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Due to vigorous alloimmunity, an allograft is usually rejected without any conventional 
immunosuppressive treatment. However, continuous global immunosuppression may 
cause severe side effects, including tumors and infections. Mounting evidence has shown 
that cyclosporine (CsA), a common immunosuppressant used in clinic, impedes allograft 
tolerance by dampening regulatory T cells (Tregs), although it inhibits allograft rejection at 
the same time. Therefore, it is necessary to seek an alternative immunosuppressive drug 
that spares Tregs with high efficiency in suppression but low toxicity. In this study, we 
investigated the capacity of emodin, an anthraquinone molecule originally extracted from 
certain natural plants, to prolong transplant survival in a mouse model and explored the 
cellular and molecular mechanisms underlying its action. We found that emodin signifi-
cantly extended skin allograft survival and hindered CD3+ T cell infiltration in the allograft, 
accompanied by an increase in CD4+Foxp3+ and CD8+CD122+ Treg frequencies and 
numbers but a reduction in effector CD8+CD44highCD62Llow T  cells in recipient mice. 
Emodin also inhibited effector CD8+ T cells proliferation in vivo. However, CD4+CD25+, 
but not CD8+CD122+, Tregs derived from emodin-treated recipients were more potent in 
suppression of allograft rejection than those isolated from control recipients, suggesting 
that emodin also enhances the suppressive function of CD4+CD25+ Tregs. Interestingly, 
depleting CD25+ Tregs largely reversed skin allograft survival prolonged by emodin while 
depleting CD122+ Tregs only partially abrogated the same allograft survival. Furthermore, 
we found that emodin hindered dendritic cell (DC) maturation and reduced alloantibody 
production posttransplantation. Finally, we demonstrated that emodin inhibited in vitro 
proliferation of T cells and blocked their mTOR signaling as well. Therefore, emodin may 
be a novel mTOR inhibitor that suppresses alloimmunity by inducing both CD4+FoxP3+ 
and CD8+CD122+ Tregs, suppressing alloantibody production, and hindering DC matu-
ration. Thus, emodin is a newly emerging immunosuppressant and could be utilized in 
clinical transplantation in the future.
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inTrODUcTiOn

Organ transplantation is an essential and efficient approach to 
replacing a dysfunctional organ in patients suffering from an 
end-stage organ disease. However, allogeneic transplantation 
induces a series of allograft rejection episodes and immune 
responses, which are mainly mediated by alloreactive T  cells 
(1, 2). Therefore, global immunosuppressive agents, such as 
cyclosporine (CsA), are needed to stop acute allograft rejection 
by suppressing T cell activation. On the other hand, regulatory 
T cells (Tregs) play a critical role in maintaining allograft sur-
vival or tolerance by inhibiting alloreactive T cell activation (3) 
while a reduction in their generation or activation contributes 
to allograft rejection (4). Although conventional immunosup-
pressants can prevent acute rejection, they may also cause severe 
side effects, including tumors and infections. Furthermore, a 
global immunosuppressive agent, such as CsA, inhibits the 
generation and function of Tregs (5, 6), likely hindering toler-
ance induction. Although another global immunosuppressant 
rapamycin, a typical mTOR inhibitor, can spare Tregs (7, 8), it 
may still cause same side effects as other global immunosup-
pressive agents do. Therefore, it is imperative to seek an alter-
native immunosuppressant that does not compromise Tregs, 
yet with high efficiency in suppression, low toxicity, and high 
affordability.

Emodin, 1,3,8-trihydroxy-6-methylanthraquinone, is an 
active anthraquinone originally isolated from certain natural 
plants, including Rheum palmatum (9) and Cassia obtusifolia 
(10). Emodin has long been used to treat chronic kidney dis-
eases with few side effects (11). Recently, many studies have also 
documented laxative effects of emodin as well as its inhibitory 
effects on tumors (12), viruses (13), bacteria (14), and inflam-
mation (15) without any major side effect. Furthermore, emodin 
is also available in China at a low cost. Therefore, emodin may 
exhibit unique advantages over other mTOR inhibitors in terms 
of the side effect issue and affordability.

Two previous publications have demonstrated that emodin 
inhibits acute allograft rejection after liver transplantation in an 
animal model (16, 17). Nevertheless, the cellular and molecular 
mechanisms underlying its suppression of liver allograft rejec-
tion are unknown. It is also unclear whether emodin suppresses 
rejection of other types of organ transplants beyond a liver allo-
graft, which may develop spontaneous tolerance. In this study, 
we found that emodin significantly prolonged survival of a skin 
allograft, a stringent transplant model. Combined treatments 
with both emodin and CsA further extended the skin allograft 
survival. Emodin significantly increased the frequencies of 
both CD4+CD25+ and CD8+CD122+ Tregs while reducing the 
numbers of effector CD8+ T  cells. Furthermore, CD4+CD25+ 
Tregs isolated from emodin-treated recipient mice were more 
potent in suppression of allograft rejection than those derived 
from control recipients, suggesting that emodin enhances 
CD4+CD25+ Treg function. Emodin also suppressed alloantibody 
production and hindered dendritic cell (DC) maturation post-
transplantation. Finally, we demonstrated that emodin inhibited 
T  cell proliferation in  vitro and blocked their mTOR signal  
transduction.

MaTerials anD MeThODs

animals
BALB/c and C57BL/6 male mice (6–8  weeks old, male) were 
obtained from Guangdong Medical laboratory Animal Center 
(Guangdong, China) while Rag1−/− mice (B6 background) were 
purchased from Jackson Laboratory (Bar Harbor, ME, USA). 
All mice were housed under a specific pathogen-free condition.  
All experiments were performed according to the Chinese natio-
nal guidelines for the Care and Use of Laboratory Animals and 
approved by the Institutional Animal Care and Use Committee 
of Guangdong Provincial Academy of Chinese Medical Sciences 
(Ref. No: 201).

skin Transplantation
Skin donors were 7- to 8-week-old wild-type BALB/c mice 
(male), while skin graft recipients were 7- to 8-week-old-male 
C57BL/6 mice. Round-shaped full-thickness trunk skin with 
an approximate size of 10 mm2 was transplanted to the dorsal 
flank area of a recipient mouse and secured with a bandage 
of Band-Aid (Johnson Johnson, New Brunswick, NJ, USA). 
The bandage was removed 8  days after transplantation. Skin 
allograft rejection was monitored daily and defined as graft 
necrosis greater than 90%, as described in our previous pub-
lication (18).

Treatment of Mice
Mice were randomly divided into control groups and groups 
treated with emodin (10 mg/kg body weight), cyclosporine (CsA: 
20 mg/kg body weight), and emodin plus CsA for four consecu-
tive weeks or until graft rejection/sample collection. CsA and 
emodin (Sigma) were prepared with saline and sodium carboxy-
methyl cellulose (CMC-Na; Sigma), respectively. Control groups 
received CMC-Na orally. Our primary data showed that oral 
administration of CMC-Na did not alter allograft rejection com-
pared to untreated groups (unpublished observation). Emodin 
was also administered orally while CsA was given through 
intraperitoneal injection. To deplete Tregs, recipient mice were 
treated i.p. with anti-CD25 Ab (Clone: PC61, eBioscience) at 
0.2 mg on days 0, 3, 6, and 10 or anti-CD122 Ab (Clone: TMβ1, 
eBioscience) at 0.1 mg on days 0, 7, and 14 posttransplantation 
as described previously (19, 20).

immunohistochemistry
Allografts were fixed with 4% paraformaldehyde for 24 h and then 
embedded in paraffin. Tissues were cut into 3-μm thick sections 
and placed on slides. The sections were then used for H&E and 
immunohistochemistry staining. For immunohistochemistry, 
slides with sections were incubated with primary anti-CD3 anti-
body (1:100, Abcam) at 4°C overnight, then secondary antibody 
HRP-anti-Rabbit IgG (Maxim), followed by diaminobenzidine 
color development. For quantitative analyses, slides were imaged 
at a magnification of 200×. The area of inflammation/infiltration 
and integrated optical density (IOD) of CD3 were measured 
using ImagePro plus 6 software.
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Flow cytometry
Draining lymph node (LN) and spleen cells were harvested and 
stained with anti-CD4-FITC (Clone H129.19)/CD8-FITC (Clone 
53-6.7), CD11c-PE (Clone HL3), CD44-V450 (Clone IM7), 
CD62L-APC (Clone MEL-14), CD80-FITC (Clone 16-10A1), 
CD86-FITC (Clone GL1), and anti-CD122-PE antibodies (Clone 
TM-Beta 1) (all from BD Biosciences). To determine intracellular 
FoxP3 expression, cells were fixed and permeated according to the 
protocol of Foxp3/Transcription Factor Fixation/Permeabilization 
Concentrate and Diluent Kit (eBioscience). Then, cells were 
stained with anti-FoxP3-APC antibody (Clone FJK-16s, eBiosci-
ence) and finally analyzed by a flow cytometer (FACSCalibur, 
BD Biosciences). To purify CD4+CD25+ and CD8+CD122+ Tregs 
for adoptive transfer experiments, spleen cells were stained with 
anti-CD4-PE (Clone RM4-5) and anti-CD25-FITC (Clone 3C7) 
or, separately, anti-CD8-PE (Clone 53-6.7) and anti-CD122-
FITC (Clone TM-Beta 1) Abs (BD Biosciences). CD4+CD25+ or 
CD8+CD122+ cells were then sorted out by FACSAria III (BD 
Bio sciences). The purity of the sorted cells was typically >95%.

In Vivo analysis of T cell Proliferation  
and apoptosis
Recipient mice were pulsed intraperitoneally with 0.1  mg of 
5-ethynyl-2′-deoxyuridine (EDU, RIBOBIO) in PBS 10  days 
after transplantation. 24 h later, spleen and LN cells were isolated 
and single-cell suspensions were prepared for EDU detection 
using Cell-Light™ Apollo®488 Stain Kit (RIBOBIO) according 
to the manufacturer’s instructions. Then, cells were stained for 
cell surface markers with anti-CD8-APC-Cy7 (Clone 53-6.7), 
CD44-V450 (Clone IM7), and CD62L-APC Abs (Clone MEL-14)  
(all from BD Biosciences). To detect cell apoptosis, cells were 
stained for the same surface markers and then Annexin V-FITC 
according to the protocol of Annexin V-FITC Apoptosis 
Detection Kit (BD Pharmingen). Cells finally were analyzed via  
a flow cytometer (FACSCalibur).

analysis of T cell Proliferation In Vitro
FACS-sorted CD3+ T cells (2 × 105/well), derived from B6 mice, 
were cultured with irradiated Balb/c spleen cells (2 × 105/well) 
in the absence or presence CsA (2.5 µg/ml) or emodin (50 µM) 
in 96-well plates (Corning Costar) in complete RPMI 1640 
medium (10%FCS, 2 mM glutamine, 100 U/ml penicillin, and 
100  µg/ml streptomycin) for 3 and 5  days, respectively. Cells 
were pulsed with [3H]-thymidine at 0.5  μCi per well for last 
8 h. They were finally harvested and analyzed by a Scintillation 
counter (Perkin Elmer, Wellesley, MA, USA).

alloantibody assay
Spleen cells derived from BALB/c mice were harvested and 
their red blood cells were lysed. B cells in splenocytes were first 
depleted using B220 microbeads (Miltenyi Biotec) via negative 
selection. Cells (1 × 106/sample) then were stained with diluted 
serum (1/10) from naïve or transplanted C57BL/6 mice. They 
were further incubated with PE-anti-mouse IgM or FITC-anti-
mouse IgG (Biolegend). The mean fluorescence intensity was 
determined by a flow cytometer (FACSCalibur, BD Biosciences).

Western Blotting
Cultured T  cells were lysed in RIPA buffer (50  mM Tris pH 
7.5, 150  mM NaCl, 1% Triton X-100, and 5  mM ethylenedi-
aminetetraacetic acid). Cell protein was extracted using RIPA 
buffer and protein concentration was measured using BCA Kit 
(Pierce, IL, USA). Samples were run on 10% SDS-PAGE gels 
and transferred onto a PVDF membrane. TBST with 5% milk 
was used to block the membrane, which was then incubated 
with a primary antibody anti-P70S6K or anti-phospho-P70S6K 
(1:1,000; Cell Signaling Technology) at 4°C overnight. After 
the incubation, membranes were washed and incubated with a 
secondary antibody, HRP-conjugated anti-rabbit IgG (1:10,000, 
Abbkine), for 1 h. GAPDH (1:1,000, Cell Signaling Technology) 
was also used for loading controls. Finally, signals were detected 
by an ECL method (Promega) and analyzed by Image J Program  
software.

statistical analyses
Comparisons of the means were performed using Student’s t-test 
and one-way ANOVA. Data were presented as the mean ± SD 
and analyzed through GraphPad Prism 6 (GraphPad Software, 
La Jolla, CA, USA). The analysis of graft survival was conducted 
using Kaplan–Meier method (log-rank test). A value of P < 0.05 
was considered statistically significant.

resUlTs

emodin significantly Prolongs skin 
allograft survival
To study the effects of emodin on allograft rejection, C57BL/6 
mice received a skin graft from a donor Balb/C mouse and 
were then treated with emodin and/or CsA. As shown in 
Figure  1, we found that emodin significantly prolonged skin 
allograft survival compared to the control [median survival 
time (MST) = 24 vs. 13 days, P < 0.05] while allograft survival 
time of the recipient mice treated with CsA was also longer 
than that of control group (MST = 25 vs. 13 days, P < 0.05). 
More importantly, combined treatments with emodin and CsA 
further extended skin allograft survival compared to the treat-
ment with either CsA or emodin alone (MST  =  36 vs. 25 or 
24 days, both P < 0.05).

Since emodin suppressed allograft rejection, we asked whe-
ther emodin would reduce cellular infiltration in an allo graft. 
Graft-infiltrating cells were analyzed by H&E and immunohis-
tochemical staining 10 days after transplantation. H&E staining 
showed obvious cellular infiltration in a skin allograft of the 
recipients without any treatment while much less cellular infil-
tration was observed in the recipients treated with emodin, CsA 
or both of them (Figures 2A,C). Similarly, immunohistochem-
istry revealed an obvious decrease in CD3+ T  cell infiltration 
in a skin allograft of the recipients treated with emodin and/or  
CsA compared to that of control recipients (Figures  2B,D). 
These data suggest that emodin indeed suppresses allograft 
rejection and ameliorates alloreactive CD3+ T cell infiltration 
in the skin allografts.
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FigUre 1 | Emodin prolongs skin allograft survival. (a) Representatives of BALB/c-derived skin allografts in B6 recipient mice with different treatments 14 days after 
transplantation. Allografts were circled with red lines. (B) B6 mice transplanted with a skin graft derived from BALB/c mice were treated with CsA and/or emodin for 
4 weeks or until graft rejection. Graft survival was analyzed using log-rank test (*P < 0.05, n = 8–9 grafts).
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emodin inhibits the expansion of effector 
cD8+ T cells Posttransplantation
To determine whether emodin would control effector CD8+ 
T  cells (Teff) in  vivo, draining LN and spleen cells from 
emodin- or CsA-treated recipient mice were isolated 10 days 
after transplantation and analyzed via EDU-staining and 
FACS analysis. As represented by Figure  3A, both emodin 
and CsA obviously decreased the percentages and absolute 
numbers of CD8+CD44highCD62Llow effector T  cells in both 
LNs and spleens of the recipients. Furthermore, we found 
that either emodin or CsA alone suppressed the proliferation 
of CD8+CD44highCD62Llow T cells in the recipient mice while 
emodin plus CsA further inhibited their proliferation 
compared to either emodin or CsA alone (Figure  3B). As a 
control, we isolated spleen cells from naïve mice without skin 
transplantation and observed that there was no any difference 
in CD8+CD44highCD62Llow T cell numbers between untreated 
and emodin-treated groups (data not shown). On the other 
hand, emodin did not promote the apoptosis of effector 
CD8+CD44highCD62Llow and CD4+CD44highCD62Llow T  cells 
10 days after transplantation (Figures 3C,D). We also demon-
strated that emodin did not induce the apoptosis of total CD4+ 
and CD8+ T  cells 20  days posttransplantation (Figure S1 in 

Supplementary Material). Thus, our data suggest that emodin 
hinders effector CD8+ T cell expansion/proliferation, but does 
not induce T cell apoptosis, implying that a treatment with this 
dose of emodin is not cytotoxic.

emodin Facilitates the generation of 
cD4+Foxp3+ Tregs Posttransplantation
Regulatory T  cells play an important role in long-term trans-
plant survival or tolerance. Thus, we examined if emodin 
would suppress allograft rejection by inducing Tregs. Draining 
LN and spleen cells were isolated 10  days after allogeneic skin 
transplantation, and CD4+Foxp3+ Tregs were enumerated by 
flow cytometry. As shown in Figure  4, emodin significantly 
increased the percentages and absolute numbers of CD4+Foxp3+ 
Tregs in draining LNs while CsA did the opposite. Furthermore, 
a reduction in LN Treg numbers resulted from CsA treatment 
was totally reversed in the recipients treated with both emodin 
and CsA (Figure 4). On the other hand, there was no markedly 
variance in the frequencies and absolute numbers of splenic Tregs 
between all groups. Similar findings were also seen 20 days after 
skin allotransplantation (data not shown). These data suggest 
that emodin promotes CD4+Foxp3+ Treg generation mainly in 
the draining LNs of recipient mice.
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FigUre 2 | Emodin ameliorates cellular infiltration in an allograft. (a) H&E staining of skin allografts 10 days after transplantation (Magnification:200×). 
Representative images of skin graft sections are presented. (B) Immunohistochemistry was performed to detect infiltrating CD3+ T cells in skin grafts.  
Sections of skin grafts were stained with CD3-specfic antibody and imaged. Representative images of graft sections are presented. (c) The area of infiltration  
or inflammation in an allograft was quantified as integrated optical density (IOD) for HE-stained sections by ImagePro plus (n = 5 grafts). (D) The IOD of 
CD3-positive area in the images (n = 5 grafts) also was calculated by ImagePro plus (magnification at 200×). Data are shown as means ± SD for panels  
(c,D) (*P < 0.05, **P < 0.01).
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emodin also induces cD8+cD122+ Tregs
Our previous studies demonstrated that CD8+CD122+ Tregs 
were more potent in inhibiting T cell proliferation and transplant 
rejection than CD4+CD25+ Tregs (21). Hence, we asked whether 
emodin would also exert its suppressive effects on allograft 
rejection through inducing CD8+CD122+ Tregs. We measured 
the percentages and absolute numbers of CD8+CD122+ Tregs 
in the LNs and spleens of recipient mice via flow cytometry 
10 days after allogeneic skin transplantation. We demonstrated 
that both emodin and CsA significantly increased the percentages 
of CD8+CD122+ Tregs in both LNs and spleens of the recipients 
(Figure 5), suggesting that emodin generally promotes the devel-
opment of CD8+CD122+ Tregs in  vivo. Interestingly, emodin 
increased the absolute numbers of CD8+CD122+ Tregs in LNs, 
but not spleens, of the recipients.

emodin-induced cD4+cD25+, but not 
cD8+cD122+, Tregs are More Potent in 
suppression of allograft rejection than 
are control Tregs
To determine whether emodin also enhances the suppressive 
function of Tregs, CD4+CD25+ or CD8+CD122+ Tregs were 
isolated from recipient mice treated without or with emodin 
and/or CsA. These Tregs were then transferred to lymphocyte-
deficient Rag1−/− mice that received syngeneic T cells as well as 
a skin allograft. As shown in Figure  6A, adoptive transfer of 
conventional T cells to Rag1−/− recipients caused their rejection 
of skin allografts while control Rag1−/− recipients did not reject 
the allografts. Transfer of both control CD4+CD25+ Tregs and 
T cells extended allograft survival compared to that of T cells 
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FigUre 3 | Continued   
Emodin suppresses the expansion of effector CD8+ T cells. (a) Draining lymph node (LN) and spleen cells from emodin- and CsA-treated B6 mice transplanted with 
BALB/c skin were isolated 10 days after transplantation and analyzed via FACS analysis. Column graphs show the percentages of 
CD8+CD44highCD62Llow effector T cells (Teff) from LNs and spleens. (B) The proliferation of CD8+CD44highCD62Llow T cells was analyzed by EDU labeling. Recipient 
mice were pulsed intraperitoneally with EDU 10 days after transplantation. 24 h later, LN and spleen cells were harvested and stained for CD8, CD44, CD62L, and 
EDU. Histograms are gated on CD8+CD44highCD62Llow population. The percentage of EDU-positive CD8+CD44highCD62Llow cells also is shown in column graphs. 
The apoptosis of CD8+CD44highCD62Llow (c) and CD4+CD44highCD62Llow (D) Teff cells was measured by annexin V labeling. LN and spleen cells were stained for 
CD8, CD4, CD44, CD62L, and annexin V and analyzed by flow cytometry. The percentage of Annexin V-positive CD8+CD44highCD62Llow and CD4+CD44highCD62Llow 
Teff cells is also shown in column graphs. Data are presented as means ± SD from two separate experiments (*P < 0.05, **P < 0.01, n = 4 mice/group). One  
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alone. However, transfer of CD4+CD25+ Tregs derived from 
emodin-treated, but not CsA-treated, recipient mice resulted 
in longer allograft survival than that of control CD4+CD25+ 
Tregs derived from control recipients, suggesting that emodin 
enhances the suppressive function of CD4+CD25+ Tregs. 
Transfer of CD4+CD25+ Tregs derived from CsA- and emodin-
treated recipients also caused longer allograft survival than that 
of the Tregs from the recipients treated with CsA alone. On the 
other hand, CD8+CD122+ Tregs derived from the recipient mice 
treated with either emodin or CsA prolonged allograft survival, 
but only as effectively as control CD8+CD122+ Tregs derived 
from control recipients (Figure 6B), indicating that emodin or 
CsA does not alter the suppressive capacity of CD8+CD122+ 
Tregs.

Depletion of Tregs largely reverses 
allograft survival extended by emodin
Given that emodin induced Tregs in our animal model, we 
asked whether the effects of emodin on allograft survival were 
dependent on the Tregs. C57BL/6 mice received a skin graft from 
a BALB/c mouse and were treated with emodin or CsA. Tregs 
in the recipients then were depleted using anti-CD25 (PC61) 
or anti-CD122 (TMβ1) Ab. As shown in Figure  7, depleting 
CD25+ Tregs largely reversed skin allograft survival prolonged 
by emodin while depleting CD122+ Tregs partially abrogated the 
allograft survival extended by emodin. In contrast, depletion of 
either CD25+ or CD122+ Tregs did not significantly shorten allo-
graft survival induced by CsA. As control experiments, isotype 
control Abs did not alter allograft survival (data not shown). Our 
results suggest that Tregs contributes to allograft survival induced 
by emodin.

emodin suppresses alloantibody 
Production Posttransplantation
Given that anti-donor antibodies play a role in allograft rejec-
tion, we examined whether emodin also reduced donor-specific 
antibodies. We then measured IgG and IgM in the serum of 
B6-recipient mice treated with CsA and/or emodin via FACS 
anal yses using BALB/c splenocytes as target cells. As shown 
in Figure  8, either emodin or CsA significantly lowered both 
IgG and IgM levels 2 and 3  weeks after transplantation while 
administration of both CsA and emodin further decreased IgG 
and IgM levels compared to the treatment with CsA or emodin 
alone. Our data indicate that emodin indeed inhibits alloantibody 
production.

emodin hinders Dc Maturation 
Posttransplantation
To determine if emodin affects DC maturation posttransplanta-
tion, draining LN and spleen cells were isolated 10 days after alloge-
neic skin transplantation, and CD11c+CD80+ and CD11c+CD86+ 
DCs were enumerated by flow cytometry. As shown in Figure 9, 
treatment with either CsA or emodin reduced CD11c+CD86+ 
cell numbers in LNs of the recipient mice. However, combined 
treatments with both CsA and emodin, but not treatment with 
CsA or emodin alone, significantly decreased CD11c+CD86+ cell 
numbers in spleens of the mice (Figure 9A). On the other hand, 
either CsA or emodin reduced CD11c+CD80+ cell numbers in 
spleens, but not LNs, of the recipients (Figure 9B). These findings 
suggest that emodin reduces CD11c+CD86+ DC numbers in LNs 
of recipient mice while decreasing CD11c+CD80+ DC numbers 
in spleens of the recipients.

emodin suppresses T cell Proliferation 
and mTOr signaling In Vitro
Since we found that emodin suppressed allograft rejection and 
T cell infiltration in an allograft, we then examined whether emo-
din would also inhibit T cell proliferation in vitro. To determine 
the effects of emodin on alloreactive T cell proliferation in vitro, 
one-way MLR was set up using irradiated Balb/C splenocytes 
as stimulators and B6-derived T cells as responders. As shown 
in Figure  10, either emodin or CsA inhibited T  cell prolifera-
tion 3 (Figure 10A) or 5 days (Figure 10B) after MLR culture. 
Moreover, combined treatments with both emodin and CsA 
further suppressed T cell proliferation compared to the treatment 
with emodin or CsA alone.

Previous experiments using rapamycin, an inhibitor of mTOR 
(22), have proved that mTOR signal transduction suppresses the 
development and function of Tregs and that rapamycin promotes 
CD4+Foxp3+ Treg generation (23). Since our results demon-
strated that emodin increased the frequencies of CD4+Foxp3+ 
Tregs, we determined whether emodin would also induce 
Tregs by blocking mTOR signaling. T cells were activated in an 
MLR in the medium without or with emodin for 48 h, and the 
phosphorylation of p70S6K protein (P-p70S6K) was measured 
via western blotting. As shown in Figure 10C, emodin effectively 
inhibited the phosphorylation of downstream protein p70S6K at 
Ser411 compared to the control group while CsA only slightly 
reduced its phosphorylation. These results indicate that emodin 
likely exerts its effects on Treg generation and T cell proliferation 
through blocking mTOR signaling pathway.

representative of three separate experiments is shown for all panels.
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FigUre 4 | Emodin increases the frequencies and numbers of CD4+Foxp3+ regulatory T cells (Tregs). Draining lymph node (LN) and spleen cells from emodin- or 
CsA-treated B6 mice transplanted with BALB/c skin were isolated 10 days after transplantation. The frequency and absolute numbers of CD4+Foxp3+ Tregs from 
LNs and spleens of recipient mice treated with CsA and/or emodin were determined via a flow cytometer. Data of column graphs are shown as means ± SD 
(n = 6–8 mice). One of three separate experiments is shown.
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DiscUssiOn

CsA has been widely used as an immunosuppressive agent in 
clinic for treating both autoimmune diseases and transplant 
rejection. However, in addition to its common side effects, CsA 

hinders allograft tolerance by dampening CD4+CD25+FoxP3+ 
Tregs (24, 25). Therefore, it is necessary to develop new therapeu-
tic drugs for suppressing allograft rejection with few side effects. 
In particular, an immunosuppressive agent that spares Tregs is 
highly preferred. Using a mouse model of skin transplantation, 
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Emodin also augments the percentages of CD8+CD122+ Tregs. Draining LN and spleen cells from emodin- or CsA-treated B6 mice transplanted with

BALB/c skin were isolated 10 days after transplantation. The percentages of CD8+CD122+ Tregs from LNs and spleens of recipient mice were measured a flow

cytometer. Data are shown as means ± S.D. from two separate experiments (*P < 0.05 and **P < 0.01, n = 4–5 mice/group).

via
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FigUre 6 | Emodin-induced CD4+CD25+ or CD8+CD122+ regulatory T cells (Tregs) suppress skin allograft rejection in Rag1−/− recipient mice.  
CD4+CD25+ or CD8+CD122+ Tregs were isolated via FACS cell sorting from B6 recipient mice that were transplanted with BALB/c skin and treated  
with emodin and/or CsA. CD4+CD25+ (a) or CD8+CD122+ (B) Tregs (0.4 × 106), together with B6-derived naïve CD3+ T cells (2 × 106), were adoptively 
transferred to Rag1−/− mice (B6 background) that were then transplanted with a BALB/c skin graft. Skin allograft rejection in Rag1−/− recipient mice was 
observed (n = 7–8 grafts).

FigUre 7 | Depleting regulatory T cells (Tregs) largely reverses allograft 
survival extended by emodin. C57BL/6 mice received a skin graft from a 
BALB/c mouse and were treated with emodin or CsA. Tregs in recipient mice 
were depleted using anti-CD25 (PC61) and anti-CD122 (TMβ1). Skin allograft 
rejection was then observed (n = 6–7 grafts).
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we analyzed the efficacy of emodin, a natural molecule extracted 
from R. palmatum, in suppression of transplant rejection. Our 
data demonstrated that emodin suppressed T  cell infiltration 
in an allograft and prolonged the allograft survival. Further, 
administration of emodin induced both CD4+FoxP3+ and 
CD8+CD122+ Tregs while inhibiting the expansion of effector 
CD8+ T  cells in transplanted mice. Emodin also suppressed 
alloantibody production and hindered DC maturation post-
transplantation. Finally, emodin suppressed T cell proliferation 
and mTOR signaling in  vitro. Thus, emodin may represent a 
newly emerging immunosuppressant that could be utilized in 
clinical transplantation.

Our results demonstrated that emodin suppressed effector 
CD8+ T  cell expansion but did not promote CD4+ and CD8+ 
T cell apoptosis in recipient mice, suggesting that emodin is non-
cytotoxic in our animal model. However, a previous study showed 
that emodin induced the apoptosis of Dalton’s lymphoma cells 
in vivo via modulating hydrogen peroxide metabolizing antioxi-
dant enzymes (26). Although it is unclear why emodin induced 
the apoptosis of lymphoma cells, but not primary T  cells, we 
speculate that rapidly growing tumor cells may be more vulner-
able to mitochondrial pathway of apoptosis than normal primary 
T cells in wild-type mice.

CD4+CD25+ Tregs play a key role in maintaining immune 
homeostasis and tolerance. They represent only a small fraction 
of CD4+ T  cells and express α chain of IL-2 receptor (CD25) 
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FigUre 9 | Emodin hinders dendritic cell (DC) maturation posttransplantation. Draining lymph node (LN) and spleen cells were isolated from B6 recipient mice that 
were transplanted with BALB/c skin and treated with CsA and/or emodin. 10 days after allogeneic skin transplantation, CD11c+CD86+ (a) and CD11c+CD80+ (B) 
DCs in recipients were enumerated by flow cytometry. Bar graphs represent the absolute numbers of the DCs. Data were pooled from three separate experiments 
and presented as means ± SD (n = 6–9 mice).

FigUre 8 | Emodin suppresses alloantibody production posttransplantation. IgG (a) and IgM (B) in the serum of B6 recipient mice treated with CsA and/or emodin 
were measured via FACS analysis using B-cell-depleted BALB/c splenocytes as primary target cells 1–3 weeks posttransplantation. The data were pooled from 
three separate experiments and presented as means ± SD (n = 6–8 mice) in the form of the mean fluorescence intensity (MFI).
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FigUre 10 | Emodin inhibits T cell proliferation and mTOR signaling in vitro. An MLR was set up using irradiated Balb/C splenocytes as stimulators and B6-derived 
T cells as responders in the absence or presence of CsA and/or or emodin. Either emodin or CsA inhibited T cell proliferation 3 (a) or 5 days (B) after MLR culture. 
Data are shown as means ± SD (n = 6 samples). One representative of three separate experiments is shown. Moreover, western blots for phosphorylated p70S6K 
and total p70S6K were performed two days after the similar MLR culture (c). GAPDH was used as a loading control. One representing image from three separate 
experiments is shown. OD values in column graphs were pooled from four separate experiments. Data are presented as means ± SD (n = 4 bands) after corrections 
by GAPDH. Results demonstrated that emodin mostly blocked the phosphorylation of p70S6K.

(27–29). Either induction of endogenous CD4+CD25+ Tregs or 
adoptive transfer of exogenous Tregs prevents autoimmune dis-
eases and allograft rejection in animal models (30–37). Here, we 
found that emodin upregulated CD4+Foxp3+ Tregs in the drain-
ing LNs of transplanted mice while CsA reduced their numbers, 
suggesting that emodin and CsA suppress allograft rejection via a 
totally different mechanism. CsA is a common immunosuppres-
sant for suppression of allograft rejection through the formation 
of a cyclosporin–cyclophilin complex and prevention of T  cell 
activation (38), resulting in reduced IL-2 expression, impaired 
generation of CD4+Foxp3+ Tregs (39, 40) and compromised 
tolerance. In our studies, CsA treatment led to similar reductions 
in the frequencies and numbers of Tregs, which were reversed 
by emodin administration, suggesting that emodin can correct 
the deficiency of CsA in terms of its repression of Tregs. Thus, 
potential tolerance-breaking effects of CsA may be offset by 
emodin. It is unclear why the frequencies and numbers of these 
Tregs in spleens were not affected by emodin. It is possible that an 
increase in Tregs in the draining LNs of the recipient mice treated 

with emodin was due to the presence of alloantigen-specific  
Tregs given that Ag-specific T/Treg cell frequencies are generally 
lower in spleens than in the draining LNs. On the other hand, 
depletion of CD4+Foxp3+ Tregs mostly reversed allograft survival 
extended by emodin, indicating that suppression of allograft 
rejection by emodin is mostly dependent on CD4+Foxp3+ Tregs.

Recent studies have shown that CD8+CD122+ T cells are also 
Tregs that suppress conventional T  cell responses (41–46) and 
autoimmune diseases (47, 48). We have previously demonstrated 
that CD8+CD122+ T cells not only are Tregs (49, 50), but also are 
more potent in suppression of allograft rejection than conventional 
CD4+CD25+ Tregs (21). In this study, we found that both emodin 
and CsA significantly increased the frequency of CD8+CD122+ 
Tregs in both LNs and spleens of the recipients, indicating that the 
signaling pathways activating CD8+CD122+ Tregs are different 
from those activating CD4+Foxp3+ Tregs. Interestingly, emodin 
augmented the absolute number of CD8+CD122+ Tregs in the 
LNs, but not the spleen. It is possible that most Tregs induced 
by emodin migrated to the draining LNs or the allograft. On the 
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other hand, neither emodin nor CsA enhanced the suppressive 
capacity of CD8+CD122+ Tregs, implying that emodin-induced 
CD8+CD122+ Tregs are not necessarily alloantigen-specific. 
Furthermore, depletion of CD8+CD122+ Tregs only partially 
reversed allograft survival induced by emodin, indicating that 
inhibition of allograft rejection by emodin is not totally depend-
ent on CD8+CD122+ Tregs.

We demonstrated that emodin induced CD4+Foxp3+ Tregs 
while inhibiting conventional T cell proliferation. It has been well 
accepted that mTOR signaling is important for regulating the 
generation of CD4+Foxp3+ Tregs and that an mTOR inhibitor, 
such as rapamycin, induces Tregs (7, 8). We, therefore, speculated 
that emodin exerted its suppressive effects on T  cell responses 
via inhibition of mTOR signaling, leading to an increase in the  
Treg generation. Indeed, we found that emodin-treated T  cells 
exhibited a dramatic decrease in the activation of their mTOR 
signaling, which is induced by TCR stimulation (51), and also a 
reduction in their proliferation, indicating that emodin suppresses 
allograft rejection by blocking T-cell mTOR signaling, leading to 
the Treg generation, which in turn prolongs allograft survival.

Donor-specific antibodies or alloantibodies play an impor tant 
role in mediating allograft rejection. We found that emodin sup-
pressed the production of both IgG and IgM alloantibodies after 
allotransplantation. The mechanisms underlying its suppression 
of alloantibody production are unknown. It is possible that T cell 
help for B cell differentiation and function is compromised due 
to the suppression of T cell activation by emodin.

Dendritic cells play an important role in T  cell activation 
and CD11c-expressing DCs in recipients facilitate allograft 
rejection and promote the expansion of alloreactive CD4+ 
and CD8+ T  cells (52). In our studies, we found that emodin 
reduced CD11c+CD86+ DC numbers in LNs of recipient mice 
while decreasing CD11c+CD80+ DC numbers in spleens of the 
recipients, suggesting that emodin hinders DC maturation in the 
context of allotransplantation. It remains to be determined why 
emodin differentially impacts CD11c+CD86+ and CD11c+CD80+ 
subsets of DCs in the LNs and spleens of the recipient mice. 
However, our results are actually consistent with a previous study 

showing that emodin inhibited DC maturation in  vitro (53), 
implying that emodin indeed suppresses DC differentiation or 
maturation. It is also unclear how emodin reduces DC numbers. 
It is possible that emodin regulates the expression of various toll-
like receptors.

In conclusion, emodin inhibits alloimmune responses by 
inducing Tregs, suppressing alloantibody production, hindering 
DC maturation, and blocking mTOR signaling. It remains to be 
defined if emodin also regulates the generation and function of 
other innate immune cells, including MDSCs, macrophages, and 
NK cells. Our results will lay the groundwork for clinical trials 
using emodin as an effective immunosuppressant to suppress 
allograft rejection or even autoimmunity.
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