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The cancer stem cell (CSC) hypothesis suggests that within a tumor, there is a small 
subpopulation of cells with stem cell properties responsible for tumor maintenance and 
metastasis generation. This hypothesis also implies that new antitumor drugs, rather than 
targeting the bulk of the tumor mass, would be more effective if they directly targeted 
the CSC subpopulation. The CSCs from several types of tumors have been identified 
with mAbs recognizing surface antigens in these cells; however, antigens specifically or 
exclusively expressed in the CSC population have not yet been identified. Thus, ques-
tioning the possibility of using therapeutic antibodies directed against the CSCs. Here, 
we review the possibilities of using antibodies directly targeting the CSCs as therapeutic 
agents in the form of naked antibodies, antibodies conjugated to nanoparticles, or 
antibody cocktails.
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iNTRODUCTiON

Although the most frequently used anticancer treatments still are chemotherapy and radiotherapy, 
it is clear by now that monoclonal antibodies have emerged on the last 20 years as the most relevant 
new type of anticancer drugs with clinically proven therapeutic value. Concomitantly, this has 
generated an enormous interest, which has led to a burst of new approaches and clinical trials, 
where monoclonal antibodies represent the key element (1). However, most of the current anti-
cancer treatments, including antibodies or other molecular interventions, increase the survival and 
improve the quality of life on patients, but do not necessarily cure.

It is obvious that antibodies against HER2, CD20, VEGF, EGFR, or CD52 have shown their 
clinical therapeutic value as anticancer drugs (1). In addition, antibodies that enhance the immune 
response by either blocking the PD-1/PD-L1 axis (2); antibodies anti-CTLA-4 (3, 4); or antibodies 
that block inhibitory receptors of NK cells (5, 6); or even CAR T cells (variable antibody regions 
engineered TCR-carrying T cells) (7), have proven also very useful. Indeed, they are able to redirect 
the antitumor immune response and allow envisaging the possibility of a cure for cancer patients. 
Obviously, the cure for cancer patients might come from the use of more or less complex combina-
tions of antibodies that will include other drugs or cells (8).

Thus, the remaining questions are as follows: Is this the best we can do to cure cancer patients? Are 
we hitting the right targets? In this review, we would like to discuss the characteristics of the cancer 
stem cells (CSCs) that make them ideal targets, and the possible strategies of using antibodies to 
directly target the CSC population as the best option to cure cancer patients.
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FigURe 1 | Hypothetical model of the mammary epithelial hierarchy and its relationship with cancer stem cells (CSCs). (Top) The mammary stem cell (MaSC) 
differentiates through a common progenitor into either a myoepithelial or a ductal progenitor, which are committed to generate mature myoepithelial or ductal and 
alveolar cells, respectively. During this process, the MaSC and its progeny undergo at least nine cell divisions to generate the fully differentiated cells (not represented 
here), giving a ratio 1:500 MaSC:differentiated cells (18). (Bottom) CSCs, independent of their origin, are malignant-transformed cells with stem cell characteristics. 
They are able to generate a tumor (or metastases), although they represent a small fraction of the tumor mass (9).
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ADULT STeM CeLLS AND CSCs

One of the concepts that have largely changed our understanding 
about tumor biology was the CSC hypothesis (9). Stem cells are 
defined as cells with the ability of self-renew (perpetuate them-
selves) and to differentiate, generating mature cells of a particular 
tissue. Adult (or tissue-specific) stem cells are rare cells that have 
been identified in many tissues, including the hematopoietic 
stem cells (HSCs) in the bone marrow (10, 11), the mammary 
stem cells in the mammary gland (12, 13), neural stem cells in 
the nervous system (14, 15), and the intestine stem cells in the 
intestine (16), among others. In several cases, a hierarchical 
structure has been demonstrated, where adult stem cells generate 
the appropriate cells from that tissue and maintain its homeosta-
sis. The adult stem cell is able to undergo either symmetric cell 
divisions, generating two daughter stem cells, or asymmetrically, 
where the stem cell gives rise to a daughter stem cell and another 
cell committed for differentiation (17). From the committed cell, 
a common progenitor will be generated lacking self-renewal 
ability, but able to generate all the cell types of the differenti-
ated tissue. The common progenitor will in turn generate more 
committed progenitors; each one of them will be able to generate 
one or two differentiated cell types from the tissue (Figure 1). 
This differentiation process is concomitant with cell expansion, 
explaining the reason why in many cases the frequency of adult 
stem cells is below 1% (18).

The CSC hypothesis proposes for tumors a hierarchical struc-
ture similar to the described for adult tissues. A small fraction 
of cells within the tumor harbor stem-cell like characteristics 
(referred to as CSCs), with an indefinite self-renewal potential 

and able to drive tumorigenesis, being able to develop into a hete-
rogeneous, more differentiated population, which constitutes the 
tumor mass (9). The CSCs were initially identified in acute myeloid 
leukemia (19) and prospectively identified in solid tumors includ-
ing the mammary gland (20), the brain (21), and many others. The 
existence of CSC has been unequivocally demonstrated in  vivo 
in glioblastomas, intestine, melanomas, and mammary tumors 
(22–25). One of the predictions of the CSC hypothesis was that 
more effective cancer therapies would target the CSC, instead of 
the bulk of the tumor (9). This is supported by the finding that 
CSC, such as normal stem cells, are more resistant to conventio nal 
chemotherapy and radiotherapy than more differentiated tumor 
cells (26), suggesting that effective therapies against the CSC 
would target self-renewal and/or differentiation of these cells (27).

Interestingly, it has been demonstrated in glioblastomas that 
therapies directly targeting the CSC are more effective than the 
ones targeting the tumor mass. In fact, standard chemotherapy 
was able to kill the bulk of the glioblastoma, but not the CSC, and 
the tumors quickly returned. When, in addition to chemotherapy, 
the CSC population was depleted in mouse glioblastoma models 
using a genetic trick, the tumors shrank back into “residual 
vestiges” that did not resemble glioblastomas (22). Thus, these 
data suggest that the predictions of the CSC hypothesis are true 
and that therapies directed to the CSC will turn out to be more 
effective.

CSC MARKeRS

Once established that the CSC represents a distinct tumor cell 
population, involved in tumor formation and maintenance, the 
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TABLe 2 | Distribution of frequently used cancer stem cell phenotypic markers.

Phenotypic 
marker

Tumor type Referencea Normal tissue  
expressionb

CD133+ Brain, liver, lung, 
colon, prostate, 
pancreatic, and 
ovary

(21, 31, 37–41, 
43–45, 48–52, 
54, 56, 59, 60)

1, 2, 4, 5, 6, 7, 8, 11,  
12, 14, 16, 17, 18, 19,  
20, 21, 22, 23, 26, 27

ESA1 Breast (20, 42) All tissues high
CD44+ Breast, colon, 

prostate, pancreas, 
and head and neck

(20, 31, 34, 
42–45, 59, 60)

5, 10, 11, 16, 19, 20,  
22, 24, 26, 27

EpCAM+ Colon and 
pancreatic

(43–45, 59, 60) 1, 2, 4, 5, 6, 8, 11, 12,  
13, 14, 15, 16, 18, 19,  

20, 21, 22, 26, 27
CD20 Melanoma (36) 1, 3, 5, 6, 8, 9, 10, 11,  

12, 14, 16, 18, 19, 20, 
22, 23, 26, 27

CD49f+ Breast and liver (20, 42, 48, 49) 1, 8, 12, 14, 15,  
16, 17, 27

CD34+ Leukemia (47) 5, 15, 16, 17, 19,  
20, 21, 23

CD123+ Leukemia (47) 5, 10, 11, 19, 20
CD24+ Colon and 

pancreatic
(43–45, 59, 60) n.a.c

BCRP1+ Brain (38–41) n.a.
ABCG2 Lung (50, 51) 1, 3, 5, 6, 7, 12, 14, 16,  

17, 19, 21, 23, 25, 27
CD138+ Multiple myeloma (35, 55) 1, 2, 3, 4, 5, 6, 8, 9, 10,  

11, 12, 13, 14, 17, 19,  
20, 21, 22, 24, 27

CD90+ Liver (48, 49) 1, 2, 3, 4, 5, 6, 7, 8, 9,  
10, 11, 12, 13, 14, 15,  
16, 17, 18, 19, 20, 21,  

22, 23, 24, 25, 27
CD166+ Colon (62) 5, 7, 21, 25

aReference on the expression of the phenotypic marker in different tumor types.
bEach number corresponds to a normal tissue with expression levels >10-fold over 
background. The data have been obtained from Fagerberg et al. (63). The code 
number for each tissue is as follows—1: colon; 2: kidney; 3: liver; 4: pancreas; 5: lung; 
6: prostate; 7: brain; 8: stomach; 9: spleen; 10: lymph node; 11: appendix; 12: small 
intestine; 13: adrenal gland; 14: duodenum; 15: adipose tissue; 16: endometrium; 
17: placenta; 18: testis; 19: gall bladder; 20: urinary bladder; 21: thyroid gland; 22: 
esophagus; 23: heart; 24: skin; 25: ovary; 26: bone marrow; and 27: salivary gland.
cn.a.: data for protein expression of this gene in normal tissues are not available in 
reference (63).

TABLe 1 | Phenotypic markers used to identify cancer stem cell (CSC).

Tumor type Phenotype of CSC Reference

Brain CD133+ (21, 37)
CD133+ BCRP1+A2B5+SSEA-1+ (38–41)

Breast CD44+CD24−/lowESA+ALDH-1high (20, 42)
Colon CD133+CD44+CD166+EpCAM+CD24+ (43–45)
Head and neck CD44+ (34)
Kidney CD105+ (46)
Leukemia CD34+CD38−HLA-

DR−CD71−CD90−CD117−CD123+

(47)

Liver CD133+CD49f+CD90+ (48, 49)
Lung CD133+ABCG2high (50, 51)

CD133+Sca1+CD45−PECAM−CD34+ (52)
Musahi-1+2+CD34+CD21+cKIT+p63+OCT-4+ (53)

Melanoma CD20+ (36)
CD133+CD166+Nestin+ (54)

Multiple myeloma CD138− (35, 55)
Ovarian CD133+ (56)

CD133+CD117+CD44+CD24+ALDH1A1+ (57, 58)
Pancreas CD133+CD44+EpCAM+CD24+ (59, 60)
Prostate CD133+CD44+α2β1high (31)
Retinoblastoma CD44+CD133−CXCR4−CD90− (61)
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identification of their specific markers has been a priority. First, 
for the isolation of the CSC and a more detailed analysis on 
their biology, but also for the possibility of using some of these 
markers as putative therapeutic targets. In many cases, the com-
bination of positive and negative expression of surface markers 
allowed the identification of CSC populations. For example, on 
the identification of CSC in acute myelocytic leukemia (AML), 
where the cells were fractionated on the basis of CD34 and CD38 
expression, demonstrating that only the CD34+CD38− cells, but 
not the CD34+CD38+ or CD34− cells, were able to engraft immu-
nocompromised mice, replicating many aspects of human AML 
(19). Similarly, combinations of other surface markers, such as 
CD24, CD44, ESA, and CD133, allowed the identification of CSC 
in tumors from breast (20), liver (28), brain (21), lung (29), colon 
(30), prostate (31), pancreas (32, 33), head and neck squamous 
carcinoma (34), multiple myeloma (35), melanoma (36), among 
others (Table  1). It should be noted that in many cases, the 
surface markers used to identify CSC also identify adult stem 
cells on the corresponding normal tissues, or are surface markers 
shared by other cell types (Table 2).

The available data allow raising the question of whether 
there are specific CSC markers. Although at this time we cannot 
formally exclude their existence, since the CSC possess the same 
genetic information as the rest of the tumor (there are no addi-
tional mutations in the CSC as compared to the tumor mass), 
it is more likely that the phenotypic differences on CSC are due 
to differential gene expression. Indeed, both phenotypic and 
genetic analyses have failed so far, to pinpoint a single marker 
specific of any CSC population. In this context, genetic analyses 
aiming to understand self-renewal, a hallmark of stem cells and 
cancer, allowed pinpointing two genetic programs, one of them 
expressed by embryonic stem cells (ESC), and the other by adult 
tissue stem cells. When analyzing expression of these programs 
in human cancers, it was observed that in tumors where the ESC-
like transcriptional program was activated, strongly predicted 

metastasis and death, whereas expression of the adult tissue 
stem cells program led to a better prognosis (64). These types 
of analyses might allow to identify differentially expressed genes 
in the CSC as compared with the tumor mass and consequently 
be highly relevant for the identification of new CSC markers 
(cell surface markers, secreted proteins, intracellular proteins, 
or transcription factors). It should be noted that therapeutic 
antibodies can be generated, in addition to surface marker pro-
teins, also against intracellular proteins, including transcription 
factors (65).

The next question that can be raised is whether the markers 
used for the identification of the CSC can also be used as therapeu-
tic antibody targets. There is no straight answer to this question. 
Obviously, only mAbs that positively identify the CSC population 
could be used for therapeutic purposes. Returning to the example 
of the myelocytic leukemia, the combination of the CD34 and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigURe 2 | Possibilities to target cancer stem cell (CSC). The CSC can be 
targeted with either antibodies against specific surface receptors, interfering 
with signaling molecules relevant for CSC function such as Wnt, Notch, and 
Hedgehog, or the ATP-binding cassette (ABC) transporters, through 
chemokine receptor antibodies, or inducing the differentiation of thee cells.
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CD38 markers has been useful for the identification and isolation 
of the CSC (19). But since the CSCs are CD34+CD38− cells, the 
CD38 antibody cannot be used for therapeutic purposes (the 
CSCs are negative for this marker), although the CD34 mAb 
could.

POSSiBLe STRATegieS TO TARgeT CSC

A priori, the strategies to directly target the CSC population 
would tackle (i) differences in surface marker expression;  
(ii) interfere with signaling pathways relevant for their func-
tion; (iii) inhibit their function; (iv) interfere with metastasis 
formation; or (v) a combination of the above. In the following 
paragraphs, we will try to dissect these strategies (see Figure 2).

Therapies Targeting CSC Surface Markers
It turns out, from the data on Table 1, that CD133 (prominin-1) 
has been established as a marker of CSC on many solid tumors 
including brain, colon, liver, lung, ovarian, pancreatic, and pros-
tate tumors. The role of CD133 as a CSC marker has, however,  
been questioned, for example, using the lung cancer cell lines A549 
and H446, where more than 45% of the cells represent bona-fide 
CSC, it has been reported that both CD133+ and CD133− cells are 
able to form tumors with the same efficiency (29). In addition, 
CD133 exhibits several splice variants and different poorly char-
acterized glycosylated isoforms (38), and as shown on Table 2, 
this antigen is broadly expressed on normal tissues (63). Thus, 
making it questionable whether CD133 represents a specific 
CSC  marker and a therapeutic target for antibody-mediated 
elimination of CSC.

Targeting the adhesion molecule CD44 with monoclonal 
antibodies in xenografts of AML allowed to demonstrate that 
this treatment eradicated the leukemic CSC (66). Similarly, an 
antibody specific for the membrane IL-3Ra receptor (CD123) 
overexpressed in leukemia CSC (see Table 1) has been used to 
specifically target leukemia CSC in human AML. The treatments 

decreased leukemogenicity and eradicated CSC in mice (67, 68).  
In addition, an antibody targeting CD47 has demonstrated its 
ability to eliminate human acute lymphoblastic leukemia in 
xenograft transplants (69). The T cell immunoglobulin mucin-3 
(TIM-3) was also identified as a surface molecule expressed 
on leukemia stem cells in most types of AML except for acute 
promyelocytic leukemia, but not on normal HSCs. TIM-3+ but 
not TIM-3− AML cells engrafted, replicating in immunodeficient 
mice, many of the aspect on human AML. Furthermore, antibod-
ies specific for TIM-3 dramatically diminished their leukemic 
burden (69). It should be noted that these experiments were 
carried out in xenotransplants, where the only cells expressing 
CD44, CD123, CD47, or TIM-3 were the transplanted tumor 
cells, thus any putative toxic effects on other body cells express-
ing these markers CD44+, CD123+, CD47+, or TIM-3+ could not 
be assessed in these models. However, a possibility, discussed in 
details in another review from this issue is to use combinations 
of antibodies (8), where even if the antibodies mentioned earlier 
for the treatment of AML used separately could be also toxic for 
the normal tissues, their combination (CD44, CD123, CD47, and 
TIM-3) could use smaller doses of each one of them, avoiding 
the concentrations required to induce toxicity in normal cells, 
but still be effective killing the CSC on AML. This is one of the 
possibilities that should be investigated for the treatment of  
AML and other types of cancer.

Another possibility of combination of antibodies against 
surface marker that can be investigated from the data on Table 1 
deal with liver tumor CSCs, which are CD133+CD49f+CD90+ 
(48, 49). Each one of these markers is broadly expressed in 
normal tissues (63) as seen in Table  2. The use of antibodies 
against any of these markers as therapeutic tools might not be 
sufficiently selective for CSC and be toxic to healthy tissues. 
However, it might turn out that a strategy combining antibodies 
against the three molecules, using lower doses of each one of 
them, may still be effective while avoiding the unwanted toxicity 
with these lower doses.

Therapies targeting CSC surface markers can be exemplified 
by a clinical trial on untreated multiple myeloma using the  
anti-CD19 mAb MEDI-551 in combination with dexamethasone 
and lenalidomide. The rational of the trial is to determine whether 
the treatment with MEDI-551 decreases the number of CSC in 
these multiple myeloma patients (NCT01861340) (70).

In some cases, although the mAb identifies a target present 
on both adult stem cells and CSC, the antibody could be used 
to target the CSC. This would be the case for the mAb Nilo1, 
identifying mouse embryonic radial glia, adult neural stem cells, 
and also a subpopulation of mouse and human glioblastoma 
cells (71, 72), allowing to suggest that it might identify the CSC 
population (73). If Nilo1 indeed identifies the CSC, it could be 
envisaged that this antibody conjugated, for example, to gold 
nanoparticles would be able to photo-ablate Nilo1+ cells after 
these targeted cells absorb near infrared light. This would result 
in increased local temperature at the selected location, destroy-
ing the target cells (74). This approach would be feasible since 
the adult neural stem cells are restricted to their niche (subven-
tricular zone), an expected different location from the tumor. 
However, in other tumor types, such as hematopoietic tumors 
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or tumors of the mammary gland, this approach would be much 
more difficult to apply.

Another possible approach tackles the observation that both 
adult stem cell and CSC express higher levels of the ATP-binding 
cassette (ABC) transporters on their cell membranes. The ABC 
transporters have been proposed to contribute to multidrug 
resistance, because they allow to pump out of the cytoplasm 
many antitumor drugs, resulting in lower intracellular drug 
concentrations (35, 50), allowing the CSC to become more 
resistant to chemotherapeutic drugs (50, 75). However, some 
experiments using inhibitors of the ABC transporter have been 
successfully carried out (76). It seems that the generation of ABC 
transporter-blocking antibodies might inhibit ABC-transporter 
functions, without many of the negative toxic effects of the 
inhibitors, and therefore this will make the CSC more sensitive 
to chemotherapeutic drugs.

Finally, a clinical trial aims to determine the CSC load of 
HER2+ breast cancer tumors treated with the anti-HER2 anti-
body trastuzumab, in combination with adjuvant, doxorubicin 
hydrochloride, or cyclophosphamide followed by paclitaxel 
(NCT01424865).

Targeting Signal Pathways
The signaling pathways involved in stemness, both in adult 
stem cells and CSC, including Notch, Hedgehog, and Wnt 
representing relevant therapeutic targets for CSC (9). Indeed, 
monoclonal antibodies against Notch are able to reduce the 
CSC population in colorectal tumors (77) and also in breast 
cancer cell lines (78). Similarly, antibodies against the Wnt-1 
signaling pathway induce apoptosis in human colorectal cancer 
cells (79).

Small molecule Hedgehog antagonists have also been  
successfully used to inhibit systemic metastases in xenografts 
with tumors derived from human pancreas (80), but in this 
case, as far as the authors are aware, blocking antibodies 
have not yet been used. In fact, inhibitors of Wnt, Notch, and 
Hedgehog activities are being investigated in a clinical trial 
on esophageal cancer patients (NCT02221245). Other clinical 
trials use therapeutic antibodies against DLL4 to inhibit Notch 
signaling (presumably targeting Notch expressed on the CSC) 
in combination with paclitaxel in ovarian, peritoneal, and 
fallopian tube cancer (NCT03030287); in combination with 
FOLFIRI (irinotecan, folic acid, leucovorin, and fluorouracil), 
in metastatic colorectal cancer (NCT01189942); or the anti-
DLL4 antibody demcizumab in combination with Gemcitabine 
Abraxane on metastatic pancreatic cancer (NCT01189929). 
Other examples use either a bispecific DLL4/VEGF antibody 
(OMP-305B83) in metastatic colorectal cancer, combined with 
the chemotherapeutic agents FOLFIRI (NCT03035253); or 
in combination with the chemotherapeutics carboplatin and 
pemetrexed for lung cancer (NCT01189968). Finally, another 
clinical trial uses the anti-DLL4 antibody demcizumab, in com-
bination with the anti-PD-1 antibody pembrolizumab (immune 
checkpoint) in metastatic solid tumors (NCT02722954), aim-
ing to inhibit Notch and simultaneously busting the antitumor 
immune response by inhibiting the PD-1/PD-L1 immune  
checkpoint.

A different approach used was to combine the Hedgehog 
inhibitor IPI-926 with the anti-EGFR antibody cetuximab in 
head and neck cancer patients (NCT01255800).

Other signaling pathways relevant in oncology include  
the tyrosine kinase family. The tyrosine kinase inhibitor lapatinib 
has been combined with the anti-HER2 antibody trastuzumab in 
a clinical trial in breast cancer patients (NCT00524303), where 
the authors want to analyze changes in CSC load.

Trigger Differentiation
An additional possibility is to trigger the differentiation of the 
CSC. This will imply that they are not able to self-renew anymore, 
and therefore they would be more sensitive to regular chemo-
therapy and radiotherapy. In fact, several agents, such as retinoic 
acid (RA) [i.e., 13-cis RA (isotretinoin)], are used to modify cell 
expression patterns inhibiting proliferation and inducing cell 
differentiation and apoptosis (81–83). In addition, vitamin C has 
also been shown to trigger differentiation of CSC on leukemia, 
enhancing their sensitivity to PARP inhibition (84). It seems  
clear that these compounds will be used in combinations with 
antibodies and/or other drugs.

An example of therapeutic interest on triggering CSC differen-
tiation is shown by a current clinical trial, aiming to analyze the 
role of the vitamin B derivate Fursultiamine on the differentiation 
of CSC in squamous cell carcinomas (NCT02423811) (76, 85).

Others
The effects of any anti-CSC antibody can be potentiated if it is used 
in combination with antibodies inhibiting immune-checkpoints 
negative signals. These include antibodies binding to the PD-1 
receptor on the T cells (nivolumab and pembrolizumab), to PD-L1 
on the tumor cells (atezolizumab, durvalumab, and avelumab) 
or to CTLA-4 on T cells (ipilimumab) (86). This strategy will be 
relevant since the anti-checkpoint antibodies are able to switch 
the antitumor response from an immunosuppressed status, to 
another that allows to attack the tumor.

Since the CSCs are, in addition to the tumor-initiating cells, 
the unique cells that can form metastasis, as they are only cells 
within a tumor with a strong proliferation potential, able to 
generate the more differentiated tumor cells, which form the 
tumor mass, and at the same time a strong self-renewal potential  
through symmetric cell divisions (9). The use of any antibody or 
drug against the CSC, in combination with anti-chemokine recep-
tor antibodies such as CXCR4, CCR7, and CCR9 (85, 87–96),  
would inhibit the migration of the CSC, their migration, inva-
sion, and seeding of the metastatic cells, therefore improving  
the patient’s health.

Another possibility is to combine any antibody or drug specific 
for CSC with antibodies inhibiting tumor neo-vascularization, 
such as VEGF or VEGFR. In this context, there is a clinical trial 
that combines the preoperative treatment with the anti-VEGF 
antibody bevacizumab and chemotherapy in patients with breast 
cancer (NCT01190345), where they aim to determine the CSC 
activity (measured by the amount of aldehyde dehydrogenase  
1/ALDH1+ cells before and after treatment).

Here, we have pinpointed some of the ongoing trials and pre-
clinical experiments being carried out aiming to directly target 
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CSC; however, there are many more possibilities to be carefully 
analyzed.

CONCLUSiON

The existence on many tumors of a subpopulation of cells with 
stem cell characteristics (the CSC population) it is clear by 
now. Furthermore, the concept that new anticancer treatments 
will be more effective if they directly target the CSC popula-
tion, seems settled in the scientific community. The number 
of clinical trials targeting the CSC is, however, relatively 
small. Furthermore, from the 86 clinical trials found with the 
keywords “cancer stem cells,” only 12 of them use monoclo-
nal antibodies as therapeutic agents. This is due, at least in 
part, to the lack of CSC-specific markers. We are optimistic, 
however, and believe that in the near future, this number will 
greatly increase. The new clinical trials will involve several 
combinations of antibodies, antibodies and chemotherapeutic 
drugs, small drug molecules, or the discovery of molecules 
able to differentiate the CSC. These will make a large advance 
in oncologic treatments specifically designed to destroy or  
kill CSCs.

Taken together, this does not mean that the work ahead will 
be easy, in particular since examples have been described where 
not only the CSC give rise to daughter CSC and non-CSC but 
also where the non-CSC population can, in some situations, 
give rise to some CSC (97). Thus, advances in the field of anti-
body immunotherapy directly targeting the CSC will require 
combinations of genetic analyses to identify differentially 

expressed genes in the CSC population, and an improved 
knowledge on the biology of the CSC (98), together with the use 
of complex algorithms to determine effective concentrations of 
different antibodies and drugs, to avoid adult stem cells harm. 
Thus, strategies using antibodies directly targeting the CSC 
population, while bursting the antitumor immune response and 
inhibiting neo-vascularization may represent an unparalleled 
opportunity to cure cancer.
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