to a DC subset defined by ontogeny but induced by 
environmental cytokine signals or factors inducing specific 
functional activation.

However, GM-CSF has a major impact on the steady-state 
cDC generation from preDCs in vivo since mice deficient for the 
GM-CSF receptor (csf2r) have severe deficits for both subsets of 
cDCs (60). This is partially in agreement with the finding that also 
the selective in vitro generation of murine CD103+Clec9A+XCR1+ 
cDCs from BM cells with Flt3L was enabled by addition of only 
very low doses of GM-CSF (61). Moreover, CD8+ T cell activa-
tion during lung infection was abrogated in csf2r−/− mice (60). In 
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FiGURe 1 | Four types of myelopoiesis and local cytokines control steady-state and inflammatory generation of grouped dendritic cell (DC) types. Early embryonic 
macrophage-erythrocyte precursors (EMPs) in the yolk sac and fetal liver responding to IL-34 develop into different preformed macrophage (Mph) progenitors 
(proMac) that generate most Mph populations and the epidermal DC subset, called Langerhans cell (LCs), which persist there throughout adulthood. As an 
example, differentiation of LCs requires additional cytokines such as TGF-β or BMP7 produced within the epidermis to reach the final stage of tissue-directed 
myelopoiesis. This primitive hematopoiesis is substituted by the definitive hematopoiesis in the BM in the adult. There, under steady-state conditions the growth 
factor Flt3L promotes the development of myeloid precursors giving rise to macrophages and DCs (MDPs) into common DC precursors (CDPs) that split into 
pre-pDCs (22) and pre-cDCs released into the blood. There is currently not yet full consensus about the potential of the cells designated as “MDPs” (2, 23, 24). 
Upon migration into the spleen (or other lymphatic tissues) or peripheral non-lymphatic tissues the CD103+ or CD8α+ cDC1 groups and CD11b+ or CD4+ cDC2 
groups further acquire different phenotypes by tissue-derived factors, e.g., GM-CSF (in blue). By contrast, (MDPs) sensing M-CSF under steady-state conditions will 
develop into common monocyte precursors (cMoPs) that predominantly develop into classical Ly-6Chi monocytes found in the murine blood. Under inflammatory 
conditions, activated CD4+ T-helper cells produce large amounts of GM-CSF (red) at systemic levels, thereby initiating so-called emergency myelopoiesis (25) driving 
MDPs and cMoPs into cell cycle and releasing increased amounts of classical monocytes into the blood. After extravasation, these monocytes can differentiate into 
inflammatory types of MoMph or, in the additional presence of IL-4 (red), into cells of the monocyte-derived DC (MoDC) group. Thus, differential developmental 
pathways merge in the generation of functional DCs (functional DC group, violet frame), independent from their origin.
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fact, some data indicate that Flt3L alone may not be sufficient to 
generate fully functional cDCs. Functional studies with human 
in vitro-generated cDC subsets on allogeneic T cell proliferation 
and cross-priming obtained only poor stimulatory effects (54). 
Murine immature Flt3L-generated DCs were unable to induce 
T  cell anergy or convert regulatory T  cells as compared with 
immature GM-CSF-generated DCs (49). Additional GM-CSF 
signals were required by Flt3L cultured cDCs from murine BM 
to acquire cross-presenting capacities, which was associated but 
not functionally linked with the further upregulation of CD103 
and an increase the frequency of CD103+ cells in culture (62), or 

CD8α+ and CD8α− cDCs from spleen to upregulate costimula-
tory molecules and cytokines after activation by pathogens 
(63), a process presumably regulated by the STAT5 target gene 
cytokine inducible SH2-domain protein (CISH) (64). GM-CSF 
also contributes to pDC maturation/activation by inducing 
PU.1 dependent MHC II upregulation in pDCs (65). However, 
GM-CSF (with or without TNF) impaired Flt3L-induced pDC 
generation from murine myeloid progenitors in favor of myeloid 
DCs and Mphs (66).

Together, the functional data available indicate that in vitro 
GM-CSF cultures of BM cells or monocytes generate different 
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FiGURe 2 | Time-dependent activation/maturation of tissue dendritic cells (DCs) and perpetuated generation of monocyte-derived DCs (MoDCs). A model showing 
cooperation of preexisting tissue DCs with newly generated MoDCs from infiltrating monocytes as shown before (55, 56) in a windmill-like schematic manner. Initial 
pathogens invading the skin as depicted here will first encounter epidermal Langerhans cell (LCs) and dermal DC subsets (dDCs). All these DC subsets are capable 
of capturing pathogens, undergoing maturation and can migrate CCR7 dependent into the draining lymph nodes to initiate T cell priming. The first wave of T cells 
will arrive together with monocytes and other cells of the inflammatory infiltrate in the infected skin. Local pathogen-specific MHC/peptide dependent reactivation  
of T cells, e.g., by resident or infiltrating macrophages will lead to their GM-CSF release and, together with cytokines in the environment, promote MoDC generation 
from monocytes. The resulting immature MoDCs follow the tissue DCs into the lymph node to perpetuate T cell priming in secondary and subsequent waves. Since 
the local reconstitution of emigrated tissue DCs is slow, MoDC generation by T cell-derived GM-CSF is continued as long as the infection persists as depicted 
graphically as a windmill model, i.e., as long as the “pathogen wind blows.”
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myeloid cell types and among them a fraction clearly shows 
characteristics of DCs. Additional cytokine use or specific cul-
turing/harvesting procedures further support the selective yield 
of DCs. Moreover, GM-CSF also controls some cDC and pDC 
functions.

HeTeROGeNeiTY OF BM-DC CULTUReS

BM harbors heterogeneous cellular sources of different devel-
opmental stages of cell types including myeloid cells responsive 
to GM-CSF. Accordingly, the in  vitro exposure of BM  cells to 
GM-CSF generates different waves of BM-DC development. This 
can be demonstrated by culturing specific early and late myeloid 
precursors with GM-CSF and measuring the time required 
to develop into CD11c+ DCs (37, 67). BM precursors for two 

different DC subsets and Mphs responding to GM-CSF differ in 
their endocytosis capacities and expression of the surface mark-
ers E-cadherin, scavenger receptor A (2F8, CD204), CD11b, and 
Gr-1. The sorted cells with an endocytosishighMHC IIlow profile 
gave rise either exclusively to one subset of MHC IIhigh DCs, while 
endocytosislowMHC IIlow cells resulted in two populations, one 
upregulating and one downregulating MHC II molecules after 
two further days of culture in GM-CSF, indicative for further 
development into another DC subset and Mphs, respectively (36). 
Stimulating sorted MHC IIlow cells with LPS further indicated that 
some MHC IIlow cells within this population turned into MHC 
IIneg and adherent Mphs, while other MHC IIlow cells (immature 
DCs) matured into MHC IIhigh DCs (36). Thus, these findings 
indicate that bulk cultures as well as MHC IIlow cells generated in 
response to GM-CSF are not uniform. Rather they include cells 
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with differentiation potential for Mphs and at least two different 
subsets of immature DCs. Since such an MHC IIlow Mph/DC 
mix will blur the results of mRNA profiling for cellular subset 
identification careful dissection of all subsets is a prerequisite. 
Additional factors may bias results from murine BM-DCs, such 
as components in the culture medium or fetal calf serum which 
can influence the outgrowth of DCs (68). While maturation of 
isolated murine LCs was not influenced under serum-free condi-
tions (69), serum-free BM  cell cultures failed to generate fully 
functional murine BM-DCs (70). BM-DC heterogeneity has also 
been reported by others (37) and similarly human DC/LC cul-
tures supplemented with GM-CSF are reportedly heterogenous 
(71). These phenotypically distinct in vitro-generated DC subsets 
now require more detailed -omics profiling but importantly, also 
distinguishing between immature/resting and mature/activated 
stages. DCs expressing different levels of MHC II- and costimu-
latory molecules will certainly differ in transcriptional patterns 
although belonging to the same ontogenetic DC subset (72). Such 
data allow then further comparisons with the same maturation 
stages of Flt3L in  vitro-generated or ex vivo-isolated cDC and 
pDC subsets.

Since some DC subsets share their capacities for pathogen 
recognition (73, 74), they also may translate them into same 
polarized pathogen-specific T-helper cell (Th) response. The 
treatment of bulk BM-DC cultures with different maturation 
stimuli appeared valuable to determine distinct response patterns 
by mRNA analyses, which could be attributed to DC-mediated 
Th1 and Th2 polarization (75).

MONOCYTeS AS A SOURCe FOR DCs

Under steady-state conditions, MoDCs are hardly found in mice 
and man (76). However, epithelia and mucosal tissues do contain 
detectable amounts of MoDCs presumably induced by com-
mensals (77). Clearly, inflammatory and infectious conditions 
can recruit Ly-6Chigh monocytes into tissues, which then develop 
into DCs that initiate T cell priming in the draining lymph nodes 
(55, 78–81). Similar results were obtained for the appearance of 
MoDCs in humans from synovia of rheumatoid arthritis patients 
and ascites from cancer patients (44). Thus, fully functional 
MoDCs can be differentiated under inflammatory or infectious 
conditions from monocytes in mice and humans.

In the absence of or early after depletion of Batf3-dependent 
CD103+ DCs in C57BL/6 mice with Leishmania infection a Th1 
response does not develop (82). However, during later stages 
4 weeks after infection, dermal MoDCs were the only DC subset 
at the site of skin infection and in the draining lymph nodes to 
present Leishmania antigens and to produce IL-12 to maintain 
the Th1 response (56). Together, these data led us to establish a 
“windmill model” of MoDC function (Figure 2).

In vitro studies showed a strict dependency of murine BM-DCs 
and human MoDCs on GM-CSF. When such in vitro-generated 
cells were injected s.c. or i.d. they homed to the T cell areas of the 
draining lymph nodes (83), a typical DC function that requires 
CCR7 expression (84). In comparison, inert particles (85) were 
flushed into the lymph nodes by the lymph fluid; they only pen-
etrated the subcapsular sinus but did not reach the T cell zone. 

From these studies, it had been concluded that GM-CSF is also 
critical for driving inflammatory MoDC generation in vivo.

Surprisingly, abrogation of GM-CSF or its receptor in mice 
did not affect MoDC generation and activation of CD8+ T cell 
responses. Conversely, deficiency of the M-CSFR (csf1) impaired 
inflammatory MoDC recruitment and CD80/CD86 surface 
expression (60). Therefore, the role of GM-CSF for the genera-
tion of inflammatory MoDC in vivo remains questionable. On the 
other hand, Mphs but not DCs arise from human monocytes in 
response to M-CSF or IL-34 in vitro (86), the latter representing a 
recently discovered new ligand for the M-CSFR. Thus, the precise 
roles of M-CSF and GM-CSF for MoDC generation in vitro and 
in vivo are not fully understood and additional factors from the 
local inflammatory environment may critically contribute to the 
monocyte-to-DC conversion.

IN VITRO-GeNeRATeD MoDCs AS 
MODeLS FOR IN VIVO cDC FUNCTiON?

Human and mouse MoDCs can be generated from blood or 
BM monocytic cells and precursors in large amounts. This has 
enabled early studies to investigate them by biochemical tech-
niques. However, one should be careful to simply extrapolate 
these functional analyses generalized from MoDCs to cDCs. The 
different cDCs subsets appear to have specialized preferences for 
cross-presentation (CD8α+/CD103+ cDC1) or MHC II depend-
ent presentation (CD4+/CD11b+ cDC2) (87). More recent studies 
further dissected cDC2 into ESAM+ cDC2 inducing Th17 and 
ESAM+ cDC2 specialized to promote Th2 polarization (5). By 
contrast, in vitro-generated MoDCs (BM-DCs) appear more ver-
satile in their functional adaptation to generate specific Th1, Th2, 
and Th17 responses in vitro or after injection into mice depending 
on their stimulation with LPS or TNF (75), cholera toxin (88), or 
in cross-presenting antigens to CD8+ T cells (89) or presenting 
glycolipids on CD1d molecules for polarizing NKT  cells into 
either IFN-γ or IL-4 producing subtypes (90, 91). However, indi-
rect cross-priming and NKT cell priming by injected BM-DCs 
with endogenous spleen DC subsets has been observed (92), 
which may point to DC–DC cooperation as observed in lymph 
nodes after virus infection (93).

Several early biochemical findings with MoDCs/BM-DCs 
could not be confirmed using more recent mouse models for cDCs 
in vivo. This includes the role of the transcription factor CIITA 
for the regulation of MHC II genes and DC development (94) 
and the transcriptional regulation of cross-presentation (59, 95). 
Clearly, MoDC functions should not be merely extrapolated to 
cDC functions. Nevertheless, if sensibly used and in a critical 
manner, these cells certainly retain value for studying certain 
aspects of DC biology.

GM-CSF-GeNeRATeD MoDC  
AS TUMOR vACCiNeS

GM-CSF/IL-4 generated MoDCs in  vitro, or the direct use of 
GM-CSF as adjuvant to promote MoDC generation in  situ, 
remain both promising concepts in antitumor vaccine trials 
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(96–98), especially in potential future combinations with modern 
“immune checkpoint inhibitors” such as anti-CTLA-4 or anti-
PD-1 (99, 100). MoDC treatment of melanoma appears highly 
successful in melanoma patients and showed the same 19% 12 
year survival rate as compared with achieved by ipilimumab 
treatment (101). Under steady-state conditions monocytes rarely 
immigrate into peripheral tissues to develop into MoDCs due to 
the absence of inflammation and high GM-CSF concentrations 
in the local environment (76). Thus, efficient monocyte immigra-
tion and their conversion into MoDC allowing migration from 
peripheral tissues or injection sites into the lymph node may ben-
efit from an inflammatory environment (Figure 2). Preinjection 
of the DC injection site with TNF or repetitive DC injections 
into the same site have been shown to dramatically improve DC 
homing in mice by upregulating CCR7 on DCs and also its ligand 
CCL21 in lymphatic endothelial cells (102). In a recent clinical 
study of DC vaccination in glioblastoma patients, the injection 
site was pretreated with tetanus/diphtheria toxoid before injec-
tion of MoDCs, which dramatically improved vaccine efficacy 
as observed by the patients’ survival rate (103). The benefits of 
low but not high doses of local GM-CSF as an adjuvant have 
also been elaborated (104). It would be interesting to investigate 
the functional role of GM-CSF produced at immunization sites 
by infiltrating T cells both to enhance cDC responsiveness and 
maturation (63) as well as in the local conversion of monocytes 
into MoDCs.

ePiDeRMAL LCs AS DCs

Recently, it was found that LCs were derived from EMC pre-
cursors in the yolk sac by stimulation of the M-CSFR through 
IL-34 (105–107) together with various tissue Mph populations 
(108–110). This led to a frequently expressed notion that LCs rep-
resent tissue-resident Mphs. However, functionally LCs also show 
a strong overlap with DCs since they are migratory both in the 
steady state to induce tolerance and during inflammation. They 
capture selective pathogens and migrate to initiate T cell responses 
in the lymph nodes (6, 111, 112). Moreover, microglia and in part 
LC are the only yolk sac-derived cells, and all other early Mph 
populations are generated in the aorta-gonad-mesonephros and 
fetal liver (113), thus further challenging the pure Mph identity of 
microglia and LCs. Taken together, LCs were found to share both 
characteristics of Mphs and DCs (6, 58).

It remains to be solved, whether a further subset division into 
Mph-like LCs and DC-like LCs may exist, because under infec-
tious or inflammatory conditions never all LCs emigrate from 
the epidermis, even under harsh conditions. Evidence for a “dual 
identity” of LCs was recently provided from isolated murine bulk 
LCs expressing both the Mph-specific transcription factor Mafb 
and the transcription factor Zbtb46 specific for cDCs (58). In the 
future, single cell mRNA sequencing may reveal whether both 
factors are expressed in the same cells or in different LC subsets.

Under inflammatory conditions, blood monocytes do replen-
ish the local pool of epidermal and mucosal LCs to compensate for 
the loss of LCs that emigrated toward the lymph node (114–116) 
(Figure 2). In the case of the murine oral cavity, a steady-state 
population of cDC and monocyte-derived LCs have also been 

described (116). Murine monocyte-derived LCs enabled an 
Id2-independent short-term reconstitution of the epidermal LC 
pool (115). Similarly, human CD14+ monocytes can be induced 
to acquire LC phenotypic characteristics in vitro. LC phenotype 
induction required TGF-β1, GM-CSF, and IL-4 (117). Later, it 
was shown that a combination of TGF-β, GM-CSF, and Notch 
ligand (Delta-1 Jagged2) allows efficient generation of LC-like 
cells from monocytes (118, 119). Whether monocytes take over 
long-term reconstitution of epidermal LCs remains unclear (115, 
120, 121) According to murine studies, monocytes may only 
transiently replenish LC-like cells exhibiting maintained expres-
sion of monocyte markers and reduced expression of LC markers. 
Conversely, another so far undefined BM-derived precursor may 
lead to a long lasting replenishment of LCs in an Id2-dependent 
manner (115). Human CD1c+ circulating peripheral blood DCs 
rapidly acquired LC characteristics in vitro, and these cells did not 
require Notch ligand for LC differentiation (122, 123). Whether 
these in vitro-generated candidate non-monocyte LC precursors 
replenish human LCs in  vivo remains unknown (124, 125). It 
must be considered that human LCs lack Mph-associated mark-
ers and cross-species transcriptional analyses of skin DC subsets 
revealed that human LCs are more closely related to human and 
murine DCs rather than to murine LC, the latter exhibiting Mph 
markers (126). We recently observed that CD14+ human blood 
monocytes lose expression of the transcription factor KLF4 dur-
ing LC commitment (in response to GM-CSF/TGF-β and Notch 
ligand), and loss of KLF4 is accompanied by loss of monocyte 
markers. Moreover, loss of KLF4 may represent a prerequisite for 
TGF-β1-mediated induction of RUNX3, a master transcription 
factor inducing LC lineage commitment (127). Given that KLF4 
restores monocyte/Mph differentiation from fetal liver progeni-
tor cells lacking PU.1 together with driving human monocyte dif-
ferentiation, KLF4 can be considered a lineage identity factor for 
monocytes/Mphs (128). Consistently, abovementioned murine 
short-term LCs (Id2-independent) expressed KLF4, whereas 
long-term LCs (Id2-dependent) lacked KLF4 (115). Although 
the earliest LC precursors develop in parallel with embryonic 
Mphs and only differentiate into the LC phenotype within the 
epidermis, they specifically acquire typical DC transcription 
factors. Ahr and Runx3, which are not shared with any other 
Mph subset (15) have been identified in DCs before, e.g., Ahr 
in BM-DCs and splenic DCs (129–131) and Runx3 in splenic 
EsamhiCD11b+ cDCs (132). Also at a global transcriptional level 
human and murine LC resemble more closely cDCs than mono-
cytes or monocyte-derived cells (16). Thus, it appears that a cell of 
mononuclear phagocyte ontogeny and identity can convert into 
epidermal DCs, called LCs (Figure 1).

Mo-derived (or CD1c+ blood DC-derived) LCs and DCs may 
fulfill an important task to replenish tissues or compartments after 
the resident cDCs have migrated out of the tissue as illustrated 
by the “windmill model” of MoDC function (Figure 2). Tissue-
resident or blood precursors both contribute to reconstitute LC in 
the murine or human system (122, 123, 133). The local potential 
for replenishment may be limited especially under chronic 
inflammatory conditions. In such a situation GM-CSF-driven 
emergency myelopoiesis in the BM and monocyte conversion 
to MoDCs in inflamed or infected peripheral tissues is required 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Lutz et al. BM-DC, MoDC, and LC

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1388

for replenishment with DCs. Although not directly tested, both 
populations are assumed to fulfill the same functions in immune 
surveillance in spite of being derived from different lineage origins.

The huge body of data that has been acquired using these 
models and omics data has critically contributed to our current 
profound knowledge on DC biology. Clearly, there is a need for 
clarification and simplification of DC nomenclature. However, it 
is important to take into account all available knowledge—new 
and old—when attempting to design a new DC nomenclature to 
avoid uncertainty and irritation in the field. This applies even more 
so to LCs. It was LCs that, for the first time, allowed to perceive 
and observe the concept of DC maturation (134), a true hallmark 
of the DC nature. Thirty years later, DC maturation is understood 
in much more detail (135). Also, we have come to realize that LCs 
can also induce tolerance, depending on the circumstances and the 
quality of maturation (136–138). Successful approaches to employ 
their DC-like migratory and T cell priming potential for vaccine 
technology may underscore their DC-like functions (139, 140). 
Thus, the LC example emphasizes the importance to consider also 
functional lineage plasticity besides ontogenetic data.

eviDeNCe FOR DCs ARiSiNG FROM 
eMeRGeNCY GRANULOPOieSiS

Neutrophilic granulocytes represent by far the most abundant 
leukocyte subtype in human bone marrow. They arise from 
hematopoietic stem cells via granulocyte/macrophage progeni-
tor cells, a cell stage hierarchically upstream of macrophage/DC 
progenitors (MDP). Steady-state BM contains various differentia-
tion stages of neutrophils. In response to acute inflammation or 
trauma, neutrophils are rapidly mobilized from bone marrow 
into peripheral blood to meet the bodies’ high demand on these 
cells to fight microbial infections. These emergency neutrophils 
mainly exhibit a band-shaped nucleus and differ from polymor-
phonuclear neutrophils (PMN) observed in the steady state. 
Such neo-recruited neutrophils in human peripheral blood were 
shown to possess in vitro DC differentiation potential in response 
to 5- to 9-day culture with GM-CSF, IL-4, and TNF, a process 
occurring without cell proliferation (141). While most generated 
cells lacked neutrophil markers they still expressed myelop-
eroxidase, a lysosomal protein found in granulopoietic cells 
and blood monocytes. Interestingly, so-called “neutrophil-DC 
hybrids” were generated from murine bone marrow in response 
to GM-CSF (142) and appeared in vivo in experimentally induced 
inflammatory lesions in mice (143). In line with this, neutrophils 
from G-CSF mobilized blood “trans”-differentiated into mono-
cytic cells in vivo in mice or for human cells in vitro in response to 
GM-CSF, TNF, IL-1β (144) or GM-CSF, M-CSF, TNF, IL-4, IFN-γ 
(145). This neutrophil plasticity seems to be confined to immature 
neutrophils characterized by their band-like-shaped nuclei, since 

PMN from the blood of healthy individuals lacked monocyte or 
DC differentiation potential (141, 144). Inflammatory signals 
encountered within lesions may transcriptionally reprogram 
neutrophils into monocytes/Mphs given that the selective 
activation of p38MAPK (induced by inflammatory signals) was 
sufficient to induce monocyte differentiation from granulocytic 
cells (144). Therefore, left-shifted band-stage neutrophilic granu-
locytes seem to possess a potential to differentiate into cells of 
the mononuclear phagocyte system including DCs rapidly within 
inflammatory lesions [recently reviewed in Ref. (146)]. Although 
this granulopoietic pathway for DCs still remains poorly defined, 
to term the resulting monocytes and DCs still “neutrophils,” only 
based on their ontogeny, would be misleading.

CONCLUSiON

Bone marrow-derived DC, MoDC, and LC share ontogenic and 
transcriptional similarities with the Mph lineage but also with 
cDCs. They possess strong phenotypes and functions as known 
for cDCs (2). Further dissection of the functional plasticity of 
monocytes in their acquisition of DC-like or Mph-like functions 
is required. A hematopoietic model including ontogenetic and 
functional DC/Mph differences is proposed here (Figure  1). 
Recent data focusing on steady-state distributions of DC sub-
sets and DC in  vivo function with respect to defined cytokine 
deficiencies (147) or the interplay between GM-CSF, M-CSF, 
and IL-3 (60) may point to alternative approaches toward a 
better understanding of GM-CSF-derived cells. In any case, the 
purity of DC populations defined on the basis of all published 
data as well as differences in activation/maturation stages have 
to be considered to obtain meaningful RNA sequencing data on 
DC subsets. Why GM-CSF-based protocols are so successful for 
generation of murine and human MoDCs in vitro, but GM-CSF-
deficient mice (60) or GM-CSF injected mice (148) fail to show 
such a role requires further investigation. Together, based on 
these considerations, we propose that a nomenclature for DCs 
and Mphs may benefit from considering all available and there-
fore also functional characteristics of cells in addition to their 
developmental or hematopoietic origination.
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