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Adoptive therapy with polyclonal regulatory T cells (Tregs) has shown efficacy in sup-
pressing detrimental immune responses in experimental models of autoimmunity and 
transplantation. The lack of specificity is a potential limitation of Treg therapy, as studies in 
mice have demonstrated that specificity can enhance the therapeutic potency of Treg. We 
will discuss that vectors encoding T cell receptors or chimeric antigen receptors provide 
an efficient gene-transfer platform to reliably produce Tregs of defined antigen specificity, 
thus overcoming the considerable difficulties of isolating low-frequency, antigen-specific 
cells that may be present in the natural Treg repertoire. The recent observations that Tregs 
can polarize into distinct lineages similar to the Th1, Th2, and Th17 subsets described 
for conventional T helper cells raise the possibility that Th1-, Th2-, and Th17-driven 
pathology may require matching Treg subsets for optimal therapeutic efficacy. In the 
future, genetic engineering may serve not only to enforce FoxP3 expression and a stable 
Treg phenotype but it may also enable the expression of particular transcription factors 
that drive differentiation into defined Treg subsets. Together, established and recently 
developed gene transfer and editing tools provide exciting opportunities to produce 
tailor-made antigen-specific Treg products with defined functional activities.

Keywords: regulatory T  cells, gene therapy, immunotherapy, chimeric antigen receptor, T  cell receptor, 
autoimmunity

inTRODUCTiOn

Inherent checkpoints ensure that an immune response normally only occurs in response to genuine 
threats from pathogens. However, loss of this self-tolerance and resultant autoimmunity does occur, 
with prevalence as high as 12.5% in developed countries (1). The life-long chronic nature of both dis-
ease and treatment, and the high association of comorbidities (2) means the impact of autoimmunity 
on patients, their families, the health service, and the economy is substantial (3). The ultimate aim 
of autoimmune therapy would be to restore the lost self-tolerance while retaining the full potential 
of the immune system to respond to infection.

Regulatory T cells (Tregs) are an essential component of maintaining normal self-tolerance (4). 
Tregs possess powerful multifaceted suppressive mechanisms capable of controlling a broad range of 
innate and adaptive immune cells. Importantly, Treg-mediated suppression is exerted in a targeted 
antigen-specific manner, allowing for suppression of the immune response when appropriate with-
out interfering with productive immunity when required (5). A number of approaches have been 
explored to boost Treg number and function in order to treat autoimmune disease. One of the most 
promising and actively explored of these at present is the adoptive transfer of Tregs. Augmenting Treg 
numbers by transferring an activated/expanded population of Tregs can ameliorate autoimmunity 
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(6–8). However, the ability of disease-targeted Tregs to reverse 
ongoing autoimmunity, where high doses of polyclonal Tregs 
failed, is a strong indication that merely boosting numbers will 
not be sufficient to control disease (9–12). Appropriate disease-
targeted antigen specificity is important to ensure that Tregs are 
localized and activated at the site of disease (13).

Achieving antigen specificity in a clinically applicable setting 
has been a major challenge in translating promising pre-clinical 
results to therapy. Treg specificity is determined by the T  cell 
receptor (TCR) expressed on their surface. While it may be pos-
sible to expand the rare Treg clones with appropriate specificity 
to suppress disease, this process is prolonged, expensive, and has 
a number of conceptual issues, not least whether the appropriate 
disease-suppressing clones are present in autoimmune patients. 
To circumvent these problems, we, and others, have explored 
redirecting the specificity of bulk Treg populations by the gene 
transfer of a disease-relevant TCR (9). This process involves the 
genetic engineering of Treg with genes encoding TCR or chimeric 
antigen receptors (CARs) to target Treg specificity to antigens 
that are present at the sites of autoimmunity and absent in healthy 
tissues. This approach provides a mechanism to achieve disease-
specific immune suppression while retaining systemic immune 
competence.

ReDiReCTinG THe SPeCiFiCiTY OF Tregs 
USinG Gene THeRAPY

We were among the first laboratories to use TCR gene therapy 
to generate antigen-specific primary Treg with the capacity to 
mediate immune suppression in vivo. Murine CD4+ CD25+ Tregs 
were engineered to express a TCR that recognized a fragment 
of the ovalbumin (OVA) protein. When TCR-transduced Tregs 
were cultured with dendritic cells presenting OVA, engineered 
cells were capable of suppressing proliferation and IL-2 produc-
tion by conventional T cells activated by a different antigen. These 
findings were validated in  vivo using a model of autoimmune 
inflammatory arthritis showing that the presence of OVA, a 
non-disease causing antigen, in the knee was required for OVA-
specific Treg to suppress inflammation caused by pathogenic 
T cells specific for arthritic antigens (9). The capacity of antigen-
specific Treg to locally suppress pathogenic T cells with different 
specificities provides a strategy to treat autoimmune disease even 
when the target antigens that are recognized by the autoimmune 
T  cells are unknown. Studies of human cells have shown that 
Tregs transduced with a TCR recognizing factor VIII, a clotting 
factor that often stimulates immune responses in hemophilia 
patients treated with recombinant protein, were able to suppress 
factor VIII-specific helper T cell responses (14). Similarly, TCR-
transduced Treg specific for a pancreatic islet cell antigens were 
shown to suppress responses by pathogenic T cells with greater 
potency than polyclonal Treg in vitro (15).

As an alternative to the use of TCR gene transfer, a number of 
groups have explored transfer of CARs. CARs are a man-made 
alternative to TCR, made up of the antigen-binding domain of a 
specific antibody linked via an extracellular stalk to intracellular 
signaling motifs required for T cell activation. While TCR have 

the ability to recognize any cellular proteins when processed and 
presented by MHC molecules, CARs recognize only cell surface 
proteins. However, CARs have the advantage that recognition 
is independent of MHC and, therefore, applicable to patients 
irrespective of their MHC genotype. The intracytoplasmic por-
tion of CARs contains signaling domains derived from molecules 
that are involved in T cell activation such as CD3ζ, CD28, 41BB, 
OX40, and others. In the setting of cancer immunotherapy, 
various combinations of signaling domains have been tested in 
second- and third-generation CAR constructs (16). At present, 
there is little experimental data about which combination of sign-
aling domains may stimulate optimal Treg function, and it is not 
known whether anti-cancer effector T cells and suppressive Treg 
will require CARs with distinct intracellular signaling domains.

The efficacy of CAR-Treg has been demonstrated in studies of 
murine intestinal inflammation. Two groups have shown success-
ful generation of CAR-Treg that maintain their phenotype when 
expanded, traffic to the gut and suppress inflammation in an 
antigen-dependent manner independent of MHC (17, 18). More 
recent studies have shown that factor VIII-specific human CAR-
Treg function comparably to factor-VIII-specific TCR engineered 
Treg (19) and that human CAR-Treg specific for alloantigens can 
prevent graft rejection (20) and development of graft-versus-host 
disease (21) in xenogeneic transplantation models.

STRATeGieS TO iDenTiFY THe MOST 
APPROPRiATe CeLL FOR Gene 
enGineeRinG

It has become apparent that Treg heterogeneity extends beyond 
the well-defined thymic and peripherally induced subsets and rep-
resents populations of suppressive cells with multiple functions, 
niches, and genetic landscapes. FOXP3 is considered a master 
transcriptional regulator of Treg function because humans and 
mice that lack this gene also lack a functional Treg compartment 
and go on to develop an autoimmune-like disease (4). However, 
it has become clear that FOXP3 expression is not sufficient to 
imprint a stable and fully functional Treg phenotype. The discov-
ery of 300 uniquely demethylated regions in Treg genes, known 
as the Treg-specific demethylated regions (TSDRs) offered funda-
mental insights into how a Treg phenotype is established. TSDRs 
were found to be specific to natural Treg (nTreg); the same mark-
ers were absent in in vitro generated induced-Treg, in FOXP3+ 
conventional T cells and in various helper T cell subsets (22, 23). 
This suggests that TSDRs have a Treg-specific role independent 
of FOXP3 expression. Interestingly, this TSDR profile was identi-
fied in a subset of cells from scurfy mice, a naturally occurring 
FOXP3-deficient strain, and it was found that these TSDR+ cells 
failed to suppress T  cell responses in  vitro but were less likely 
than TSDR− cells to contribute to autoimmunity when adoptively 
transferred in vivo (24). Thus, a functional and stable Treg must 
express FOXP3 and have a distinct hypomethylation profile.

 Examination of Treg markers, function, and hypomethylation 
led to the identification of three subsets of FOXP3-expressing 
cells in the peripheral blood of humans (25) (Figure 1). FOXP3hi 
CD45RA− Tregs have been described as activated-Treg. These 
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FiGURe 1 | Schematic depicting regulatory T cell (Treg) gene engineering. Resting Treg (CD45RA+FOXP3+) are activated with anti-CD3 and anti-CD28 antibodies to 
transduce cells with retro- and lentiviral vectors encoding T cell receptors (TCRs) or chimeric antigen receptors (CARs). These engineered Treg have a defined 
specificity and an activated effector phenotype (HLA-DR+ICOS+CTLA-4hiCD25hiFOXP3hi) with potent suppressive potential.
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cells can be terminally differentiated and prone to apoptosis but 
are hypomethylated and highly suppressive. FOXP3lo CD45RA+ 
cells are considered resting Treg. These cells also bear the Treg 
hypomethylation pattern and differentiate into an activated-Treg 
when stimulated. FOXP3lo CD45RA− cells are non-Tregs that do 
not display TSDR hypomethylation or suppressive function and 
produce inflammatory cytokines upon stimulation.

The most promising starting population for Treg engineering 
is the Foxp3-expressing CD45RA+ cells. These cells can efficiently 
expand in  vitro (26) while maintaining their suppressive func-
tion (27). Currently used gene transfer protocols with retro- or 
lentiviral vectors involve stimulation with beads coated with 
anti-CD3 and anti-CD28 antibodies to trigger T cell proliferation 
that is required for efficient gene transfer (Figure 1). Thus, the 
ability of CD45RA+ Tregs to proliferate without losing functional 
activity provides a strong rationale for using these cells for genetic 
engineering.

In addition, use of rapamycin, an inhibitor of the mammalian 
target of rapamycin (mTOR) pathway, may improve the produc-
tion of therapeutic Treg. Several publications have shown that 
rapamycin promotes the expansion of stable Treg subsets in vitro, 

maintaining hypomethylation at TSDRs over multiple rounds of 
expansion (28, 29). Data from our lab have previously shown 
successful reduction of mTOR activation in T  cells engineered 
to express the proline-rich Akt substrate of 40 kDa (PRAS40), a 
negative regulator of the mTOR pathway (30). Genetic modifica-
tion of Treg to express PRAS40 could be employed to ensure the 
maintenance of a Treg phenotype in vivo.

COnveRTinG COnvenTiOnAL T CeLLS 
inTO Tregs THROUGH Gene 
enGineeRinG

From the first reports describing Tregs that had been generated 
from conventional T  cells in  vivo, there have been attempts to 
replicate this for therapeutic use. The large pool of peripheral 
T  cells makes the proposition of converting these cells into a 
population of suppressive cells attractive. Unlike protocols that 
use in vitro stimulation to induce Treg, gene therapy offers the 
prospect of converting cells into a stable population of “Treg-like” 
cells through genetic reprogramming.
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We have previously shown that cotransfer of a FOXP3 gene 
construct with TCR can redirect the specificity and phenotype 
conventional T  cells in mice (9). In these cells, expression of 
FOXP3 correlated with the upregulation of Treg-associated 
markers. Compared to conventional T cells transduced with TCR, 
cells transduced with TCR and FOXP3 were hypo-responsive to 
cognate peptide. Examination of suppressive function of these 
cells in vitro and in vivo showed that TCR plus FOXP3-converted 
T cells were able to suppress immune responses by T cells specific 
for a third party antigen, but that they were less potent than TCR-
transduced nTreg.

The difference between engineered nTregs and FOXP3-
converted T cells expressing the same TCR may lie in the require-
ment of non-FOXP3 factors to stabilize the Treg phenotype. 
Experiments in which conventional T cells were transduced with 
FOXP3 showed an induction of a partial Treg gene profile that 
could be stabilized by co-transfection with one of five transcrip-
tion factors Eos, IRF4, GATA-1, Lef1, or Satb1 (31). It would be 
interesting to determine if the transfer of genes for FOXP3 plus 

one of the five transcription factors listed above would make 
the function of FOXP3-converted T  cells comparable to TCR-
transduced nTreg.

FUTURe PROSPeCTS: enGineeRinG 
DiSeASe-SPeCiFiC Tregs

Heterogeneity of Treg is considered to be a relatively new finding 
but we have known for some time that there is a wide range of 
suppressive mechanisms utilized by Tregs that may be context 
dependent. Better understanding of the factors that mediate this 
heterogeneity could lead to the development of disease-specific 
Treg that target distinct inflammatory processes.

It is now clear that Treg undergo differentiation into an 
effector phenotype expressing distinct transcription factors, 
chemokine receptors, and displaying different antigen recall 
responses (32). T-bet-expressing Tregs differentiate in parallel 
with T helper (TH)1 cells; they express CXCR3 and are required 
for competitiveness at IFNγ-rich sites and for homeostasis of 

FiGURe 2 | The potential of gene engineering to produce functionally specialized disease-suppressing regulatory T cells (Tregs). (A) The identification of 
transcription factors that drive differentiation of an effector Treg population in parallel with pathogenic T helper (TH) cells could be harnessed by gene therapy. In a 
predominantly TH1-driven chronic disease such as multiple sclerosis or type I diabetes, transduction of Treg with T cell receptor (TCR) or chimeric antigen 
receptor (CAR) and the transcription factor T-bet could generate antigen-specific Treg with the capacity to control TH1 responses in vivo. In rheumatic diseases, 
transduction of antigen-specific Treg with STAT3 could promote control of pro-arthritogenic TH17 responses. Antibody-driven diseases, such as systemic lupus 
erythematosus, rheumatoid arthritis, and myasthenia gravis, could be targeted by antigen-specific Treg that express the transcription factor associated with 
follicular helper T cells, BCL6. (B) Gene therapy could also be used to target the damage caused by chronic inflammation by transducing Treg with genes for 
factors that promote homeostatic tissue repair. Amphiregulin-producing Treg are enriched in the muscle and have been shown to promote repair of damaged 
tissue (38–40), while the production of the protein CCN3 by Treg has been shown to promote the repair of the myelin sheath in a mouse model of multiple 
sclerosis (41).
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newer technologies such as CRISPR could be used to undertake 
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by editing out cytokine receptors such as IL-6 offers an attractive 
option for such an approach. Moreover, the propensity of Tregs 
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cytokines could be ablated by using CRISPR to remove genes for 
IFNγ or IL-17 from engineered Treg. An equally novel approach 
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factors (Figure 2). This is a tantalizing glimpse of the additional 
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COnCLUSiOn

The rapid development of technology that allows genetic engi-
neering of primary immune cells has opened the door to a world 
of potential therapeutic interventions. The prospect of producing 
tailor-made cellular therapies with disease-specific function 
could revolutionize the treatment of autoimmunity.
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