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Failing immunological tolerance for critical self-antigens is the problem underlying most 
chronic inflammatory diseases of humans. Despite the success of novel immunosup-
pressive biological drugs, the so-called biologics, in the treatment of diseases such 
rheumatoid arthritis (RA) and type 1 diabetes, none of these approaches does lead to 
a permanent state of medicine free disease remission. Therefore, there is a need for 
therapies that restore physiological mechanisms of self-tolerance. Heat shock proteins 
(HSPs) have shown disease suppressive activities in many models of experimental 
autoimmune diseases through the induction of regulatory T  cells (Tregs). Also in first 
clinical trials with HSP-based peptides in RA and diabetes, the induction of Tregs was 
noted. Due to their exceptionally high degree of evolutionary conservation, HSP protein 
sequences (peptides) are shared between the microbiota-associated bacterial species 
and the self-HSP in the tissues. Therefore, Treg mechanisms, such as those induced and 
maintained by gut mucosal tolerance for the microbiota, can play a role by targeting the 
more conserved HSP peptide sequences in the inflamed tissues. In addition, the stress 
upregulated presence of HSP in these tissues may well assist the targeting of the HSP 
induced Treg specifically to the sites of inflammation.

Keywords: heat shock proteins, tolerance, T regulatory cells, rheumatoid arthritis, inflammatory eye diseases, 
diabetes mellitus, type 1

In many cases, chronic inflammatory diseases are autoimmune diseases that are caused by a loss 
of tolerance to self-antigens due to inappropriate activation of the immune system. Collectively, 
autoimmune diseases affect 4–5% of the population, being females affected with a higher incidence 
than males (3:1 ratio) (1).

Genome-wide association studies have underscored the genetic association of the major histo-
compatibility complex (MHC) region with autoimmune diseases, in which case various predisposing 
alleles have been found (2, 3). The main function of MHC molecules is to present processed peptides 
for the recognition of antigen-specific T cells. And such T cells have the capacity to damage healthy 
tissues when they are not tightly controlled. The exact mechanisms triggering autoimmune diseases 
are unknown, but the presence of pro-inflammatory T cells in target organs as well as the strong 
link with MHC loci highlights the important role for adaptive immune responses in their develop-
ment. The most accepted hypothesis proposes that for the initiation of an autoimmune disease, 
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FiguRe 1 | Mechanisms of suppression by Treg cells to control immune responses. A broad range of molecular mechanisms contribute to the suppressive function 
of Tregs. Mechanisms include the following: apoptosis/cytolysis (IL-2 deprivation, granzyme A/B, perforins); antigen-presenting cell (APC) modulation (CTLA4, 
LAG-3); inhibitory cytokines (IL-10, IL-35, and TGF-β); and metabolic disruption (CD73/39 and ATP/adenosine mechanism). Abbreviations: CTLA4, cytotoxic T 
lymphocyte-associated antigen 4; DC, dendritic cell; CD, cluster of differentiation; IL, interleukin; Treg cell, regulatory T cell; LAG-3, lymphocyte activation gene 3; 
TGF, transforming growth factor; MHC, major histocompatibility complex.
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an immune response with pro-inflammatory characteristics 
needs to be directed against specific tissue antigens in genetically 
susceptible individuals. Regulatory mechanisms exist in the 
periphery to control such effector responses to avoid excessive 
tissue damage (4). Mechanisms include the following: regula-
tory T cells (Tregs), direct inactivation of effector T (Teff) cells 
by induction of anergy or apoptosis and activities mediated by 
tolerogenic antigen-presenting cells (APCs). However, there is 
an increasing understanding that pro-inflammatory responses 
directed to self-antigens become chronic in autoimmune diseases 
because regulatory mechanisms fail to control them.

PeRiPHeRAL TOLeRANCe MeCHANiSMS

CD4+CD25highFoxp3+

CD4+CD25highFoxP3+ Tregs can prevent autoimmune diseases 
by maintaining the tolerance to self-antigens. FoxP3 constitutes 
the most specific marker for these cells and is to some extent 

indispensable to develop a Treg phenotype and for their sup-
pressive function (5). The development of autoimmune diseases 
when CD4+CD25+ cells are depleted in normal rodents or when 
rodents and humans have mutated FoxP3 genes highlights the role 
of Tregs in the prevention of such diseases (6, 7). As illustrated 
in Figure 1, when activated by their cognate antigen, Treg cells 
display a broad range of suppressive mechanisms, which endow 
them with the ability to control immune responses. The potential 
of controlling T- and B-cell responses with different specificities as 
well as the modulation of the maturation status of APCs by Tregs 
makes them attractive targets for the development of therapeutic 
strategies. Apart from CD4+CD25highFoxp3+ Tregs, there are sev-
eral subsets of CD8+ T cells that are able to downregulate CD4+ 
T-cell effector responses by different mechanisms including the 
induction of anergy in APCs and T cells as well as the secretion of 
anti-inflammatory cytokines (8). CD8+CD28−Foxp3+ Treg cells 
are probably the subset best characterized (9). The activation of 
these cells is antigen specific [major histocompatibility complex 
(MHC)-I class-restricted], and their suppressor mechanism 
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involves the induction of a tolerogenic phenotype in APCs by the 
increased expression of immunoglobulin-like transcript 3 (ILT3) 
and ILT4. ILT3 and ILT4 suppress the activation of nuclear factor-
κB mediated by CD40, which in turn reduces the transcription of 
co-stimulatory molecules such as CD80 and CD86 (9–11). These 
tolerogenic APCs in turn promote an anergic phenotype on naive 
CD4+ and CD8+ T cells, which could acquire similar regulatory 
functions spreading the induction of tolerance (10).

However, some studies have shown that patients with autoim-
mune diseases have less effective or fewer CD4+CD25highFoxp3+ 
Treg cells compared with healthy individuals [reviewed in  
Ref. (12)]. Numbers and/or function of CD8+ Tregs have been 
also found to be defective in animal models of autoimmunity 
and in patients (13). Defects in the capacity of Teff cells to be 
controlled by Tregs have also been found in the context of auto-
immune diseases (12). Collectively, these findings suggest that 
Treg malfunction might be a factor promoting the development 
or chronicity of autoimmune diseases. Therefore, approaches to 
expand regulatory populations in autoimmune diseases have 
therapeutic potential (14, 15).

Anergy
T cells are activated when their T-cell receptors (TCRs) recognize 
antigenic peptides presented by MHC molecules expressed on 
the surface of APCs. Secondary signals like the one provided 
by CD28 expressed by T cells and B7.1 (CD80) or B7.2 (CD86) 
expressed by APCs are essential to initiate IL-2 production and 
T-cell proliferation. However, the activation of T  cells without 
second signals induces a state of anergy where these clones are 
not able to respond to antigenic stimulus because they cannot 
produce IL-2. Cytotoxic T  lymphocyte-associated antigen-4 
(CTLA4) is a cell surface molecule related to CD28 that has 
the ability to block CD28-dependent T cell activation (16). The 
critical role of this molecule in controlling T-cell activation and 
maintaining peripheral tolerance was supported by the develop-
ment of a massive lymphoproliferative disorder and autoimmune 
disease being fatal by 3–4 weeks of age in CTLA-4-deficient mice 
(17). Activated T  cells transiently increase the expression of 
CTLA4, which is important to limit the expansion of activated 
T cells during an immune response. This cell surface molecule 
is expressed constitutively by Tregs endowing them with the 
potential to control T-cell activation through CD28 blockade 
(Figure 1). The inhibition of the CD28-dependent T cell activa-
tion has been used as a therapeutic tool for several autoimmune 
diseases. The blockade of the CD28 pathway with CTLA-Ig in 
animal models of autoimmune diseases prevented the progres-
sion of the disease [reviewed in Ref. (18)]. Abatacept (CTLA4-Ig) 
has been approved by the FDA for use in rheumatoid arthritis 
(RA) patients with an inadequate response to one or more of the 
disease-modifying antirheumatic drugs.

Apoptosis
Apoptotic cell death is another important regulatory mechanism 
operating in the thymus and periphery to delete self-reactive 
T cells or activated pathogenic T-cell clones, respectively. During 
the development of T cells in the thymus, clones bearing autore-
active TCRs are eliminated by apoptosis in a process known as 

negative selection. However, T cells with potential autoreactive 
receptors escape to the periphery where these clones should be 
kept in check by regulatory mechanisms such as Tregs, anergy, or 
deletion. In the periphery, activated T cells express death receptors 
belonging to the tumor necrosis factor (TNF) family (e.g., Fas/ 
Fas-ligand) making them susceptible to activation-induced cell 
death (AICD) (19, 20). Memory T cells, Tregs, and Th2 cells are 
less susceptible than Th1  cells to AICD (21, 22), allowing the 
polarization of the immune response to protective responses 
(Th2/Treg) in the periphery. On the other hand, by inducing IL-2 
deprivation and secreting perforins and granzymes, Tregs at the 
site of inflammation increase the susceptibility of Teff cells and 
other cells such as B cells and monocytes to cell death (23, 24).

Tolerogenic APC
Tolerogenic APCs present antigens to T cells but since they dis-
play low numbers of co-stimulatory molecules such as CD80, 
CD86, and CD40, antigen presentation leads to T-cell anergy 
(25). Tolerogenic APCs can be induced and enhanced using 
different compounds such as rapamycin, corticosteroids, inter-
leukin-10 (IL-10), and transforming growth factor beta 1 (26). 
Several studies have shown the therapeutic effect of tolerogenic 
APCs induced ex vivo in experimental animal models [reviewed 
in Ref. (27, 28)]. Treg cells can also modulate the maturation sta-
tus of APCs. For example, these cells can decrease the expression 
of co-stimulatory molecules on APC affecting their capacity to 
activate T cells (29). In addition, ligation of CTLA4 to CD80 and 
CD86 induces APC to express an immunosuppressive molecule 
(indoleamine 2,3-dioxygenase), which is able to abolish T-cell 
activation (30, 31). Lymphocyte activation gene 3 (LAG-3) is 
another molecule expressed by Tregs that could affect APC func-
tion. This is a CD4 homolog with a high affinity for MHC class 
II molecules. The binding of LAG-3 to MHC class II induces an 
inhibitory signaling pathway, which leads to the inhibition of 
APC maturation (Figure 1) (32).

MHC-ASSOCiATeD DiSeASeS ARe  
T CeLL-MeDiATeD AND POSSiBLe 
TARgeTS FOR iNDuCTiON OF HeAT 
SHOCK PROTeiN (HSP)-DRiveN 
THeRAPeuTiC TOLeRANCe

The strong link of autoimmune diseases with MHC loci and the 
presence of pro-inflammatory T cells in target organs highlight 
the important role for adaptive immune responses in their 
development. In such cases, therapeutic tolerance may become 
established through the induction of Tregs with bystander regu-
latory activities leading to the inhibition or modulatory skewing 
of these pro-inflammatory self-antigen-specific T cells. Examples 
of MHC-associated, primarily T-cell driven autoimmune diseases 
are RA, type 1 diabetes (T1D), and several eye diseases.

Rheumatoid Arthritis
Rheumatoid arthritis is a chronic inflammatory disease charac-
terized by joint inflammation and synovial hyperplasia, which 
leads to cartilage and bone destruction (33).
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The HLA-DRB1 gene has been associated with the suscep-
tibility of this disease, especially with the shared epitope (SE) 
coding alleles (HLA-DRB1*0401, *0404, *0405, *0408, *0101, 
*0102, *1402, and *1001). The SE is a five amino-acid sequence 
motif found in residues 70–74 of the HLA-DRβ chain that 
encodes a conserved positively charged residue at position 71 
(34). The latter seems to guide the nature of the amino acid 
that can be accommodated in the P4 pocket of these HLA-DR 
molecules. Although the susceptibility of this disease appears 
to be determined genetically, the onset might depend on other 
factors such as environmental, epigenetic or posttranslational 
events factors (35).

As expected by the strong association of HLA-DRB1 and 
RA, CD4+ T cells are enriched in synovia of these patients and 
seem to play a critical role in the perpetuation of inflammation 
[reviewed in Ref. (36)]. Susceptibility to RA has also been linked 
to other pathways implicated in the activation of T  cells, such 
as PTPN22, PTPN2, CTLA4, IL2RA, IL-2RB, among others 
[reviewed in Ref. (29)]. Specifically, a CD4+ T  cell subset that 
produces IL-17, 21, 22, and TNF-α has been in the center of the 
attention in recent years. Emerging data have suggested that 
active RA might result from an imbalance between defective 
Tregs and pro-inflammatory Th17  cells (37–39). Nevertheless, 
the mechanisms governing such imbalance that could contribute 
to RA chronicity have remained unclear.

Tumor necrosis factor-α has been shown to be the master 
element of inflammation in RA (40). Consequently, the blockade 
of this cytokine has emerged as the main tool for its treatment. 
Although the exact mechanism underlying clinical effects of 
anti-TNF-α therapy in patients is not completely understood it 
is apparent that it can have an effect on other pathways associ-
ated with tolerance (41). For instance, it has been reported 
that the treatment with infliximab increases the percentage of 
CD4+CD25+ Tregs in RA patients who responded to therapy 
(42). Further studies showed that infliximab induced a distinct 
Treg population in vitro that could compensate the compromised 
Tregs detected in RA (43). Despite excellent results in patients 
responding to anti-TNF-α therapy, there is an increased suscep-
tibility to serious adverse effects including: infectious diseases, 
malignancies and demyelination (44). In addition, only partial 
responses are achieved with this treatment and a continuous 
treatment is required.

Diabetes Mellitus Type 1
Pancreatic β cells producing insulin are the targets for antigen-
specific T  cells in T1D. Epidemiologic studies suggest that the 
incidence of this disease is rising (45). The updated estimates of 
the incidence (20.04 per 100,000 per year) and prevalent cases 
(129,350) of T1D in children 0–14 years old in Europe for 2013 
(46) reflect an increasing trend of 3–4% per annum during the 
past 20 years (47).

HLA-DRB1*0401-DQB1*0302 and HLA-DRB1*0301-
DQB1*0201 have been associated with T1D susceptibility 
whereas the haplotypes HLA-DRB1*1501 and HLA-DQA1*0102-
DQB1*0602 confer resistance (48). However, most people 
bearing the haplotypes associated with the greatest susceptibility 
do not develop the disease. In addition, despite the finding of 

islet-specific T  cells in the blood of healthy individuals, one 
study showed that these cells secrete IL-10 instead of interferon 
gamma (IFN-γ) (49), indicating that regulatory mechanisms 
should fail to develop T1D. Indeed, there is evidence supporting 
that regulation is impaired in this disease, where patients seem to 
have a decreased Treg suppressive functionality compared with 
non-diabetic controls (50, 51).

The exact mechanism by which β cells are destroyed in the 
pancreas is not fully understood, but genetic and environmental 
factors appear to predispose individuals with defective regula-
tory mechanisms to develop the disease. Similar to other chronic 
inflammatory diseases, T1D onset requires CD4+ and CD8+ 
T cells [reviewed in Ref. (52)]. The latter has been demonstrated 
in experiments in which the precipitation or prevention of dia-
betes was achieved in the non-obese mice model by transfer or 
elimination of CD4+ or CD8+ T cells, respectively. Both cell types 
are able to infiltrate the pancreatic islets in mice and humans 
and are considered to be the final executors of the destruction of 
insulin-producing β cells (52). CD4+ and CD8+ T cells can induce 
the death of pancreatic β cells. However, as β cells only express 
HLA-class I, direct cytotoxicity can be only mediated by CD8+ 
T cells able to recognize appropriated peptides displayed on β-cell 
class I molecules. CD8+ T  cells are able to kill β cells through 
different mechanisms including granzyme B and perforins, pro-
inflammatory cytokines, and/or Fas/FasL interactions (52).

No drugs have been approved to halt the autoimmune process 
that causes the destruction of β cells in T1D (53). The main 
goals are the induction of a residual β-cell function. Different 
approaches to treat this disease have been used so far [reviewed 
in Ref. (54)]. One of the therapeutic approaches showing prom-
ise in T1D is the use of anti-CD3 monoclonal antibodies that 
have been shown to interfere antigen-specific T cell activation. 
However, after promising clinical trials (phase 1 and 2) in T1D 
patients with a recent onset, phase 3 trials fail to meet primary 
endpoints (55, 56).

MHC-Associated inflammatory  
eye Diseases
Various studies have confirmed that eye diseases, such as idi-
opathic uveitis (57), birdshot retinochoroidopathy (BSR) (58), 
and sympathetic ophthalmia (59), have an association with MHC. 
Uveitis is the most common form of inflammatory eye disease 
and one of the leading causes of visual impairment and blind-
ness. The association of the MHC class I molecule HLA-B27 with 
uveitis was first noted in 1973 (60). The precise molecular and 
pathogenic mechanisms behind the association between uveitis 
and HLA-B27 have remained unclear. HLA-B27 encompasses 
around 105 known subtypes (HLA-B*27:01 to HLA-B*27:106 
thus far identified) that are encoded by 132 alleles (61). HLA-B27 
subtypes have a varied prevalence in different races and regions 
of the world. HLA-B*2705 and B*2702 are the main HLA-B27 
subtypes in northern Europe, whereas HLA-B*2704 and B*2706 
are the most widespread subtype among Asian populations (62). 
A study from China found that among northern Chinese people, 
ankylosing spondylitis (AS) patients with B*2704 have a stronger 
risk of developing uveitis than those with B*2705 in Ref. (63). 
Conversely, a Japanese study showed that HLA-B27 anterior 
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uveitis (AAU) patients with the B*2704 subtype seemed to be 
less susceptible than patients with B*2705 (64). This suggests that 
HLA-B*2704 and HLA-B*2705 may be the most prevalent HLA-
B27 subtypes, with observed conflicting results on the role of this 
molecule in AAU caused by different races and regions, genetic 
background, or environmental factors. Remarkably, the majority 
of individuals who carry susceptibility conferring HLA subtypes 
never develop uveitis or other systemic autoimmune disease, 
implying that HLA-B27 is a genetically predisposing factor for 
uveitis but that other genetic or environmental factors contribute 
to the development of uveitis. HLA-B27-associated uveitis is also 
closely related to other systemic autoimmune syndromes, such 
as AS and systemic sarcoidosis. Several studies have shown that 
HLA-B27-positive AS patients are more susceptible to uveitis 
than HLA-B27-negative patients (65, 66). 20–30% of patients 
with sarcoidosis were affected by uveitis (67).

Except for uveitis, also specific other ocular inflammatory 
diseases show a strong association with HLA. BSR and idiopathic 
retinal vasculitis are associated with HLA-A29 (68), with HLA-
A*29.01 and HLA-A*29.02 representing the most common A29 
subtypes found in BSR patients (69). The HLA-A*29.01 subtype 
is more frequent among Asians, whereas HLA-A*29.02 is more 
common among Caucasians (70). In addition, Behcet’s disease 
(BD) is an inflammatory disease affecting multiple organs that also 
include a relapsing and remitting pan-uveitis, which is strongly 
associated with HLA-B*51 (71). HLA-B5101 is the predominant 
subtype associated with BD in Japanese and Iranian patients. The 
association of HLA-B*5108 and BD was also found in Greek and 
Spanish patients. A study of Israeli showed that HLA-B*52 may 
also be associated with BD (72).

In humans, more and more evidence reveals that cytokines 
produced by autoreactive Teff cell play a pivotal role in the patho-
genesis of autoimmune uveitis. Early studies suggested that the 
imbalance of anti- and pro-inflammatory Th2 and Th1 subsets is 
responsible for the pathology of uveitis. However, in recent stud-
ies, emphasis was laid on Th17 and CD4+CD25+FoxP3+ T regula-
tory cells, which produce IL-17 and IL-10, respectively. The ratio 
of Th17/Treg was distinctly increased at the progression of uveitis 
in patients and in experimental autoimmune uveitis (EAU) dis-
ease models (73, 74), and imbalance of Treg cells over Th17 cells 
was observed at the recovery phase of EAU (73). Th1 cells play 
central roles in early phase of uveitis, whereas Th17 cells act in 
the late phase of uveitis (75), Treg and inducible Treg cells sup-
press both Th1 and Th17  cell responses by counterbalancing 
pro-inflammatory activities of these T  cells. This implies that 
increasing the number of Treg cells may be a promising and safe 
way to control MHC-associated eye diseases.

HSP AND THe iNDuCTiON OF 
THeRAPeuTiC TOLeRANCe

HSP Proteins or Peptides As inducers  
of Tregs
Initial studies reported that several HSP families were able to 
induce both pro-inflammatory and anti-inflammatory effects. 
Pro-inflammatory cytokine production mediated by HSP70 

appears to be linked to the activation of toll-like receptor 2 
(TLR2) and TLR4 signaling pathways on innate immune cells 
(76, 77). Pathogen-associated molecular patterns such as 
lipopolysaccharide or other proteins present in recombinant HSP 
produced in bacteria have been suggested to be responsible for 
the observed pro-inflammatory effects [reviewed in Ref. (78)]. 
In line with this idea, HSPs often fail to induce an inflammatory 
effector response in highly purified preparations (79, 80). On the 
contrary, other studies using non-recombinant Hsp70, boiling 
treatments (which cause the degradation of HSP) or antibiotics 
have led to the conclusion that HSPs are responsible for the 
activation of innate immune cells as well as T cells through TLR 
signaling pathways (81, 82). It seems that whether these proteins 
have an activating or immunosuppressive role depends on several 
factors including their local concentration, the nature of the HSP 
itself (self or microbial), among others [reviewed in Ref. (83)]. 
In the context of autoimmune diseases, HSP proteins have been 
considered as target molecules involved in their pathogenesis in 
part because they become highly available at sites of inflamma-
tion (83). The other main reason is the high homology between 
species whereby microbial HSPs can active immune responses 
that can be cross-reactive with self-HSPs, which in theory could 
provoke autoimmunity. However, autoreactivity to self-HSPs 
has been also found in healthy individuals (84, 85), which 
means that these proteins are under a tight regulation network. 
The latter also means that autoreactivity to self-HSPs is not a 
synonym of autoimmunity. In fact, self-HSP reactivity appears to 
be a physiological mechanism for controlling the inflammatory 
process (86). In this regard, several studies in mice and humans 
support the fact that HSP, and specially conserved epitopes have 
the potential for attenuating rather than triggering inflammatory 
responses (87, 88).

The initial indication of a possible role of HSP in the induction 
of therapeutic tolerance was obtained in the model of adjuvant 
arthritis in rats. T  cells collected from diseased animals were 
found to respond to mycobacterial HSP60 (89). When the 
recombinant mycobacterial HSP60 protein was used for immu-
nizations, no arthritis was seen to develop. Interestingly, induc-
tion of adjuvant arthritis in these immunized animals appeared 
not to be possible anymore. Subsequent experiments revealed 
that the same protection against adjuvant arthritis induction 
was obtained by immunizing the animals with only a conserved 
sequence (peptide) of mycobacterial HSP60 (90). On the basis 
of these latter experiments, it was concluded that the conserved 
peptide induced T  cells that were cross-reactive with self  
(mammalian) HSP upregulated at the site of inflammation. 
In various additional studies, the regulatory nature of these 
cross-reactive T cells was recognized, since they were producing 
regulatory cytokines such as IL-10.

More recent studies have shown the HSP mediated induction 
of T  cells with regulatory potential, which showed the actual 
phenotypic characteristics of the currently known Tregs (91). 
This was among others the case for an HSP70 derived conserved 
mycobacterial peptide called B29. When BALB/c mice were 
immunized with B29, responding T cells were collected on the 
basis of CD25 expression and transferred into naïve syngeneic 
recipient mice. Subsequently, these T cells were found to inhibit 
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disease activity after induction of arthritis and to persist in 
various organs, including the joints, for more than 50  days. 
When during this time period, the presence of these cells was 
interrupted by infusion of a Treg depleting antibody, disease 
returned, which showed the actual disease suppressive activity 
of these HSP70-specific Tregs. When B29-specific T  cells were 
selected on the basis of LAG-3 expression, it sufficed to trans-
fer only 4,000 of these T  cells to fully inhibit arthritis. Several 
explanations are possible for the capacity of conserved microbial 
HSP peptides to induce Tregs. An obvious explanation can be 
found in the contact of the immune system with microbiota in the 
gut. It is known that APCs lining the gut mucosa ingest bacteria 
from the microbiota. This causes transport to mesenteric lymph 
nodes, where the derivative microbial antigens are presented to 
T cells, a phenomenon that must contribute to mucosal tolerance. 
Since ingestion of bacteria will lead to a stress response, both 
in bacteria and in the APC of the host, MHC molecules will be 
loaded with HSP fragments in this process. By these mechanisms, 
both microbial and the self-cross-reactive T cells will be activated. 
And since such events happen in the environment of the toler-
ance promoting mucosa, induction of peripheral Tregs seems a 
direct and physiological consequence. Given the evolutionary 
conservation of the HSP molecules present in the complete 
kingdom of prokaryotes, it seems unavoidable that through the 
repeated contacts with bacteria, the immune system develops a 
focus on the conserved parts of the molecules. And by this same 
focus on the shared sequences between bacterial and mammalian 
HSPs, Tregs induced by bacterial HSP may easily cross-respond 
to self-HSP (over-)expressed in the inflamed tissues. Herewith 
the regulation, which is of a bystander nature, will be targeted 
toward the sites of inflammation.

endogenous HSP-Loaded MHC Molecules
Apart from the possibility that mucosal tolerance creates a rep-
ertoire of HSP-specific Treg, there is also reason to think that 
HSPs are a default antigen for Tregs in the context of healthy 
tolerogenic APCs in the absence of co-stimulation activating 
microorganisms. In various studies, HSP70 has been found to 
belong to the most frequent cytosolic/nuclear MHC class II natu-
ral ligand sources (92). In other words, MHC elution studies have 
revealed that sequences of HSP70 family members are relatively 
often present in the proteome obtained from the antigen-binding 
clefts of human and mouse MHC-II molecules. And especially in 
the case of cell stress, such as the stress caused by inflammatory  
mediators, HSP70 fragments have been seen to become pre-
ferentially uploaded into MHC-II molecules [reviewed in Ref. (87)].  
Dengjel et  al. (93) have analyzed the sequences eluted from 
human B  cell-derived HLA-DR4 molecules under amino-acid 
deprivation as the cell-stress factor. It was shown that under such 
conditions chaperone-mediated autophagy became operative, 
which led to involvement of HSP70, which is one of the molecular 
participants in the process of chaperone mediated autophagy.  
In general terms, it was seen that under stress, the presentation of  
peptides from intracellular and lysosomal source proteins was 
strongly increased on MHC-II in contrast to peptides from mem-
brane and secreted proteins. For these reasons, it was concluded 
that their study illustrated a profound influence of autophagy 

on the class II peptide repertoire and suggested that this finding 
had implications for the regulation of CD4(+) T cell-mediated 
processes. Interestingly, also the mammalian homologs of our 
earlier defined HSP70-derived B29 peptide were eluted from this 
HLA-DR4 molecule (HLA DRB1*0401). Knowing this, it seems 
reasonable to think that HSPs and HSP70 family members in 
particular are frequently seen by Tregs in the context of MHC-II 
molecules. In this manner, they could well serve as a default 
antigen for Tregs, especially when presented by tolerogenic APC.

Given the stress-inducible nature of various HSP70 family 
members, we have attempted to raise the abundance of HSP70 
fragments in MHC-II molecules of APCs by administering a so-
called HSP co-inducing compound (94, 95). And indeed, in the 
experimental model of proteoglycan-induced arthritis (PGIA) in 
mice, we have seen such an intervention with an HSP co-inducer 
to lead to a T cell-mediated resistance against arthritis. The experi-
ments were carried out with carvacrol, an essential oil obtained 
from Oregano plants. Initial studies in vitro had indicated that 
incubation of cells before further exposure to classical stressors, 
such as raised temperature or arsenite, caused a raised expression 
of endogenous HSP70. When given orally, carvacrol was found 
to lead to a raised expression of HSP70 family members in the 
Peyer’s patches, the lymphoid organs of the gut. In addition, 
when analyzing the T  cell responses to HSP70, it was found 
that oral carvacrol had raised the frequency of HSP70-specific 
T  cells and that such cells showed to an enhanced degree the 
CD4+CD25+Foxp3+ phenotype of Tregs. Transfer of these cells 
into naïve recipients inhibited subsequently induced PGIA. 
Thus, the experiments with carvacrol have indicated that for the 
purpose of generating therapeutic tolerance, the co-induction of 
HSPs, even by dietary measures, may be a possible and attractive 
strategy.

How to induce HSP-Based Therapeutic 
Tolerance in T Cell-Mediated Autoimmune 
Diseases
Effective interventions in animal models are usually based on 
disease inhibition by administering therapeutics before disease 
induction. In other words, effective interventions are mostly pre-
ventive and not therapeutic. Successful therapeutic interventions, 
when overt disease has been established, are notoriously difficult 
to reach. The reason for this is that established inflammation is 
known to cause a relative resistance to therapy, among others 
by a supposed resistance of effector cells to the regulation by 
Tregs (96). For these reasons, it seems essential for therapeutic 
tolerance to become an effective intervention, to treat chronic 
inflammatory diseases in an early phase of the disease.

Initial clinical studies in patients with autoimmune diseases 
with a recent diagnosis using peptides derived from HSP have 
shown that the treatment is safe and also the possibility to skew 
the pro-inflammatory profile of pathogenic T-cell clones has 
been noted [reviewed in Ref. (97–99)]. For example, dnaJP1 
is a 15 mer peptide, derived from bacterial HSP40, that shares 
homology with the “shared epitope” sequence present in some 
HLA-class II molecules associated with RA, which confers 
susceptibility to develop the disease. The peptide was identified 
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as a pro-inflammatory T cell epitope in patients with active RA  
(100, 101), and authors hypothesized that it could be involved 
in the amplification of the inflammation due to the loss of 
regulatory mechanisms. In the double-blind, placebo-controlled 
phase II trial, dnaJP1 was administrated to active RA patients 
(<5 years of diagnosis) with the aim of inducing mucosal toler-
ance to this pro-inflammatory epitope. The treatment consisted 
in the administration of 25 mg of the peptide by oral route daily 
for 6 months. A decreased percentage of CD3+ T cells produc-
ing TNF-α in response to restimulation in  vitro with dnaJP1 
was observed in patients treated with the peptide but not with 
placebo. A trend toward increased levels of IL-10 was seen only 
in clinical responders. The expression of certain molecules associ-
ated with the downregulation of the immune response before the 
therapy was found necessary for successfully tolerization using 
this peptide. Finally, authors reported significant differences 
between treatment groups on day 140 for both American College 
of Rheumatology (ACR)20 and ACR50 responses (102).

More recently, a randomized placebo-controlled double-blind 
phase I/IIA trial was performed in patients with unresponsive 
active RA using binding immunoglobulin protein (BiP). BiP is 
an endoplasmic reticulum resident chaperone and stress protein 
with strong tolerogenic effects in the collagen-induced arthritis 
model (103). A single i.v. infusion of BiP (1, 5, or 15 mg) was well 
tolerated. The efficacy in this study was confounded by a high 
clinical response in the placebo group. However, at the end of 
the follow up period (12 weeks), remission was only achieved by 
some patients receiving 5 and 15 mg of BiP. Decreased C-reactive 
protein levels, VEGF, and IL-8 were decreased in patients receiv-
ing BiP compared with placebo at that time point (104). Finally,  
it was concluded that a large study is required to find the opti-
mum dose and frequency of BiP administration.

Antigen-specific tolerance using HSP-derived peptides has 
also been explored in T1D. DiaPep277 is a 24-amino-acid peptide 
derived from the 437–460 sequence of HSP60. The treatment 
of newly diagnosed diabetic patients with DiaPep277 was well 
tolerated. In some patients, the treatment may delay the loss of 
the C-peptide production thereby decreasing the demand for 
exogenous insulin when compared with placebo groups in phase 
I and II clinical trials (105). The study of the T-cell populations of 
patients treated with DiaPep277 but not with placebo showed a 
shift toward a Th2 phenotype characterized by reduced levels of 
IFN-γ and increased expression of IL-4, IL-10, and IL-13 (106).

In general, immunological effects often correlate with a trend 
to clinical efficacy compared with placebo groups. However, the 

clinical efficacy has been less than expected. Therefore, it may 
turn out necessary to combine various strategies. For example, 
anti-TNF-α drugs may be combined with HSP peptide-based 
vaccination to have a synergic effect of inhibition of inflammation 
in combination with a Treg inducing strategy. A recently probed 
intervention was utilizing autologous tolerogenic dendritic cells 
(DCs) loaded with (autologous) synovial fluids in patients with 
progressive forms of RA (107). This first phase clinical trial 
showed the safety and the attainability of the approach. Although 
in some patients also a beneficial clinical effect was noted, it now 
seems needed to repeat such an intervention in patients with less 
advanced forms of the disease. Since it will be less practical to 
obtain synovial fluids from such patients, an attractive alternative 
possibility will be the use of HSP70 peptide B29. Besides the fact 
that B29 has shown a capacity to induce HSP70-specific Tregs, 
an additional advantage of using a well-defined antigen, such as 
B29, is that this will provide an opportunity to monitor the effect 
of the intervention precisely at the level of peptide-specific T cells. 
A clinical trial exploring the effect of B29 in combination with 
tolerogenic DCs in patients with RA is under development.

Although clearly in its infancy, therapeutic tolerance is expected 
to become a reality. In the case of RA, therapeutic progress has 
been significant until now. From the first pain killers, such as 
aspirin that was already available in the end of the nineteenth 
century, gold preparations since the 30s of the previous century, 
prednisone since World War II and biologics more recently, a 
very significant progress was made. The typical anatomical joint 
aberrations as they were seen frequently in RA patients are fully 
avoidable these days. Nonetheless, none of these interventions 
leads to cure. When therapy is halted, disease returns. Knowing 
this, the real challenge for the coming years will be the develop-
ment of interventions that lead to a permanent remission based 
on regained self-tolerance. Given their supposed physiological 
role as targets for T cell regulation, HSPs may provide us possibly 
with the means to achieve true therapeutic tolerance.
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