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Phagocytic sensing and engulfment of dying cells and extracellular bodies initiate an 
intracellular signaling cascade within the phagocyte that can polarize cellular func-
tion and promote communication with neighboring non-phagocytes. Accumulating 
evidence links phagocytic signaling in the heart to cardiac development, adult myo-
cardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, 
and aging-associated etiology. Phagocytic clearance in the heart may be carried 
out by professional phagocytes, such as macrophages, and non-professional cells, 
including myofibrolasts and potentially epithelial cells. During cardiac development, 
phagocytosis initiates growth cues for early cardiac morphogenesis. In diseases of 
aging, including myocardial infarction, heightened levels of cell death require efficient 
phagocytic debridement to salvage further loss of terminally differentiated adult car-
diomyocytes. Additional risk factors, including insulin resistance and other systemic 
risk factors, contribute to inefficient phagocytosis, altered phagocytic signaling, and 
delayed cardiac inflammation resolution. Under such conditions, inflammatory presen-
tation of myocardial antigen may lead to autoimmunity and even possible rejection 
of transplanted heart allografts. Increased understanding of these basic mechanisms 
offers therapeutic opportunities.
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iNTRODUCTiON

Each day billions of cells per person must be cleared during homeostatic cellular turnover (1). 
Inefficiencies of phagocytic clearance lead to exposure of self-antigen, which is a precursor to auto-
immune reactivity (2). In contrast to unicellular organisms that utilize phagocytosis primarily to 
ingest nutrients, herein we focus on metazoans, and specifically heart tissue, in which the process of 
phagocytosis by professional phagocytes, particularly macrophages, has evolved additional organ-
specific significance, the latter a topic of significant interest in understanding how the local environ-
ment shapes cellular identity and tissue homeostasis (3). Prior to just 2014, traditional views held 
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that cardiac phagocytes arose from blood monocytes. However, 
discoveries on the contributions of cardiac macrophages that 
have taken up residence prenatally has evolved this view (4) and 
elevated our appreciation of the diversity of cardiac phagocyte 
subsets. Herein, this review will discuss our own evolving under-
standing of phagocyte function in the heart, with particular 
attention paid to phagocytic signaling, a core phagocyte function 
with consequences during cardiac development, homeostasis, 
and disease.

PHAGOCYTOSiS iN THe DeveLOPiNG 
HeART

The inextricably linked pathways of programed cell death and 
cellular removal, in turn contribute to tissue remodeling that 
is integral to embryonic and postnatal organ development. 
During cardiac development, human fetal cardiocytes appear 
to ingest other apoptotic cardiocytes, and failure to do so is a 
hallmark of fetal congenital heart block (CHB) and associated 
maternal antibodies to ribonucleoproteins (5). For example, 
binding of antiribonucleoprotein antibodies to apoptotic car-
diocytes modifies the distribution of urokinase plasminogen 
activator receptors, which serves as an antiphagocytic “don’t eat 
me” signal and prevents phagocytosis of apoptotic cardiocytes 
by neighboring viable cardiocytes (6). Accumulation of these 
opsonized apoptotic cardiocytes triggers proinflammatory 
cytokine secretion by macrophages, leading to the fibrosis 
characteristic of CHB (7, 8). In the case of myeloid phagocytes, 
and in contrast to the roles of cardiac macrophages in the adult 
heart, far less is understood on the function of phagocytes dur-
ing embryonic, fetal, and neonatal stages. Loss of macrophage 
differentiation or function in the developing heart of Xenopus 
embryos arrests heart formation with targeted depletion of 
spib, a transcription factor essential for primitive macrophage 
differentiation, or lurp1, a protein secreted by macrophages that 
is linked to embryogenesis, through preventing formation of 
the fused, wedge-shaped trough that is a precursor to heart tube 
formation (9). Thus, macrophages are positioned to shape the 
myocardial layer and remain in proximity during remodeling 
of the developing heart. In the case of rodents, apoptotic debris 
has been observed in macrophages of the developing rat heart, 
likely acquired through the physiological processes of vestigial 
structure deletion, cell number control, and structure remod-
eling, suggesting that phagocytic signaling could modulate 
growth cues for early cardiac morphogenesis (10). In mice, the 
developing heart contains multiple macrophage subsets, which 
can be classified into distinct populations based on the expres-
sion of C-C chemokine receptor 2 (CCR2) and are derived from 
yolk sac, recombination activating gene 1+ lymphomyeloid, 
and fetal Fms-like tyrosine kinase 3+ monocyte lineages (11). 
Functionally, CCR2− yolk sac-derived macrophages were 
found to be required for coronary development and matura-
tion, whereas macrophages derived from lymphomyeloid and 
fetal monocyte lineages appeared dispensable for normal heart 
development. Mechanistically, embryonic CCR2− macrophages 
demonstrated increased expression of insulin-like growth factor 

(IGF) ligands, a proangiogenic signal, compared to CCR2+ mac-
rophages, and were selectively recruited to perfused vasculature 
where they functioned to remodel the developing coronary vas-
cular plexus by promoting expansion of perfused blood vessels. 
Despite no overt role for lymphomyeloid and fetal monocyte 
lineages for heart development in this study, the differences in 
timing of recruitment, location within the developing heart, and 
transcriptional profiles indicate the need for additional stud-
ies to understand whether these distinct macrophage lineages 
contribute to embryonic and postnatal organ development, or in 
response to embryonic cardiac developmental insults.

NONPHLOGiSTiC PHAGOCYTiC 
CLeARANCe DURiNG THe CARDiAC 
STeADY STATe

In adults, efficient cell removal is critical for ensuring that the 
daily turnover of senescent cells does not disturb the steady state 
by inciting inflammation. During steady state, both professional 
phagocytes and non-professional “bystander” cells may partici-
pate in removal and metabolism of dead cells through the process 
of efferocytosis (12). Apoptosis eliminates senescent cells in the 
absence of inflammation, as efferocytic mechanisms suppress 
proinflammatory cytokines (13). In the heart, a recent analysis of 
cell generation and turnover revealed that cardiomyocyte num-
bers are initially established perinatally and appear to be constant 
throughout human life; cardiomyocyte turnover was estimated at 
<1% per year in adulthood (14). This was in contrast to endothe-
lial and mesenchymal cells, including fibroblasts and smooth 
muscle cells, which exchanged at a high rate. Thus, in comparison 
to other cell types, cardiomyocyte apoptosis is not a likely signifi-
cant factor in daily macrophage phagocytic programming. This 
does not rule out however, that cardiomyocytes, through release 
of degradation products through lysosomal exocytosis (15), 
exosomes, or ectosomes, in turn may stimulate receptor mediated 
endocytosis or phagocyte signaling toward the maintenance of 
the steady state. For example, ectosomes released by some cell 
types can induce phagocytic receptor anti-inflammatory path-
ways in macrophages (16). In the adult murine heart at steady 
state, resident macrophages are maintained by local proliferation 
to populate and replicate within the myocardium (4). Resident 
CCR2− macrophages can be divided into MHCIIHI and MHCIILO 
subsets, which differ significantly in gene ontology of antigen 
processing pathways (4). In a scenario where mice express the 
fluorescent TdTom reporter, strictly in cardiomyocytes (Rosa-
TdTom x Mlc2V-cre), increased fluorescence can be found asso-
ciated with resident cardiac macrophages. Although this could 
be associated with macrophage phagocytosis during preparation 
of cardiac extracts, it does support the prospect of cardiomyocyte 
sampling as a means for communication between myocytes and 
macrophages. In vitro, MHCIILO cardiac macrophages were most 
efficient at taking up dead cell cargo (4, 17). Many interesting 
questions remain in terms of homeostatic clearance in the heart. 
For example, it is unclear whether specific receptors are utilized 
in the steady state, as opposed to during cardiac inflammation or 
injury, as well as the associated relationships to anti-inflammatory 
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pathways. Furthermore, the classification and characterization 
of cardiac resident macrophages in these studies and others 
discussed herein are derived from the murine heart. Whether 
these observations will translate to the human heart remains to 
be determined.

PHAGOCYTiC CLeARANCe DURiNG 
CARDiAC iNFeCTiON

A potential yet understudied role for resident cardiac mac-
rophages in the steady state is the defense against infection.  
As proof of principle, injection of fluorescently labeled bacteria 
leads to uptake by cardiac phagocytes (18). Streptococcus pneu-
moniae enters the myocardium and forms damaging microle-
sions (19); however, these lesions exhibit relatively low levels 
of inflammatory infiltrate that only increase after antimicrobial 
therapy. In the case of Chagas heart disease, the leading cause 
of infectious myocarditis and caused by the protozoan parasite 
Trypanosoma cruzi, infection can be characterized by cardio-
myocyte necrosis throughout the course of disease (20), likely 
inducing activation of cardiac macrophages. Another important 
feature of experimental infection with T. cruzi is the massive 
increase in apoptotic, activation-induced cell death in CD4+ 
T  lymphocytes (21). Phagocytosis of these apoptotic lympho-
cytes by macrophages results in macrophage secretion of TGF-β 
leading to suppressive TGF-β signaling and increased growth of 
T. cruzi in the macrophage (22, 23). Interestingly, in patients with 
cardiac clinical forms of Chagas disease, there is an increase in 
the expression of CCR5 on CD4+ T cells, which controls leuko-
cyte migration into the inflamed heart (24), and while CCR5 
expression is required during the acute phase for protection 
against experimental T. cruzi infection in mice, it is dispensable 
for the chronic phase of infection (25). Thus, during the chronic 
phase of infection, continuous recruitment of CD4+ T  cells to 
the infected heart followed by their apoptosis and engulfment by 
cardiac macrophages could contribute to an immunosuppressive 
environment to allow T. cruzi to escape host responses leading 
to chronic cardiomyopathies. Similar to Chagas disease, patients 
with infectious endocartitis due to Coxiella burnetti, can exhibit 
valvuopathy with increased levels of apoptotic leukocytes. This 
has also been linked to efferocytic anti-inflammatory mac-
rophage polarization, thereby permitting increased bacterial 
replication (26). In contrast, anti-inflammatory macrophages 
play an important role in limiting excessive inflammation during 
viral myocarditis (27). Following coxsackievirus B3 infection, 
viral myocarditis was milder in female mice, which displayed 
enhanced expression of anti-inflammatory mediators by mac-
rophages, compared to male mice, which displayed higher levels 
of proinflammatory macrophage markers. Adoptive transfer of 
ex vivo alternatively activated macrophages alleviated the exces-
sive inflammation in male mice, consistent with macrophage 
polarization contributing to the extent of myocardial inflamma-
tion. These studies highlight that cardiac macrophages likely play 
an important role in shaping host defense against a variety of 
pathogens in the heart and this is further supported by the abil-
ity of pathogens, such a T. cruzi, to exploit essential phagocyte 
function to evade clearance.

PHAGOCYTiC CLeARANCe AS  
AN iNDUCeR OF PHAGOCYTe 
PROGRAMMiNG OF CARDiAC  
RePAiR AFTeR ACUTe iSCHeMiC  
iNJURY AND CLiNiCAL RePeRFUSiON

In Western Societies, including the United States, heart disease 
and stroke remain leading causes of death (28). Patients who 
survive their first heart attack have an increased risk of second-
ary MI, heart failure, and stroke, and secondary risk is linked to 
the local and systemic inflammation that occurs after first MI 
(29). A key function of recruited and mobilized leukocytes at 
site of infarction is the degradation and phagocytosis of dying 
and necrotic cells, and extracellular matrix. Inhibition of innate 
immune cells is associated with adverse outcomes post-MI (30). 
Similar to inflammatory atherosclerosis (31, 32), the infarction 
consists of a necrotic core (33) that can expand between the 
endocardium and epicardium. Bordering this necrotic core are 
endangered cardiomyocytes that may be either salvaged or not, 
dependent in part on the efficiency of the repair process. This is 
necessary for subsequent fibrogenic responses and remodeling 
to compensate for lost cardiomyocytes, as well as angiogenesis 
to reperfuse the tissue. Recent data directly link efferocytosis 
by inflammatory immune cells (12) to wound healing in the 
myocardium and implicate phagocytosis receptors on monocytes 
and macrophages as a key link between inflammation resolution 
and organ function (34, 35). In the elderly, suboptimal dying-cell 
clearance may lead to a non-resolving inflammation (36), and 
maladaptive cardiac repair, thereby accelerating heart failure 
(37). An additional clinical component is the contribution of 
reperfusion, which although restores oxygen supply, can also itself 
facilitate reperfusion-associated injury (38). Below we expand on 
key steps surrounding phagocytic clearance after cardiac wound 
injury.

CHeMOTAXiS SiGNALS FOR 
PHAGOCYTeS TO SiTeS OF 
MYOCARDiAL iNJURY

Directed chemotaxis to the infarction proceeds by trafficking 
through a gradient of reducing oxygen tension and a chemot-
actic gradient of local so-called apoptotic find-me signals (39), 
including lipids, such as lyso-phosphatidyl-choline (LPC) and 
sphingosine-1-phosphate (S1P). LPC is externalized and excreted 
during apoptosis (40, 41) and amasses during ischemia in the 
heart via thrombin activation of Ca2+-independent phospho-
lipases (42), consistent with its role as a find-me signal in the 
damaged heart. S1P, another lipid find-me signal is produced by 
sphingosine kinase 1 (SPHK1). Apoptotic stress induces SPHK1 
activation, which can then promote S1P secretion (43). In addi-
tion to lipid find-me signals, proteinaceous tissue recruitment fac-
tors include fractalkine (CX3CL1), which is cleaved by caspase-3 
during apoptosis. Released fractalkine interacts with CX3CR1 
on macrophages for cell recruitment (44). Fas/CD95-induced 
chemokines, which includes monocyte chemoattractant protein 
1/C-C chemokine ligand 2 (MCP-1/CCL2), can recruit monocytes 
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and monocyte-derived macrophages for phagocytosis via CCR2 
(45). Nucleotides ATP and UTP from apoptotic and necrotic cells 
also likely act as find-me signals in the myocardium. In apoptotic 
cells, the plasma membrane channel pannexin 1 (PANX1) may 
act as a portal for nucleotide release (46). During ischemia, 
cellular stress increases glycosylation of PANX1 and increased 
ATP release from myocytes to activate fibroblast transformation 
(47). ATP can also serve as a signal for neutrophil chemotaxis via 
purinergic P2Y2 and A3 adenosine receptors in vitro and in vivo 
(48). Knockdown of P2y2 inhibits migration (49), all consistent 
with ATP released from PANX1 acting as a find-me signal in 
the heart. Taken together, a variety of “find me” signals may be 
released by apoptotic cells in the heart but whether these signals 
cooperate or are distinct and how they direct the phagocytic 
response during cardiac injury require further investigation.

UNiQUe FUNCTiONS OF PHAGOCYTe 
SUBSeTS DURiNG CARDiAC RePAiR 
POST Mi

Following MI, innate immune cells are recruited and mobilized 
to heart to clear damaged tissue and initiate cardiac repair. 
Neutrophils, the recruitment of which is linked to circadian 
oscillation (50), accumulate in the ischemic myocardium in large 
numbers within a few hours, acting as first responders after the 
onset of injury (51). Neutrophils act to clear necrotic debris, but 
are also capable of clearing apoptotic cells in other circumstances 
(52). While neutrophils are among the first to arrive in the injured 
heart, their function has often been associated with detrimental 
effects on heart healing. For example, blockade of neutrophil 
function has been shown to limit adverse ventricular remodeling 
and preserve systolic function (53, 54) and the magnitude of the 
neutrophil response was predictive of adverse outcomes in both 
mice (50) and humans (55, 56). Initial studies using antibody-
mediated depletion of neutrophils revealed protective effects 
during myocardial ischemia–reperfusion injury (IRI) (57–59). 
However, in the context of the prolonged ischemia that occurs after 
experimental, permanent coronary ligation, neutrophil deple-
tion led to increased cardiac fibrosis and progressively worsened 
cardiac function with increased markers of heart failure (57). The 
worsened outcome following neutrophil depletion was attributed 
to reduced phagocytic receptor Mertk gene expression on cardiac 
macrophages, preventing efficient clearance of dying cardio-
myocytes and proper inflammation resolution. Mechanistically, 
neutrophil gelatinase-associated lipocalin was identified as a 
neutrophil secreted molecule that was capable of programming 
macrophages toward a highly phagocytic, MerTK-expressing, 
proreparative phenotype. In addition to secreted factors, neu-
trophils represent a large population of short-lived inflamma-
tory cells that undergo apoptosis in the infarcted myocardium. 
Phagocytosis of apoptotic neutrophils by macrophages directs 
inflammation resolution by promoting an anti-inflammatory 
program leading to the release of proresolving mediators such as 
IL-10, TGF-β, lipoxins, and resolvins (13, 60) and also contributes 
to the maintenance of homeostasis by imprinting tissue resident 
macrophages with an anti-inflammatory phenotype in various 

tissues throughout the body (61). It has been proposed that 
phagocytosis of apoptotic neutrophils by cardiac macrophages 
promotes inflammation resolution in the infarcted myocardium 
(51). Therefore, depletion of neutrophils might be expected to 
worsen repair by limiting phagocytosis-dependent reprogram-
ming of macrophages toward a reparative phenotype. However, 
additional studies are required to directly assess this in the heart. 
Thus, neutrophils likely contribute to repair after myocardial 
infarction through the secretion of soluble mediators, which 
promote the differentiation of reparative macrophages, but also 
by acting as a direct trigger for phagocytosis-dependent, anti-
inflammatory pathways in macrophages.

After neutrophil numbers peak in the infarcted mouse 
myocardium, Ly-6Chi monocytes (Figure  1 Working Model) 
accumulate in response to CCL2 and exhibit proteolytic and 
phagocytic functions to degrade and clear the damaged myocar-
dium (62). Ly-6Chi monocytes engulf dying cardiomyocytes (63) 
and in other contexts, are able to efferocytose and cross-present 
cell-associated antigens (64). In the heart, Ly6Chi monocytes give 
rise to proliferative Ly6Clow macrophages, and this requires the 
nuclear receptor protein NR4A1 (65). Interestingly, NR4A1 is 
also linked to Mertk gene expression (63) and therefore as an 
expected consequence, NR4A1 deficiency in macrophages has 
been shown to impair engulfment and clearance of apoptotic 
cells (66). Macrophage polarization may also be important in 
cardiac wound healing, as alternatively activated macrophages 
have been linked to enhanced efferocytosis (67) and repair of the 
infarcted adult murine heart (68). There are multiple inducers of 
anti-inflammatory macrophage polarization, including cytokines 
IL-4 and IL-13 (69), which transduce their effects through IL-4 
and IL-13 receptors, including the common IL-4Rα subunit (70). 
Administration of IL-4 increases survival and improves cardiac 
function after MI, however, in Trib1-deficient mice, which exhibit 
impaired alternative macrophage polarization, these mice are 
not protected by IL-4 (68). Complete deficiency of IL-13 in male 
mice decreases survival and impairs cardiac remodeling after 
myocardial infarction (71). Additionally, the combination of IL-4 
or IL-13, together with apoptotic cells, promotes macrophage 
tissue repair (72).

While these observations have advanced our understanding on 
how apoptotic cell engulfment reprograms macrophage function 
and how this in turn informs phagocyte function during cardiac 
injury, many of these studies require moving beyond the general-
ized M1/M2 macrophage polarization paradigm to comprehend 
deeper relationships between macrophage polarization and 
function (73). This is further emphasized by the identification of 
a variety of macrophage subsets residing in the myocardium of 
differing developmental origins, which changes over the course 
of development and aging or following cardiac injury (4, 74, 75).  
Of the cardiac resident macrophage populations examined 
to date, all appear capable of phagocytosing cardiomyocytes  
(4, 17), highlighting the potential of these different phagocytes 
to participate in the wound healing process. However, many 
questions remain on whether the different populations have 
distinct or overlapping function and whether their function dif-
fers under varied pathophysiological conditions, such as sterile 
would healing or host defense. Emerging evidence indicates 
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FiGURe 1 | Phagocytosis in the heart. During development, embryonic yolk-sac-derived and then fetal liver-derived macrophages seed the heart with MHCIILO 
MΦ that can later differentiate into MHCIIHI MΦ. Following cardiac injury, both recruited phagocytes (Ly6Chi monocytes) and resident (embryonic-derived MΦ) 
contribute to tissue repair and inflammation resolution. CCR2 mediates recruitment of Ly6Chi monocytes to the injured myocardium where CD36 expression on 
Ly6Chi monocytes leads to the recognition and clearance of necrotic cardiomyocyte (NC) debris and the subsequent induction of NR4A1-dependent 
transcription and reprogramming to MerTK-expressing, monocyte-derived MΦ. Peripheral blood monocytes preferentially differentiate into MHCIIHICCR2+ MΦ in 
the heart but whether these cells also become MHCHLOCCR2− MΦ (dotted line) requires further investigation. Concurrently, MHCIlLO embryonic-derived MΦ 
recognize apoptotic cardiomyocytes (ACs) through MerTK leading to the production of anti-inflammatory cytokines (IL-10, TGF-β) and specialized, proresolving 
lipid mediators (RvD1, LXA4). MHCIIHI embryonic-derived MΦ may also recognize ACs through MerTK and other phagocytic receptors, such as AXL and 
differentiate into proresolving MHCHLO MΦ (dashed line). How monocyte-derived MΦ and embryonic-derived MΦ interact and the mechanisms regulating 
differentiation between the different MHCII-expressing populations remain understudied and will likely have important consequences toward recovery after 
cardiac injury.
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that embryonic-derived cardiac macrophages may be superior 
at mediating inflammation resolution and tissue repair follow-
ing cardiac injury (74). The progressive loss of these cells with 
age may also explain in part the adverse outcomes that occur in 
adult humans during cardiovascular disease (75), and lead to the 
identification of novel therapeutic avenues to reverse the clock 
and recapture the protective responses of embryonic-derived 
macrophages. For example, embryonic-derived macrophages 
rely on macrophage colony-stimulating factor (M-CSF) signaling 
through CSFR1 as both a survival and self-renewal signal (76), 
and injection of M-CSF, but not granulocyte colony-stimulating 
factor (G-CSF), increases collagen content to accelerate infarct 
repair and attenuate left ventricular dysfunction (77), suggesting 

that M-CSF-mediated preservation of embryonic-derived mac-
rophages may improve repair after cardiac injury. At the time 
of this publication, significantly more studies are warranted on 
examining the different macrophage subsets in the heart both at 
steady-state and during the many forms of cardiac disease.

PHAGOCYTOSiS BY NON-
PROFeSSiONAL PHAGOCYTeS

While phagocytosis of microbes or apoptotic cells in the heart is 
predominantly promoted by macrophages, other non-professional  
phagocytes have been shown to participate in this process. 
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Interestingly, cardiomyocytes themselves can phagocytose latex 
particles in  vitro (78) and potentially cardiomyocyte debris 
in vivo (79, 80), the latter of which may have an important role in 
the developing heart. Recently, myofibroblasts were identified as 
another non-professional phagocyte that were capable of engulf-
ing apoptotic cardiomyocytes (81). Myofibroblast-mediated 
clearance of dying cells after myocardial infarction was depend-
ent on milk fat globule epidermal growth factor (MFG-E8), 
which was produced in part by myofibroblasts, and mice lacking 
MFG-E8 displayed increased inflammation and adverse tissue 
remodeling. Furthermore, macrophages, through the release 
of microvesicles, can alter the type of particles engulfed by 
non-professional phagocytes, to in turn affect the inflammatory 
response. For example, efferocytes release IGF-1, which upon 
recognition by non-professional phagocytes such as epithelial 
cells, reduces the size of particulate uptake (82). While the pres-
ence of professional cardiac phagocytes, such as macrophages, 
minimalizes the necessity for non-professional phagocytes, such  
as myofibroblasts, to phagocytose a dying neighbor, the contribu-
tion of non-professional phagocytes to the clearance of apoptotic 
and necrotic debris is underexplored and whether these cells 
cooperate with macrophages in the heart to promote cardiac 
repair requires additional study.

PHAGOCYTiC ReCePTOR TARGeTS  
AND STiMULi iN HeART

There are multiple targets in addition to dying cardiomyocytes that 
can activate phagocytic receptor signaling in the heart, including 
clearance of red blood cells, a process known as erythrophagocy-
tosis. Intramyocardial hemorrhage is a frequent complication in 
ST-Elevation Myocardial Infarction (STEMI) patients reperfused 
by primary percutaneous coronary intervention. STEMI patients 
with intramyocardial hemorrhage also frequently present with 
residual myocardial iron that is associated with adverse left 
ventricular remodeling and suggestive of ongoing inflammation 
(83). In canines, myocardial iron deposits were directly related to 
proinflammatory burden with iron deposits found directly in car-
diac macrophages (84). The accumulation of iron in macrophages 
is likely a direct consequence of excessive erythrophagocytosis 
in the hemorrhage. Iron overloading of macrophages has been 
shown to induce a proinflammatory activation state character-
ized by TNF-α and toxic hydroxyl radicals release, which can 
then lead to premature senescence of resident fibroblasts and 
impaired wound healing (85). Similar to intramyocardial hemor-
rhage, erythrocyte-rich thrombi also contain more inflammatory 
cells leading to impaired reperfusion in STEMI patients (86).  
In addition to erythrophagocytosis, the thrombus includes 
platelets and fibrin that are processed by phagocytes and for 
which the mechanisms of removal remain unclear. Macrophages 
are capable of phagocytosing platelets leading to the induction 
of iNOS (87), which may contribute to matrix degradation and 
adverse ventricular remodeling. A recent report also identified 
macrophages as important mediators of fibrin clearance with 
CCR2+ macrophages constituting the majority of cells engulfing 
fibrin (88). This has important implications for the heart, where 

CCR2+ macrophages are present early in cardiac development 
and expand in numbers after injury.

In the case of necroptosis, a regulated, nonapoptotic form of 
necrotic cell death, signaling through receptor-interacting protein 
kinase-3 and mixed lineage kinase-like proteins leads to externali-
zation of phosphatidylserine, a prophagocytic  “eat me” signal (89), 
and an opportunity for phagocytes to recognize and clear these 
“necrotic bodies” to limit inflammation in the injured heart (90). 
Given the relatively long-lived life cycle of adult differentiated 
cardiomyocytes, it is logical to speculate that antiphagocytic, or 
so-called “don’t-eat-me” signals (39), may be important in ward-
ing off macrophage-mediated elimination. Indeed, don’t-eat-me 
signals, which include CD31 and plasminogen activator inhibi-
tor I, prevent viable cells from engulfment by phagocytes (91). 
The most widely studied don’t-eat-me signal is CD47, which is a 
membrane protein expressed on the surface of most cells and has 
been shown to prevent tumor cells from immunologic removal 
(92). CD47 interacts with SIRPα on phagocytes, recruits phos-
phatases, and inhibits downstream activation of the phagocyte 
actin cytoskeleton, thereby preventing engulfment (93, 94), and 
has been associated with blocking recognition of prophagocytic 
molecules, such as calreticulin (93). It has been shown that CD47 
is expressed in abundance on apoptotic neonatal cardiocytes (95), 
and mice lacking thrombospondin-2, a CD47 ligand, exhibit 
impaired cardiomyocyte survival and dilated cardiomyopathy 
leading to higher mortality (96). However, whether the afore-
mentioned requires CD47, or whether CD47 is directly involved 
in removal of apoptotic cells in the heart, is unknown. Recently, 
CD47-blocking antibodies have been effective at restoring defec-
tive atherosclerotic phagocytosis (97, 98) and preventing athero-
sclerosis in experimental mouse models (99). More recent studies 
(100), suggest that early targeting of CD47 in the myocardium 
after infarction may be a new viable strategy, in combination with 
current standards of care, to enhance the efficacy of wound repair 
in the ischemic heart, and specifically through promotion of 
enhanced cardiomyocyte phagocytosis. However, the titration of 
anti-CD47 antibodies will likely need to be optimized to prevent 
phagoptosis of live cells (101).

The clearance of apoptotic cells and cellular debris is also medi-
ated by soluble mediators of the acute-phase response including 
pentraxins and complement. The long pentraxin, PTX3, has been 
observed in the myocardium and increases in the blood of both 
humans (102) and mice (103) after MI. PTX3 has been shown to 
bind to apoptotic cells limiting activation of the first component 
of the classical complement pathway, C1q, and inhibiting their 
phagocytosis by dendritic cells (104). In contrast to dendritic 
cells, PTX3 increased macrophage phagocytosis of apoptotic cells 
(105), indicating that PTX3 may redirect apoptotic cell phagocy-
tosis during injury to promote inflammation resolution and limit 
self-antigen presentation. The cumulative effect for the actions of 
PTX3 are cardioprotective as PTX3-deficient mice display exac-
erbated heart damage with increased cardiomyocyte apoptosis 
and complement activation after MI (103), and administration 
of exogenous PTX3 ameliorated cardiomyocyte apoptosis and 
inflammation in a heart transplantation model (106). Circulating 
levels of the classical short pentraxin, C-reactive protein (CRP), 
are also elevated in the blood of humans after MI (102). Like 
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PTX3, CRP is also able to promote apoptotic cell clearance by 
binding to oxidized phosphorylcholine on the apoptotic cell 
surface leading to recognition and phagocytosis by macrophages 
(107, 108). While both elevated and insufficient levels of CRP 
have been linked with disease progression in a variety of autoim-
mune disorders (109), the increased levels of CRP observed after 
MI in humans is believed to promote complement activation 
in the infarct leading to increased cardiomyocyte death (110). 
Consistent with a detrimental role for CRP after cardiac injury, 
selective apheresis of CRP reduced infarct size in pigs after MI 
(111), and administration of human CRP, which binds to damaged 
cells and activates complement, enhanced infarct size in rats after 
MI (112). Inhibition of complement activation in rabbits reduced 
infarct size after cardiac IRI (113), suggesting that regulation of 
complement activation by PTX3 and CRP may control the extent 
of damage after cardiac injury.

Finally, the biodegradation of collagen by phagocytes and the 
deposition of new extracellular matrix is formative during the final 
stages of tissue remodeling. Macrophages are capable of phagocy-
tosing collagen with M2-like macrophages predominating col-
lagen uptake in vivo in a mannose receptor (CD206)-dependent 
pathway (114). Whether collagen phagocytosis stimulates macro-
phages to promote extracellular matrix deposition remains 
unclear; however, loss of CD206+ M2-like macrophages during 
MI and the resultant catastrophic decrease in collagen deposition 
(68), underscores the importance of macrophages shaping the 
extracellular matrix during the final stages of tissue remodeling. 
Importantly, phagocytes can fine-tune their response according to 
the size and source of the phagocytic target. A recent finding indi-
cated that reactive oxygen species localization may be one signal 
that regulates this response with smaller microbes triggering ROS 
intracellularly in neutrophils and larger microbes triggering extra-
cellular release of ROS, effectively adapting the immune response 
to the microbe size (115). This may be particularly relevant in the 
heart where macrophages encounter apoptotic targets of varying 
size during wound healing ranging from the diminutive red blood 
cell to the relatively larger cardiomyocyte, which is many fold 
larger in surface area relative to the macrophage.

ReCOGNiTiON OF THe CARDiAC 
PAReNCHYMA BY PHAGOCYTe 
ReCePTORS

The recognition of “eat-me” signals on apoptotic cells is perfor-
med by a variety of conserved recognition receptors, which either 
directly or indirectly recognize the apoptotic cell and often dis-
play redundancy in the “eat-me” signals recognized. In the heart, 
early reports have linked apoptotic cell recognition by scavenger 
receptors (SRs) in cardiac repair. For example, mice deficient in 
class A scavenger receptor (SR-A) exhibit increased myocardial 
rupture after infarction resulting in part from excessive inflam-
mation (116). Whether SR-A deficiency impairs phagocytosis 
of dying cardiomyocytes by macrophages is unclear; however, 
the hearts of SR-A-deficient mice display evidence of increased 
cardiomyocyte necrosis (117), which could be the consequence of 
secondary necrosis following impaired apoptotic cell clearance. 

Interestingly, SR-A deficiency reduced myocardial IRI and this 
was associated with increased microRNA-125b expression and 
reduced apoptosis in macrophages (118). In contrast to permanent 
occlusion MI, reperfusion spares resident cardiac macrophages 
that would otherwise be subject to ischemic-induced cell death 
(119), so the attenuated injury in SR-A-deficient mice after IRI 
may be due to the actions of preserved resident macrophage func-
tion. CD36, another SR, also appears important for wound heal-
ing after myocardial injury (120), particularly early after the onset 
of injury (63). Within hours after MI, uptake of apoptotic and 
necrotic cardiomyocyte debris was mediated by CD36 on Ly6Chi 
monocytes and the importance of CD36-mediated clearance by 
Ly6Chi monocytes was revealed in CD36-deficient bone marrow 
recipients, which displayed increased infarct size early after MI 
compared to WT recipients (63). CD36-mediated engulfment 
was also found to induce the expression of NR4A1, which is 
required to mediate the differentiation of Ly6Chi monocytes 
into reparative Ly6Clo macrophages (65). The protective effects 
mediated by CD36 may be limited by its proteolytic degradation 
as CD36 levels decreased after MI in WT but not in matrix metal-
loproteinase (MMP)9-deficient mice (120). Preservation of CD36 
in MMP-9-deficient mice increased macrophage phagocytosis 
of apoptotic neutrophils, improving inflammation resolution 
and LV function. Efferocytosis of apoptotic cardiomyocytes has 
been shown to require MerTK to resolve acute inflammation 
and permit cardiac repair after permanent occlusion (34, 35) 
and clinically relevant myocardial reperfusion (17). Additionally, 
combined deficiency of MerTK and MFG-E8 in macrophages 
impaired efferocytosis-linked vascular endothelial growth factor 
(VEGF)-A secretion, worsening angiogenesis and cardiac repair 
after MI (34). MerTK and additional receptor tyrosine kinase 
family members, Tyro3 and AXL, indirectly recognize apoptotic 
cells through bridging molecules growth-arrest-specific 6 and 
protein S, which bind phosphatidylserine. Galectin-3 has been 
suggested as a new, putative MerTK ligand (121), and consistent 
with this role, Galectin-3-deficient mice had increased infarct 
size and worsened ventricular function after MI (122). While the 
role of MerTK in cardiac repair is well characterized, roles for 
either Tyro3 or AXL in the heart are currently unknown. Overall, 
the phagocyte is equipped with a variety of receptors capable of 
recognizing apoptotic cells. How these receptors mediate engulf-
ment, the signals that regulate their expression in the heart during 
both homeostasis and disease, and in many cases, the ligands 
these receptors recognize on the surface of apoptotic cells remain 
unknown and are the focus of current investigations.

CARDiAC CONSeQUeNCeS OF 
PHAGOCYTOSiS-DePeNDeNT 
iNTRACeLLULAR SiGNALiNG  
AND RePROGRAMMiNG

The engulfment of foreign bodies by phagocytes triggers signal 
transduction cascades beyond the necessary cytoskeletal and 
phago-lyosomal processing pathways that are required to physi-
cally internalize and digest extracellular-derived material. In the 
case of microbial phagocytosis, phagosomes have been shown 
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to recruit pH-lowering caspase-1, which was activated by the 
NLRP3 inflammasome and ROS signaling, leading to cross-
presentation of phagocytosed bacterial antigens (123). In the case 
of macrophages that have ingested apoptotic cells, intracellular 
signaling culminates in inhibition of proinflammatory cytokine 
production and secretion of anti-inflammatory mediators (13). 
Such signaling pathways remain an active area of investiga-
tion. One key family of efferocytosis-signaling molecules are 
the nuclear receptors. For example, the nuclear receptor, liver 
X receptor (LXR), is activated upon apoptotic cell engulfment 
and can in turn promote further efferocytic events through the 
induction of efferocytic receptors (124). In vitro, loss of LXR 
reduced macrophage-mediated efferocytosis and subsequently 
impaired the tolerogenic effects that result from apoptotic cell 
engulfment, and in vivo, LXR-deficient mice exhibited a break 
in self-tolerance, developing autoantibodies and autoimmune 
glomerulonephritis. Some of this reprogramming may occur 
through so-called apoptotic cell response elements (ACREs) 
(125). With respect to IL-10, apoptotic cell engulfment induces 
binding of the transcription factor, pre-B  cell leukemia tran-
scription factor (Pbx)-1, to the IL-10 promoter and deletion 
of the Pbx-1 promoter binding site reduces promoter activity 
and IL-10 production. Interestingly, Pbx-1 deficiency did not 
completely ablate apoptotic cell-induced IL-10 production, 
indicating the likelihood of additional transcription factors 
or ACREs regulating apoptotic cell-induced IL-10 expression. 
Additional signals from the local milieu also translates into 
both phenotypic and functional properties of phagocytes. For 
example, tissue-resident macrophages display unique enhancer 
landscapes beyond what may be explained by developmental 
origin and this is determined in part by the tissue microenviron-
ment (3). Transfer of mature, peritoneal macrophages into the 
lung resulted in upregulation of lung macrophage-specific genes 
and downregulation of peritoneal macrophage-specific genes 
in the transferred macrophages, indicating macrophages can 
be reprogramed by the tissue microenvironment. Phagocytosis 
itself imprints phagocyte heterogeneity in a tissue-specific con-
text, and though tissue residence defines core macrophage 
signatures, the function of phagocytosis overlays an additional 
anti-inflammatory profile (61). Relative to other tissues, such as 
the lung, cardiac-specific imprinting after phagocytosis has not 
been fully explored.

MeTABOLiC PROCeSSiNG OF CLeAReD 
MYOCARDiAL TiSSUe BY iMMUNe 
CeLLS, AND LiNKS TO CARDiAC RePAiR

Tissue injury generates heightened levels of apoptotic and necrotic 
debris and matrix remnants that once cleared by phagocytes, 
must be metabolized. Despite the current interest in immu-
nometabolism, the relevance of this process in the heart by 
immune cells is largely unexplored. For example, emerging 
roles for metabolism have been linked to stem cell develop-
ment (126), cell proliferation (127), and T-cell activation (128).  
In particular, mitochondrial metabolism has been linked to many 
key macrophage functions, including inflammasome activation 

(129), bacterial defense (130), and polarization (131). Given 
that macrophages can engulf cardiomyocytes and associated 
debris and cardiomyocytes may have both denser cellular and 
elevated mitochondria content (132), it is reasonable to suspect 
that following engulfment, macrophages need to increase cel-
lular metabolism to process this large metabolic load and that 
this in turn influences phagocyte intracellular signaling and 
reprogramming.

In contrast to traditional viewpoints that metabolic reprogram-
ming occurs solely in response to nutrient or oxygen availability, 
newer studies reveal that intracellular metabolism is further 
linked to receptors of damage-associated molecular patterns 
(DAMPs), which are present in abundance after myocardial 
infarction (133). In response to LPS, macrophages increase gly-
colysis and the pentose phosphate pathway, and reduce oxidative 
phosphorylation despite the presence of abundant molecular 
oxygen (131, 134, 135). Approaches utilizing glucose tracers 
demonstrate conservation of this glycolytic shift in response to 
other proinflammatory stimuli such as IFN-γ and DAMPs (136). 
Mechanistically, integrated transcriptional and metabolic net-
work analyzes revealed that proinflammatory macrophages have 
a so-called “broken TCA cycle,” where the truncation of isocitrate 
dehydrogenase and succinate dehydrogenase (SDH) leads to an 
accumulation of succinate (137). The increase in succinate stabi-
lizes hypoxia inducible factor (HIF)-1α resulting in an increase 
in reverse electron transport and ROS production from complex 
I of the electron transport chain and favoring glycolysis by 
promoting phosphofructokinase isoform conversion (135, 138).  
Metabolomic studies also revealed that itaconate modulates pro-
inflammatory macrophage metabolism and effector function by 
inhibiting the oxidation of succinate to fumarate by SDH (139). 
Furthermore, HIF-1α may also directly be stabilized by ROS 
generated during IRI driving a metabolic shift in macrophages 
toward glycolysis and the subsequent proinflammatory polariza-
tion (140).

While DAMPs and hypoxia may polarize cardiac macro-
phages toward a glycolysis-dominated, proinflammatory profile 
early during myocardial injury, increased oxygen tensions due 
to angiogenesis and increased levels of lipids from engulfed 
apoptotic debris may promote a metabolic shift toward fatty 
acid oxidation (FAO) through the mitochondria. In this context, 
alternatively activated macrophages induced by IL-4 consumed 
more oxygen (141) and this increase in oxidative metabolism 
was required for the anti-inflammatory phenotype, as inhibition 
of FAO with the carnitine palmitoyltransferase (CPT)-1 inhibi-
tor, etomoxir, inhibited IL-4 induced alternative macrophage 
polarization (131). However, another group contrasted CTP-2 
requirements by showing that CPT-2-deficient macrophages can 
still fully polarize toward an alternatively activated macrophage 
phenotype after IL-4 stimulation, despite inhibition of FAO. 
Thus, the effect of etomoxir on macrophage polarization might 
be partially due to off target effects (142). Additionally, few pro-
cesses are all or none and another recent study reported glucose 
requirements during alternative macrophage polarization, which 
was dependent on a mTORC2/Stat6/IRF4 signaling axis (143). 
Still the evidence to date largely supports a role for mitochondrial 
oxidative phosphorylation in anti-inflammatory responses as 
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IL-10 can alter macrophage function by promoting mitophagy 
of damaged mitochondria to support oxidative phosphorylation 
and limiting glucose uptake and glyocylosis to oppose inflam-
matory metabolic reprogramming (144). As IL-10 is actively 
produced in macrophages after efferocytosis, it is worth exploring 
whether efferocytosis influences cellular metabolism to promote 
IL-10 production or whether macrophage secretion of IL-10 
after efferocytosis functions in an autocrine manner to affect 
macrophage metabolism. Metabolism of small molecules such 
as amino acids and vitamins are also involved in macrophage 
activation. For example, l-arginine-derived metabolites are 
important mediators for inhibiting the production of TNF-α in 
mouse splenic macrophages after intestinal obstruction (145). 
Vitamin A has also been shown to be required for the phenotypic 
conversion of IL-4 activated macrophages within tissue resident 
macrophages of the peritoneal cavity (146). Besides its contribu-
tion to alternative macrophage activities, lipid metabolism also 
likely contributes to macrophage phagocytosis by fulfilling its 
energetic needs and regulating the membrane fluidity that is 
required for phagocytosis (147). Other links to mitochondrial 
pathways include mitochondrial UCP2, which is required for 
continuous uptake of apoptotic cells (148). Taken together, many 
of the metabolic links between phagocytosis and macrophage 
function remain unknown, especially in the heart, and discover-
ies made in the field of immunometabolism as it pertains to the 
macrophage will likely influence our understanding of inflamma-
tion resolution after cardiac injury and inform new therapeutic 
strategies.

CARDiAC LYMPHATiCS iN iMMUNe 
SURveiLLANCe AND TiSSUe 
HOMeOSTASiS

Recent evidence has demonstrated crucial roles for the lym-
phatic vasculature of the heart in both immune surveillance 
and tissue-fluid homeostasis. Under steady-state conditions, 
the lymphatic network provides a path for dendritic cells to 
constitutively phagocytose apoptotic cell remnants and trans-
port this self-antigen to T-cell areas in draining lymph nodes, 
contributing to peripheral self-tolerance (149). In the heart, 
IRF8-dependent conventional dendritic cells phagocytose the 
cardiac self-antigen, α-myosin, and transport it to, and present 
it in, the heart-draining mediastinal lymph node (MLN) where 
it promotes the induction of α-myosin-specific CD4+ T regula-
tory cells to maintain tolerance (150). Indeed, and in our own 
hands, trafficking of cardiac antigen to lymph nodes appears to 
be found in phagocytes (Figure 2 Lymphatics). During inflam-
mation, an elevated number of phagocytes can traffic from the 
site of injury and carry phagocytosed antigen to the draining 
lymph nodes (151). Although the cessation of the phagocyte 
response in inflamed infarct tissue may occur primarily through 
local cell death, some phagocytes traffic from the infarct tissue 
to lymphatic organs (119). With respect to DCs, MI results in 
massive maturation and expansion of all DC subsets in the heart, 
including monocyte-derived DCs, followed by trafficking and 
presentation of cardiac-derived antigens to CD4+ T cells in the 

MLN (150). Macrophages also utilize lymphatic vessels to traffic 
antigen and modulate inflammatory responses in draining lymph 
nodes and distal sites (152). For example, macrophages take 
part in reverse cholesterol transport through lymphatics with 
ablation of these pathways leading to heightened atherosclerosis 
and inflammatory disease (153). In the heart, direct labeling of 
cardiac resident macrophages, but not Ly6Chi monocytes, by 
intramyocardial injection of a cell tracking dye demonstrated 
that cardiac macrophages constitutively traffic to the MLN, 
spleen, and bone marrow under steady-state conditions (18). 
Following MI, the percentage of labeled macrophages doubles in 
both the spleen and the bone marrow; however, the significance 
of this migration remains unknown.

With respect to tissue-fluid homeostasis, recent research has 
demonstrated that VEGF-C-dependent lymphatics expand in 
the border zone post-MI with further induction of lymphangi-
ogenesis, through VEGF-C injection, leading to increased meas-
ures of cardiac function and repair (154, 155). VEGF-C-induced 
lymphangiogenesis led not only to improved myocardial fluid 
balance through resolution of tissue edema but also to attenu-
ated cardiac inflammation, in part through egress of DCs and 
macrophages from the wounded heart. Interestingly, VEGF-C 
secreting macrophages are implicated in several pathologies and 
inflammatory processes. In anti-inflammatory tumor environ-
ments, macrophages are able to secrete VEGF-C and increase 
lymphatics, causing downstream tumor metastasis (156).  
As demonstrated in murine models of lung damage, intestinal 
bowel disease, and in corneal inflammation, macrophages are 
able to secrete VEGF-C to induce lymphangiogenesis, regulate 
lymphatics, and migrate through lymphatics into lymph nodes 
(157, 158). In the heart specifically, macrophages secrete VEGF-C 
in murine models of hypertension and when activated by tonic-
ity enhanced binding protein, an osmotic stress responsive 
transcription factor, contribute to the adaptive response in main-
taining interstitial fluid and blood pressure homeostasis (159). 
Furthermore, macrophages were shown to not only modulate 
lymphangiogenesis, but also directly interact and remodel lym-
phatic vessel structure and function. In such cases, macrophages 
closely interact with lymphatics, possibly incorporating into 
the vessels, and ultimately augmenting the branching of newly 
forming lymphatics (160). While efferocytosis has been linked to 
macrophage production of VEGF-A after MI (34), it is currently 
unknown whether efferocytosis plays a role in VEGF-C produc-
tion by macrophages.

PHAGOCYTOSiS LiNKS TO CARDiAC-
SPeCiFiC T-CeLL ReSPONSeS

Professional phagocytes, such as macrophages and dendritic 
cells, play a critical role in bridging innate and adaptive immu-
nity, which is important in the context of host defense (discussed 
above). However, after sterile inflammation, such as myocardial 
infarction, anticardiac T- and B-cell responses can develop 
suggesting that phagocytosis by cardiac macrophages and DCs 
can initiate autoimmune responses. Myocardial infarction 
induces activation and proliferation of CD4+ T cells in a cardiac 
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antigen-specific manner, as mice with CD4+ T cells specific to an 
irrelevant antigen fail to mount a response (161). This process 
is exacerbated in the presence of additional pathophysiology, 
such as type I diabetes. In both mice susceptible to type I dia-
betes and type I diabetic patients, myocardial infarction induces 
postinfarction autoimmunity specific for cardiac antigens such 
as α-myosin heavy chain, α-actinin-2, and troponin I (162). This 
is due in part to a lack of central tolerance to cardiac antigens 
(163), and impaired efferocytosis in individuals susceptible to 
type I diabetes. High glucose conditions impair macrophage-
mediated efferocytosis (164), likely contributing to liberation of 
self-antigens in an inflammatory context. More recently, infarct 
lysate-primed, tolerogenic dendritic cells improved remodeling 
and cardiac function after MI by affecting regulatory T-cell 
and macrophage polarization (165). Interestingly, tolerogenic 
dendritic cells migrated only to the regional lymph node near 
the site of injection but were still able to induce a systemic activa-
tion of MI-specific regulatory T cells. In contrast to tolerogenic 
DCs, conventional and myeloid-derived DCs infiltrate and 
mature in the infarcted heart and migrate to the MLN, where it 
was demonstrated that IRF4-dependent conventional DCs were 
superior in presenting α-myosin to CD4+ T cells (150). Despite 
the importance of IRF4- and IRF8-dependent conventional 
DCs in presenting cardiac antigens in the MLN, loss of either 
subset did not impair α-myosin-specific CD4+ T-cell responses. 

Perhaps this is due to the massive presence of monocyte-derived 
DCs in the MLN after MI. While monocyte-derived DCs were 
shown to be inferior in generating α-myosin-specific CD4+ T-cell 
responses at either steady-state or after MI, it has been previously 
reported that this can be overcome by MHC class I/peptide 
transfer to bystander DCs (166). Importantly, transient autoim-
mune reactions to cardiac myosin after MI appear to be relatively 
common among the general population (167), necessitating a 
better understanding of how phagocytes drive postinfarction 
autoimmune responses.

PHAGOCYTe-LiNKeD MYOCYTe 
ReGeNeRATiON

Although not a feature of the adult mammalian heart, the ability 
to regenerate damaged tissue is common to many multicel-
lular organisms and tissues. For example in the skin and liver, 
apoptotic cells, prior to engulfment, release growth signals to 
stimulate the proliferation of progenitor cells (168), and during 
skeletal muscle injury, cooperation between skeletal phagocytes 
and satellite cells leads to myocyte regeneration (169). The latter 
results in part through recognition of phosphatidylserine on 
apoptotic myoblasts by brain-specific angiogenesis inhibitor 1 on 
healthy myoblasts promoting fusion between healthy myoblasts 
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to form myotubes. Similar to the heart, macrophages have also 
been demonstrated to participate in the tissue repair process 
of damaged skeletal muscle with macrophage depletion by 
clodronate-containing liposomes leading to prolonged clearance 
of necrotic myofibers and impaired skeletal muscle regeneration 
(170). Some of the mechanisms can be attributed to generalized 
tissue repair processes, where macrophages acquire an anti-
inflammatory phenotype characterized by gene expression of 
IL-10, IL-13 receptor, arginase 1 (in mice), and other factors.  
In skeletal muscle, macrophage polarized gene expression requires 
CREB, as mice with conditionally mutated promoters exhibit 
severe defects in muscle fiber regeneration (171). Additionally, 
both heart and skeletal muscle injury leads to recruitment of 
Ly6Chi monocytes that ultimately give rise to anti-inflammatory 
Ly6Clo macrophages (65, 172). However, tissue-specific differ-
ences likely exist that shape the role for phagocytes in repair after 
injury as CCR2 deletion or antagonism reduces adverse ventricu-
lar remodeling and improves ventricular function after MI (173, 
174), but impairs myogenesis following skeletal muscle injury 
(172, 175). For example, recruited phagocytes are a critical source 
of IGF-1 that is needed to promote muscle regeneration following 
skeletal muscle injury (175), but in the heart, embryonic-derived 
resident macrophages may be the critical source for this growth 
factor (11).

Despite some similarities in the tissue repair process, the 
adult heart possesses poor regenerative potential in contrast 
to the regenerative capacity of skeletal muscle and relative to 
reports in the neonatal mouse heart, where injury can stimulate 
cardiomyocyte proliferation (176). In the adult heart, immune-
mechanisms of tissue replacement largely leads to fibrosis and 
therefore loss of full cardiac contractile potential. In a genetic 
model of cardiomyocyte cell death, neonatal mice expanded a 
population of embryonic-derived resident cardiac macrophages, 
which generated marginal inflammation and promoted cardiac 
recovery after cardiomyocyte proliferation and angiogenesis (74). 
Similarly, macrophages were required for neonatal heart regen-
eration and neoangiogenesis after MI with macrophages from P1 
hearts promoting angiogenesis essential for cardiac regeneration 
compared to macrophages from P14 hearts, which produced 
factors repairing the damaged tissue but also stimulating fibrotic 
scar formation (177). Thus, understanding the context specific 
molecular cues that empower regenerative potential versus scar-
ring is of critical clinical importance in the heart. Cardiospheres 
and cardiosphere-derived exosomes have shown promise for car-
diac regeneration and some of these pathways may signal through 
apoptotic cell receptors (178, 179). Recent clinical trials suggest 
that yet more work is to be done in the field of cardiosphere-
derived therapy to translate findings from mouse to man (180).

PHAGOCYTe FUNCTiON DURiNG HeART 
FAiLURe AND ASSOCiATeD SYSTeMiC 
FACTORS

Nonresolving inflammation is a driver of disease and a hallmark 
of many cardiovascular syndromes including heart failure (36).  
In both animal models of heart failure and in humans with 

end-stage heart failure, there is evidence of ongoing cardiomyo-
cyte apoptosis indicating that continued clearance of dying car-
diomyocytes by phagocytes and the subsequent reprogramming 
of these efferocytes may influence the progression of this disease 
(181–183). During chronic heart failure, macrophages continue to 
increase in numbers due to increased local macrophage prolifera-
tion and differentiation of recruited monocytes into macrophages 
with each population displaying distinct gene expression patterns 
(73). Limiting the expansion of monocyte-derived macrophages 
through blockade of monocyte recruitment preserves ejection 
fraction after MI (73), indicating that altered phagocyte function 
contributes to heart failure. Similarly, in a model of pressure 
overload-induced heart failure, ICAM1-deficient mice have 
decreased monocyte recruitment and exhibit no overt signs of 
cardiac fibrosis and minimal ventricular dysfunction (184). 
ICAM1 has been linked to suppression of efferocytosis with 
ICAM1 deficiency in macrophages promoting efferocytosis of 
apoptotic cells (185). Increased efferocytosis by ICAM1-deficient 
macrophages led to increased expression of IL-10, which has 
been shown to attenuate pressure overload-induced hypertrophic 
remodeling (186), indicating that enhanced efferocytosis by 
cardiac resident macrophages may contribute to the protective 
response to heart failure in ICAM1-deficient mice. Galectin-3 
represents another marker of altered phagocyte phenotype during 
heart failure as it is expressed only by myocardial macrophages in 
failure-prone hypertrophied hearts but not normal hearts, where 
it has been shown to contribute to cardiac dysfunction in rats 
(187) and be predictive of adverse events in human heart failure 
patients (188). In mice lacking Galectin-3, myocardial fibrosis 
and macrophage infiltration were reduced with preservation of 
left ventricular function during chronic angiotensin II-induced 
hypertension demonstrating a cardiac-deleterious role for 
Galectin-3 (189). Galectin-3 plays a critical role in phagocytosis 
by macrophages (190), but it can also be proteolytically cleaved 
by MMP to release a soluble protein (191), which is capable of 
inducing fibroblast proliferation and collagen production (187). 
Whether Galectin-3-dependent phagocytosis or production of 
soluble Galectin-3 by macrophages contributes to the progression 
of heart failure remains to be determined; however, Galectin-3 
influences macrophage polarization in  vitro (192), suggesting 
that Galectin-3 alters cardiac macrophage function in the failing 
heart. Additional phagocytic receptors, such as SR-A, have been 
implicated in regulating phagocyte function during heart failure 
with SR-A-deficient macrophages displaying increased expres-
sion of proinflammatory genes following LPS-stimulation in vitro 
and adverse vascular remodeling during angiotensin II-induced 
hypertension in vivo (193).

The link between phagocyte function and heart failure is likely  
a consequence of both local pathological changes within the myocar-
dium itself and pathophysiologies in distant organ systems that 
feedback on the heart and also manifest as systemic changes. 
For example, cardiorenal syndrome manifests as impaired renal 
function following MI characterized by increased infiltration of 
macrophages into the kidney and elevated renal levels of TGF-β 
and T-cell immunoglobulin and mucin domain (TIM)-1 associ-
ated with the onset of renal fibrosis (194). TIM-1 has been linked 
to efferocytosis (195), and overexpression of TIM-1 in mice leads 
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to the development of spontaneous and progressive interstitial 
kidney inflammation with fibrosis (196), demonstrating that 
enhanced expression of apoptotic receptors distal to the site of 
injury may have deleterious effects. In the context of hyperten-
sion, a recent report has demonstrated an interplay between 
neurohormonal modulation of phagocyte function before the 
onset of hypertension, leading to excessive inflammation by 
the phagocyte system and contributing to the development of 
hypertension (197). Heart failure also has systemic consequences 
and in a recent report, mice subjected to myocardial pressure 
overload in turn activated a heart–brain–kidney network that 
required phagocyte function in both the heart and kidney and 
culminated in activation of cardiac-resident Ly6Clo macrophages 
to mediate the adaptive response (198). Following pressure over-
load in the heart, sympathetic nerve activation led to activation 
of renal collecting-duct cells, which through interactions with 
renal macrophages led to the release of CSF2 into the circulation 
by endothelial cells within the kidney. Within the overloaded 
heart, CSF2 expanded and activated Ly6Clo macrophages to 
secrete amphiregulin inducing a cardiac hypertrophic response. 
Interestingly, a parabiosis model revealed that these cardiac-res-
ident Ly6Clo macrophages increased in number largely through 
in situ proliferation; however, further examination of the Ly6Clo 
resident macrophage population using well-established markers 
MHCII and CCR2 or lineage tracing was not performed. This is 
of particular importance as embryonic-derived resident cardiac 
macrophages have been shown to decline with age (75) and 
embryonic-derived resident cardiac macrophages may be supe-
rior at mediating adaptive responses in the heart (74). How the 
different macrophage subsets change during the course of disease 
and whether phagocytosis of ongoing cardiomyocyte death alter 
the progression of heart disease and its related sequela remain to 
be determined.

PHAGOCYTOSiS POST HeART 
TRANSPLANTATiON AND New 
THeRAPeUTiC OPPORTUNiTieS  
FOR TOLeRANCe

Transplant rejection involves both innate and adaptive immune 
responses. Clinical progress has reduced acute cardiac trans-
plant rejection, however, beyond ten years, complications of 
immunologic intervention often lead to significant comorbidities, 
particularly posttransplant vasculopathy. Continuous immune-
suppression during transplant raises risks of opportunistic 
infections, and of hematologic (199), metabolic, and nephrotoxic 
side effects (200). Interestingly, acute phagocytosis and innate 
inflammation during allograft IRI has been linked to chronic 
pathophysiology. For example, perioperative and acute inflam-
mation are prognostic for worse long-term transplant outcome 
(201, 202). Graft reperfusion may trigger reperfusion-associated 
cell death (38) and cell necrosis occurs during allograft cold 
storage and continues in allograft reperfusion. Both of these 
processes liberates allo-antigens in an inflammatory context. 
Efficient clearance of dead cells by macrophages prevents these 
self-antigens from becoming immunogenic debris and can 

actively initiate tissue-reparative and tolerogenic signaling (203) 
and as a consequence, natural defects in phagocytosis have been 
correlated with, but not yet causally linked, to poor outcomes 
posttransplant (204). Similar to post-MI, cardiac allograft rejec-
tion and tolerance are regulated by phagocyte subsets. After IRI, 
cardiac graft rejection is linked to elevated Ly6Chi monocytes  
(205, 206) with both alloantigen-dependent and -independent 
factors contributing to immune cell activation (207). Ly6Chi 
monocytes differentiate into Ly6Clo macrophages and antigen pre-
senting cells, which recognize allogenic non-self and contribute 
to graft injury (208, 209) through cytokines and T-cell activation 
(210, 211). However, not all macrophage function is detrimental, 
as some macrophage subsets belong to the heterogeneous clas-
sification of myeloid-derived suppressor cells (MDSCs), which 
can accumulate in allografts, suppress effector T cells, and induce 
tolerance (212–214). For example, anti-CD40L mAbs (clone 
MR1) promote experimental cardiac tolerance through suppres-
sive DC-SIGN+ macrophages (215). Separately, a unique strategy 
harnesses natural immune-regulatory properties of efferocytosis: 
apoptotic donor splenocytes, fixed with the chemical cross-linker 
1-ethyl-3-(3′-dimethylaminopropyl)-carbodiimide (ECDI-SPs) 
(216), are engulfed by macrophages to induce transplant toler-
ance (217). In the heart, transfusion of ECDI-SPs from the donor 
strain prior to heart transplantation dramatically prolongs sur-
vival of the heart graft and tolerance induction is dependent on 
phagocytosis of the apoptotic cells (218) and signaling through 
apoptotic cell receptors. This process enhances the accumulation 
of MDSCs in both the spleen and the cardiac allograft, which 
limit the activation and recruitment of antiallograft CD8+ T cells 
(219), and also appears to involve alterations of antigen present-
ing cell costimulatory ligands (220). Alloantigen-presenting 
plasmacytoid dendritic cells have also been shown to mediate 
tolerance to vascularized grafts (221). The complete molecular 
mechanisms by which uptake of apoptotic splenocytes induce 
cardiac allograft survival remain unclear.

MOLeCULAR MODULATORS AND 
iNHiBiTORS OF CARDiAC 
PHAGOCYTOSiS

Accumulating molecular evidence suggests that the clearance 
efficiency of the cardiac infarct is not optimal and therefore 
amenable to potential therapeutic intervention. For example, 
cardiomyocytes induce macrophage receptor shedding to sup-
press phagocytosis (222). The mechanism involves the activity 
of ADAM proteases, which recognize the efferocytosis receptor, 
MerTK and execute its proteolytic shedding from the surface of 
macrophages (223). ADAM17-mediated proteolytic degradation 
releases a soluble protein (solMER), which is believed to com-
pete with membrane-bound MerTK in the binding of bridging 
molecules on the surface of apoptotic cells antagonizing MerTK-
mediated efferocytosis. Additionally, loss of MerTK from the 
cell surface also eliminates MerTK-induced anti-inflammatory 
responses. For example, MerTK signaling increases the ratio of 
cytoplasmic-to-nuclear 5-lipoxygenase promoting the produc-
tion of specialized proresolving mediators (SPMs), including 
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LXA4 and RvD1 (60). In the heart, production of SPMs initi-
ates a proresolving response actively promoting inflammation 
resolution with administration of RvD1 during MI reducing neu-
trophil recruitment to the spleen and infarct and promoting anti- 
inflammatory polarization of macrophages culminating in 
reduced fibrosis and preserved ventricular function (224). 
Efferocytosis and SPM production is impaired under conditions 
where MerTK is cleaved and introduction of a cleavage-resistant 
MerTK in mice improves inflammation resolution during both 
peritonitis (60) and myocardial reperfusion (17). Previous stud-
ies have also shown that the SR CD36 is susceptible to cleavage 
during atherosclerosis (225) and by MMP-9 after myocardial 
infarction (120) and our own work recapitulates these findings 
(63). Of course proteolysis is not specific to macrophages as 
TLR7/8 activation in neutrophils reduces immune complex 
phagocytosis through shedding of FcgRIIA (226). On the target 
cell side, molecules of the CD47/SIRP1α axis have also been 
associated with proteolysis susceptibility. In vascular smooth 
muscle cells, CD47 was shown to be a target of MMP-2-mediated 
proteolytic degradation (227) and in mice, MMP-2 deficiency led 
to enhanced survival after MI (228). While CD47 cleavage was 
not examined in the MMP-2-deficient mice, a greater number of 
cardiomyocytes persisted in the infarct and border zone.

Other common comorbidities such as diabetes mellitus and 
hyperlipidemia in patients with heart failure have also been linked 
to both apoptotic receptor shedding and impaired phagocytosis. 
Macrophage exposure to diabetic conditions in  vitro, leads to 
reduced miR-126 expression and a concomitant increase in its 
direct target, ADAM9 (164). Similar to ADAM17, ADAM9 is also 
able to mediate the cleavage destruction of MerTK and impair 
efferocytosis of apoptotic cardiomyocytes. Human heart tissue 
from diabetic patients with heart failure recapitulated the in vitro 
findings with human diabetic failing heart tissue exhibiting 
reduced miR126 and increased ADAM9 expression with a reduc-
tion in phosphorylated MerTK, a surrogate marker for MerTK 
signaling, indicating that antagonism of MerTK-mediated pro-
cesses under diabetic conditions could translate to an increase in 
adverse clinical outcomes in heart failure patients. With respect 
to hyperlipidemia, apolipoprotein E (apoE)-deficient mice, which 
develop hyperlipidemia and atheroscleorosis when maintained 
on a high-fat diet, exhibit impaired wound healing after MI (62). 
The dysregulated healing response may be due in part to effects 
of hyperlipidemia on apoptotic cell clearance (229). In vascular 
smooth muscle cells, oxidized low-density lipoprotein in vitro or 
hyperlipidemia in vivo impaired phagocytosis of apoptotic cells 
leading to the development of secondary necrotic cells capable of 
releasing both IL-1α and IL-1β further propagating the inflamma-
tory response. Mice maintained on a high-fat diet also displayed 
increased activation of ADAM17 on the vascular endothelium, 
indicating that proteolytic degradation of apoptotic receptors 
may contribute to impaired phagocytosis during obesity and 
hyperlipidemia (230). Targeting hyperlipidemia using atorvas-
tatin, restored phagocytic function to retinal pigment epithelial 
cells treated with cholesterol crystals or oxidized low-density 
lipoproteins (231), demonstrating a proof-of-principle approach 
to mitigating detrimental effects of hyperlipidemia on phagocy-
tosis in the heart.

Hypoxia is another common environmental stress after 
coronary artery occlusion. The activation of proteases such 
as ADAM17 have been linked to hypoxia and HIFs (232), 
indicating that the hypoxic myocardium may also antagonize 
phagocytosis by promoting ADAM17-mediated proteolytic 
degradation of apoptotic receptors. However, in the absence 
of detectable receptor shedding, hypoxia has also been shown 
to suppress efferocytosis by macrophages and this was due in 
part to reduced gene expression of efferocytic receptors during 
hypoxia exposure (233). While phagocytes encounter varying 
oxygen tensions during development, migration, and infiltration 
of tissues, hypoxia was shown to be dispensable for macrophage 
differentiation, at least in the hypoxic tumor microenvironment 
(234), suggesting that oxygen tension may act to fine-tune 
macrophage function. HIFα subunits are the critical regula-
tors of phagocyte function during hypoxia and inflammation, 
controlling metabolism, cytokine production, migration, and 
survival and thus, likely shape the phagocyte response during 
wound healing in the hypoxic heart. In the infarcted myocar-
dium, macrophages have been shown to express both HIF-1α 
and HIF-2α (235); however, our understanding of the timing 
and functional significance of HIFα subunits in phagocytes 
during cardiac injury is incomplete. Knockdown of HIF-1α in 
the hematopoietic compartment improved LV function after MI 
and this was attributed to reduced recruitment of neutrophils and 
monocytes to the infarcted myocardium (236). In contrast to the 
more widely studied HIF-1α isoform, less is known about HIF-2α 
function in macrophages. A recent study implicated a role for 
HIF-2α in redox control and phagocytosis by macrophages dur-
ing normoxic conditions (237). Elevations in mitochondrial ROS 
in HIF-2α-deficient macrophages led to nuclear translocation of 
NRF2 and NRF2-dependent transcriptional induction of the 
phagocytic receptor, MARCO, which translated into increased 
macrophage phagocytic function. Similar to HIF-1α, HIF-2α 
has also been implicated in regulating macrophage LPS-induced 
secretion of proinflammatory cytokines and chemokines (238), 
though this occurred independent of changes in cellular energy 
homeostasis, in contrast to the connection of HIF-1α to glycolysis. 
Given the importance of both HIF-1α and HIF-2α in secretion 
of proinflammatory mediators by macrophages, it is tempting to 
speculate that myeloid cell expression of HIFα subunits may play 
a detrimental role in the hypoxic heart. However, HIFα isoforms 
show differential activation in macrophages with HIF-1α induc-
tion following M1 polarization and HIF-2α induction following 
M2 polarization (239), the latter of which leads to macrophage 
expression of arginase 1 and attenuated inflammation during 
obesity-induced insulin resistance in adipose tissue (240). HIFα 
subunits also play an important role in the adaptive angiogenic 
and lymphangiogenic responses to hypoxia, both of which have 
been implicated in heart healing after MI. Here again, HIF-1α 
and HIF-2α may have opposing roles in phagocytes with HIF-
1α promoting and HIF-2α antagonizing the angiogenic effects 
of VEGF (241). Additional studies are needed to fill the large 
gaps that remain in our understanding on how oxygen tension 
and HIFα subunits regulate phagocytosis in the heart. Taken 
together, a number of risk factors promote inefficient clearance 
of dying cells during cardiovascular disease, leading to secondary 
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necrosis and prolonged inflammation. Future studies identifying 
the mechanisms of how these risk factors conspire to antagonize 
phagocytosis in the heart will lead to the identification of new 
targets for the development of novel therapeutics to promote 
wound healing in the heart.

FUTURe PROSPeCTS FOR THe 
THeRAPeUTiC TARGeTiNG OF 
PHAGOCYTiC RePAiR AND 
ReGeNeRATive PATHwAYS iN  
THe HeART

Improvements in clinical treatment have led to reduced mortality 
after first MI. Nevertheless, the incidence of heart failure, includ-
ing after MI, is on the rise. Current clinical trials, including the 
CANTOS trial, have demonstrated the merits of anti-inflamma-
tory therapy for the reduction of secondary events (242, 243). 
Given the critical role of efferocytosis and phagocytosis after MI, 
this pathway represents a tractable target amenable to modulation 
during the time patients are in hospital and during the forma-
tive stages of disease progression. Approaches that strategize to 
enhance phagocytic efficiency are appealing due to the multiple 
checks and balances that are naturally built in to mechanisms 
of phagocytosis and therefore minimize off target effects; that is 
engulfment requires both the downregulation of “don’t eat me” 
signals, as well the converse presentation of prophagocytic “eat 
me” ligands. One approach is to use cardiosphere-derived cells 
or exosomes, which are heart cell products with antifibrotic, anti-
inflammatory, and angiogenic properties. Uptake of CDCs by 
macrophages induces a proresolving phenotype leading to reduc-
tions in left ventricular fibrosis and inflammation with improved 
left ventricular function (178, 179, 244). Alternative strategies 

have employed liposomes carrying phosphatidylserine, an “eat 
me” signal that directs efferocytosis, to increase anti-inflammatory 
cytokine production by macrophages after myocardial infarction 
(245). Other macrophage-targeted lipid based drug carriers are 
able to reprogram macrophages to a proresolving phenotype and 
improve tissue repair and limit infarct expansion (246). With 
respect to the proteolytic degradation of efferocytic receptors, 
such as MerTK and CD36 (17, 225), strategies which block the 
cleavage degradation including cleavage-blocking peptides, may 
be a viable approach for enhancing protection after cardiac insult. 
Additionally, since the soluble forms of these efferocytic receptors 
are increased in the serum after MI, monitoring their levels in 
humans may serve as a useful biomarker for novel therapeutic 
interventions. Taken together, targeting efferocytosis and phago-
cytosis pathways in the heart represents a promising therapeutic 
strategy to limit inflammation and promote reparative functions 
in a variety of cardiovascular disease settings.
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