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Progression of human immunodeficiency virus type-1 (HIV-1) infection in children is faster 
than adults. HIV-1 subtype C is responsible for more than 50% of the infections globally 
and more than 90% infections in India. To date, there is no effective vaccine against 
HIV-1. Recent animal studies and human Phase I trials showed promising results of the 
protective effect of anti-HIV-1 broadly neutralizing antibodies (bnAbs). Interaction between 
CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein and CD4 receptor on the 
host immune cells is the primary event leading to HIV-1 infection. The CD4bs is a highly 
conserved region, comprised of a conformational epitope, and is a potential target of 
bnAbs such as VRC01 that is presently under human clinical trials. Recombinant scFvs 
can access masked epitopes due to their small size and have shown the potential to inhibit 
viral replication and neutralize a broad range of viruses. Pediatric viruses are resistant to 
many of the existing bnAbs isolated from adults. Therefore, in this study, pooled peripheral 
blood mononuclear cells from 9 chronically HIV-1 subtype C infected pediatric cross-neu-
tralizers whose plasma antibodies exhibited potent and cross-neutralizing activity were 
used to construct a human anti-HIV-1 scFv phage library of 9 × 108 individual clones. 
Plasma mapping using CD4bs-specific probes identified the presence of CD4bs directed 
antibodies in 4 of these children. By extensive biopanning of the library with CD4bs-
specific antigen RSC3 core protein, we identified two cross-neutralizing scFv monoclonals 
2B10 and 2E4 demonstrating a neutralizing breadth and GMT of 77%, 17.9 µg/ml and 
32%, 51.2 µg/ml, respectively, against a panel of 49 tier 1, 2 and 3 viruses. Both scFvs 
competed with anti-CD4bs bnAb VRC01 confirming their CD4bs epitope specificity. The 
2B10 scFv was effective in neutralizing the 7 subtype C and subtype A pediatric viruses 
tested. Somatic hypermutations in the VH gene of scFvs (10.1–11.1%) is comparable with 
that of the adult antibodies. These cross-neutralizing CD4bs-directed scFvs can serve as 
potential reagents for passive immunotherapy. A combination of cross-neutralizing scFvs 
of diverse specificities with antiretroviral drugs may be effective in suppressing viremia at 
an early stage of HIV-1 infection and prevent disease progression.

Keywords: human immunodeficiency virus type-1, subtype c, cD4-binding site, rsc3 core protein, neutralizing 
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inTrODUcTiOn

A vaccine for human immunodeficiency virus type-1 (HIV-1) is a 
global health priority. Attempts are underway in designing HIV-1 
immunogens that can elicit correlates of protection (1, 2). Using 
the reverse vaccinology approach, broadly neutralizing antibod-
ies (bnAbs) are being used to map the neutralizing determinants 
that can be incorporated into an immunogen based vaccine that 
will be effective in eliciting similar antibodies in natural infection 
(2, 3). Majority of the bnAbs isolated so far are from non-subtype  
C infected individuals and except a few, not much effective against 
subtype C viruses (4–8).

The CD4 receptor on host immune cells is the primary recep-
tor for HIV-1 entry and infection. The CD4-binding site (CD4bs) 
is a highly conserved, conformational, and discontinuous region 
in the envelope of HIV-1, HIV-2, and also in SIV (9–12). An 
anti-CD4bs bnAb VRC01 was isolated from a subtype B infected 
slow-progressor by constructing a resurfaced stabilized core 
protein, the best antigen designed so far to identify bnAbs against 
CD4bs region (13). Further, a number of bnAbs of the VRC01 
class have been generated, suggesting that the CD4bs region is a 
prime target for bnAbs with high potency and breadth (14–16). 
In recent Phase I clinical trials, passive infusion of anti-CD4bs 
bnAbs 3BNC117 and VRC01 demonstrated reduced viremia in 
HIV-1-infected donors (17–22), suggesting that bnAbs directed 
against the CD4bs can serve as potential candidates for immuno-
therapy and to guide immunogen design.

Subtype C HIV-1 is the most predominant subtype circulat-
ing in India (23–26). Disease progression is faster in HIV-1 
infected children than adults due to immaturity of the immune 
system in terms of both innate and acquired immune responses 
and limited exposure to diverse pathogens (27–29). Early initia-
tion of antiretroviral therapy (ART) can prevent viral replica-
tion and delay disease progression, however, it cannot prevent 
HIV-1 infection (30). Most of the bnAbs isolated till date, are 
from adults, except a recently isolated bnAb BF520.1 from an 
HIV-1 subtype A infected infant demonstrating for the first 
time that cross-neutralizing antibodies (cnAbs) are elicited in 
infants too (31). A major concern is that the bnAbs isolated 
from non-subtype C infected adult donors when tested against 
pseudoviruses generated from the infected children were found 
less effective against HIV-1 subtype C viruses (32). Recently, 
we observed that majority of the viruses circulating in chronic 
HIV-1 infected children were resistant to neutralization by the 
second-generation anti-HIV-1 bnAbs isolated from adult donors 
(33). Hence, there is a need for the generation of anti-HIV-1 
cnAbs from subtype C infected children that are effective against 
subtype C viruses, responsible for more than 50% of the global 
HIV-1 infection.

Broadly neutralizing antibodies are produced in 15–25% of the 
infected individuals after a minimum of 2–3 years of HIV infection 
(34). Previously, we have for the first time showed the presence of 
cnAbs targeting multiple HIV-1 epitopes in the plasma of HIV-
1-infected children (35, 36). Later, the development of bnAbs in 
infants was reported by Goo et  al. (37) followed by successful 
isolation of a bnAb BF520.1 directed against N332 V3-glycan 
epitope from an infant (31). In a recent study, we observed the 

evolution of cnAbs with multiple epitope specificities in the 
plasma of chronically infected pediatric donors (38) who were 
anti-retroviral naïve for ≥5 years of infection and potential long-
term non-progressors, identifying them as suitable candidates for 
the isolation of bnAbs. The CD4bs on the viral envelope glyco-
protein gp120 is a highly conformational epitope. Single chain 
antibody fragments (scFvs) retain their antigen binding sites and 
yet are small and flexible to overcome such constraints posed by 
conformational embedded epitopes. Phage display has proved to 
be a powerful method for the generation of recombinant antibody 
fragments (39, 40), its main advantage being the large diversity of 
antibodies with varied epitope specificities that can be generated 
by biopanning with different antigens (41–44). Therefore, this 
study was aimed to construct a peripheral blood mononuclear cell 
(PBMC) based scFv phage library, from nine subtype C infected 
antiretroviral naïve pediatric cross-neutralizers, whose plasma 
antibodies exhibited potent and cross-neutralizing activity, to 
identify scFvs against the CD4bs region of subtype C HIV-1. The 
phage library comprised of 9 × 108 clones and further biopanning 
this library using CD4bs specific antigen RSC3 core protein, led 
to the identification of two cross-neutralizing anti-CD4bs scFv 
monoclonals. The pediatric anti-CD4bs scFv monoclonal 2B10 
exhibited cross neutralization activity against subtype C viruses 
of Indian and African regions and with other non-subtype C 
viruses.

MaTerials anD MeThODs

study subjects
Nine ART naïve HIV-1 subtype C chronically infected pediat-
ric cross-neutralizers (AIIMS_329, AIIMS_330, AIIMS_341, 
AIIMS_346, AIIMS_355, AIIMS_357, AIIMS_505, AIIMS_509 
and AIIMS_510) were recruited for this study from the Pediatric 
OPD, Department of Pediatrics, AIIMS, New Delhi. 5 ml of blood 
was drawn by venipuncture under aseptic conditions from all the 
study subjects. Blood was used for PBMC isolation after sepa-
rating the plasma by centrifugation at 600 × g. The plasma was 
heat inactivated at 56°C for 1 h and stored at −80°C for further 
experiments.

antigens, antibodies, and Vectors
The plasmids for envelope glycoprotein expression and the 
purified proteins used in this study were obtained from various 
sources; RSC3 core wild-type (WT) and its mutant Δ371I/P363N 
expression plasmids and proteins (kindly provided by Dr. John R. 
Mascola, NIAID, VRC, USA), HXBc2 WT and its D368R mutant 
gp120 plasmids (kindly provided by Dr. Joseph Sodroski, Dana 
Farber Cancer Institute, USA). The anti-HIV-1 bnAbs 2G12, 
VRC01 were obtained from the NIH AIDS Reagent Program 
(NIH ARP). Antibody 1418, specific for the capsid of human 
parvovirus B19, was kindly provided by Dr. Susan Zolla Pazner, 
NYU, USA. The plasmids for CAP256 and its N332A mutant 
were kindly provided by Dr. Lynn Morris, National Institute 
for Communicable Diseases, South Africa. The pAK100 and 
pAK400 plasmids were kindly gifted by Dr. Andreas Pluckthun, 
Department of Biochemistry, University of Zurich, Switzerland.
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Plasma antibody Binding analysis  
by elisa
All antigens were coated on ELISA plates at a concentration of 
2 µg/ml and incubated overnight at 4°C. Plates were blocked with 
300 μl/well of 15% FBS in RPMI for 1.5 h, followed by addition 
of 100 μl/well of heat inactivated plasma at different dilutions 
(1:30, 1:100, 1:300, 1:1,000, 1:3,000, and 1:10,000) or anti-HIV-1 
monoclonal antibodies (VRC01, b12, 447-52D and 2F5) and 
anti-Parvovirus mAb 1418, each at 10 µg/ml concentration and 
incubated for 1 h at 37°C. Each of the above steps was followed 
by washing with 1× PBS (Phosphate Buffered Saline) with 0.1% 
Tween 20. Next, 100 µl of alkaline phosphatase (AP)-conjugated 
anti-human IgG Fc antibody [1:2,000 diluted in 1× PBS with 
0.05% Tween 20 (Southern Biotech)] was added to the plates 
and the immune complexes were reacted with AP substrate in 
10% DAE buffer (1  mg/ml). Reaction was stopped by adding 
6 N NaOH and plates were read at 410 nm. The reported Max50 
value is the 50% maximal binding of plasma antibodies that 
showed saturation. Max50 values were calculated as described 
previously (45).

Pediatric anti-hiV-1 c scFv Phage library 
construction
A pediatric anti-HIV-1 subtype C scFv recombinant phage 
library was constructed as described previously (43, 44, 46, 47) 
with a few modifications. Briefly, one million PBMCs from 
each of the nine select pediatric cross-neutralizers were pooled 
and total RNA was isolated by Trizol reagent (Sigma) and then 
reverse transcribed to cDNA, using the Reverse aid M-MuLV 
reverse transcriptase (Thermo). For construction of scFv, the 
heavy chain and light chain variable region genes were ampli-
fied using specific primers (IDT) (Table S2 in Supplementary 
Material) (46) and hot start Taq DNA polymerase (Fermentas, 
USA). An equimolar mixture of pooled heavy and light chain 
DNA was used in the second round of assembly PCR using Pfu 
DNA polymerase. Full length scFvs were amplified by pull-
through PCR reaction using Hot start Taq DNA polymerase 
and forward primer PTFw 5′ CCT TTC TAT GCG GCC CAG 
CCG GCC ATG GCC 3′ and reverse primers PAK kappa Sfi 5′ 
TCA GCA TGG CCC CCG AGG CCG CAC GTT TRA T 3′, 
and PAK lambda Sfi 5′ TCA GCA TGG CCC CCG AGG CCG 
CAC CTA RRA C 3′ (R = G and A). The scFvs were resolved 
on agarose gel and purified using gel extraction kit (Qiagen). 
The library was constructed by ligating the scFv into pAK100 
phagemid vector by using T4 DNA ligase (New England 
Biolabs) followed by transformation into TG1 electrocompetent 
cells by electroporation (current 25°F, resistance 200 Ohms, voltage 
2,500 V) (BioRad). The transformed cells were plated on to 2XYT 
medium agar plates containing chloramphenicol (30  µg/ml)  
and incubated overnight at 37°C. A glycerol stock of the recom-
binant scFv library was made and aliquots stored at −80°C.

colony Pcr and scFv sequence analysis
Twenty scFv clones were randomly picked from the library to 
check the presence of scFv inserts and diversity of the scFv phage 

library. Colony PCR was done by using forward primer; PTfw 
5′ CCT TTC TAT GCG GCC CAG CCG GCC ATG GCC 3′ 
and reverse primer; (pAK Sfi1) 5′ TCA GCA TGG CCC CCG 
AGG CCG CAC GTT TRAT 3′, PAK lambda Sfi 5′ TCA GCA 
TGG CCC CCG AGG CCG CAC CTA RRA C 3′ (R = G and A). 
Plasmid DNA of colony PCR positive scFv clones was isolated, 
sequenced commercially by Macrogen (South Korea), and the 
sequences were analyzed by online IMGT/V-Quest software pro-
vided by the international ImMunoGeneTics database (IMGT) 
(http://www.imgt.org/IMGT_vquest/share/textes/).

Biopanning of the scFv Phage library
The rescue of phage library was done with M13KO7 helper 
phage (Stratagene) as mentioned previously (44, 48). The phages 
were then subjected to five rounds of enrichment by bio-panning 
as described earlier (43). Briefly, RSC3 core protein was cou-
pled to magnetic beads (MyOne Tosyl activated Dynalbeads, 
Invitrogen) according to the manufacturer’s instructions, and 
the antigenic integrity of protein after bead coupling was verified 
by flow cytometry, using bnAb VRC01. Phages were transferred 
to an eppendorf tube containing 60 µl RSC3 core protein coated 
magnetic beads and incubated for 1 h at RT with gentle shaking. 
The unbound phage was removed by washing 10–15 times with 
1× PBS with 0.1% Tween 20. The bound phage was eluted with 
0.2 M glycine pH 2.2 for 10 min at RT. The eluted phage were 
neutralized with 1 M Tris-HCl pH 9.2 and immediately added 
to TG1/HB2151 cells (OD = 0.5) for infection at 37°C without 
shaking for 30 min and with shaking at 37°C for 30 min. Cells 
were spun down and plated on 2XTY agar containing chlo-
ramphenicol (30  µg/ml). Finally, the individual colonies were 
picked and grown in 96 well sterile culture plates (Corning) 
and a glycerol stock of each colony was stored at −70°C. This 
procedure was again repeated four times to complete five rounds 
of biopanning.

soluble Phage elisa
Soluble phage ELISA was performed as described previously  
(43, 49, 50), with few modifications. The ELISA plates were coated 
with 100 µl of RSC3 core and its mutant Δ371I/P363N at 2 µg/ml  
in 0.1 M NaHCO3 (pH 8.6) and incubated overnight at 4°C. The 
anti-CD4bs bnAbs VRC01 and b12 was used as positive controls; 
anti-CD4bs non-neutralizing antibody (non-nAb) b6, anti-V3 
mAb 447-52D, anti-Parvovirus mAb 1418, and scFv against hepa-
titis virus HepB scFv were used as negative controls at 1 µg/ml  
concentration in these assays. The phage clones were taken as 
positive by ELISA, if the absorbance of RSC3 core coated wells 
was at least two times higher than RSC3 core mutant delta 37I/
P363N and at least three times higher than binding of phage 
clones to unrelated antigens (unrelated peptide pool, BSA).

sequencing analysis of scFvs
Sequencing analysis of positive scFv clones of the soluble phage 
ELISA was performed as described previously (43, 44). Briefly, 
the plasmid of positive scFv clones from the soluble phage 
ELISA was isolated by using plasmid purification Mini kit 
(Qiagen, Germany) and sequenced commercially by Macrogen  
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(South Korea). The sequences were analyzed using IMGT V 
Quest software.

expression and Purification of scFv 
Monoclonals
The binding clones from the soluble phage ELISA were selected 
for soluble scFv expression as described earlier (43). The pAK100 
vector carrying scFv DNA and pAK400 vector were digested with 
SfiI restriction enzyme (New England Biolabs). The digested scFv 
DNA fragments and pAK400 vector were gel purified using gel 
extraction kit (Qiagen). The scFv DNA was ligated into pAK400 
vector at a 3:1  M ratio using T4 DNA ligase (New England 
Biolabs) in a reaction volume of 20 µl followed by transformation 
into HB2151 cells using calcium chloride method. The HB2151 
cells carrying scFv cloned pAK400 plasmid were grown and 
induced by 1 mM IPTG for 4 at 24°C (48). Next, scFv was puri-
fied from the periplasmic extract by Ni-NTA (Qiagen) affinity 
chromatography as described earlier (44). The protein was eluted 
with 300 mM imidazole followed by extensive dialysis against ice 
cold 1× PBS (pH 7.4), and protein samples were concentrated 
using ultrafiltration columns (Ambion) over a 10 kDa cut off and 
filtered by 0.2 µm sterile syringe filter. The purity of the purified 
proteins was assessed by SDS-PAGE and Western blot. Briefly, 
resolving the scFv on 12% SDS-PAGE followed by Western blot-
ting, the scFv was detected using anti-His-tag antibody raised in 
mouse (Sigma) at a 1:1,000 dilution in 1× PBS with 0.05% Tween 
20. Secondary anti-mouse HRP (1:3,000 dilutions) antibody was 
added and incubated at RT for 2 h, and color was developed using 
3,3′-diaminobenzidine tetrahydrochloride (DAB) as substrate. 
Proteins with >95% purity were stored at −80°C immediately 
after snap freezing in liquid nitrogen.

Purified scFv elisa and affinity 
Determination
ELISA of purified scFvs was done by using HIV-1 monomeric 
and trimeric envelope glycoproteins (HIV-1 96ZM651 gp120 
monomer subtype C, BG505 SOSIP.664 D7324 trimeric antigen 
and HxBc2 gp120 and HxBc2 D368R mutant gp120 monomers) 
as described previously (2, 43). Briefly, all antigens were coated on 
ELISA plates at 2 µg/ml concentration, blocked with 15% FBS, 2% 
BSA in a RPMI media; threefold serial dilutions of scFvs and mAb 
controls (VRC01, b12, 447-52D, 2G12, 2F5 and 1418) were added 
followed by detection with 1:1,000 dilution of primary antibody 
(Anti-His tag for scFvs and HRP conjugated anti-human Fc 
antibody for mAb controls) in 2% milk phosphate-buffer saline 
(MPBS). For scFvs, 1:2,000 diluted anti-mouse HRP-conjugated 
secondary antibody in 2% MPBS was added. Each of the above 
steps was followed by washing the plate with 1× PBS with 0.1% 
Tween 20. Immediately after washing, 100 µl of TMB substrate 
(BioLegend) was added and incubated at RT till the color 
developed. Reaction was stopped by adding 8 N H2SO4 and the 
absorbance was read at 450 nm.

Affinity analysis of the scFvs was done by ELISA as described 
previously (43). Briefly, different dilutions of BG505:SOSIP.664 
gp140 (10–800  nM) were incubated with fixed concentration 
of the scFvs (3.125 nM) for 16 h at 4°C. Next day, 100 µl of the 

equilibrated solution was incubated with BG505:SOSIP.664 gp140 
coated ELISA plates (500 ng/well) for 20 min at RT to capture 
the free scFvs. Bound scFv was detected with primary anti-His 
tag antibody (raised in mouse, Sigma) at 1:1,000 dilution and 
with secondary anti-mouse HRP conjugated antibody (Sigma) at 
1:2,000 dilution as described before. Saturation binding curve was 
plotted using non-linear regression method and KD values were 
calculated. Competition ELISA was performed as described in 
Ref. (13, 43) by using biotinylated VRC01 and BG505:SOSIP.664 
gp140 antigen. All the ELISAs were repeated twice and data was 
analyzed by using GraphPad Prism software 5.0.

Viral neutralizing activity of scFvs
The neutralization efficiency of the purified scFv monoclonals 
was tested with HIV-1 pseudoviruses and primary isolates as 
described previously (43, 44, 51). Briefly, HIV-1 envelope expres-
sion plasmids from a standard panel for subtypes A, B, C, AD, 
CD, and CRF2 AG were obtained from the NIH AIDS Reagent 
Program (NIH ARP). Pseudoviruses were generated by co-
transfecting HEK293T cells with a plasmid expressing envelope 
and envelope deficient HIV-1 backbone vector pSG3Δenv as 
described earlier (51), and primary isolates were derived from 
PBMCs of HIV-1 infected Indian donors as reported earlier  
(33, 45, 52). Next, starting with 100 µg/ml of scFv concentration, 
three-fold serial dilutions were made in 10% DMEM [Dulbecco 
Modified Eagles’s Medium, HyClone, GE Healthcare supple-
mented with 10% FBS (Fetal Bovine Serum) and 1% PenStrep 
(Penicillin and Streptomycin) antibiotics] and incubated with 
200 TCID of the pseudoviruses/primary isolates for 1 h at 37°C. 
Then, 104 cells/well TZM-bl cells were added to the scFv and virus 
complex along with 25 µg/ml DEAE Dextran (Sigma) (Indinavir 
(1  mM) was additionally added with primary isolates). After 
48 h, 150 µl volume of culture medium was removed and 50 µl 
of Bright-Glo Luciferase assay reagent (Promega) was added to 
TZM-bl cells followed by 2-min incubation at room temperature 
to allow complete cell lysis. Then, luciferase activity was read in 
96-well black plate (Costar) using Synergy 2 Multi-Mode Reader 
(BioTek). The IC50 values for the scFvs were calculated by a 
dose-response curve fit with non-linear function, with the help 
of Graph Pad prism software 5.0. Each experiment was repeated 
twice and performed in duplicates and IC50 titers were calculated.

statistical analyses
Statistical analyses were performed using Graph Pad Prism 5. 
Non-linear regression curve straight line was plotted using the 
method of least squares to determine the Max50 and IC50 values. 
Mean Max50 binding titers were compared using unpaired t test. 
P values <0.05 were considered significant.

resUlTs

Plasma samples of hiV-1 infected 
Pediatric Donors showed the  
Presence of anti-cD4bs antibodies
Nine anti-retroviral naïve HIV-1 subtype C infected pediatric 
cross-neutralizers were recruited for the generation of the human 
anti-HIV-1 scFv recombinant library, based on the viral cross 
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TaBle 1 | Clinical and demographic profile of 9 chronically HIV-1 infected 
children at the time of enrollment in study.

Pediatric  
donor iD

age (in years)/
gender 

hiV-1 
subtype

Viral load  
(rna copies/ml)

cD4 count 
(cells/μl)

AIIMS_329 6/M C 39,000 1,280
AIIMS_330 6/M C 27,500 1,174
AIIMS_341 5/M C NA NA
AIIMS_346 8/M C 73,900 441
AIIMS_355 11/M C 48,300 850
AIIMS_357 12/M C 19,200 510
AIIMS_505 5/F C 34,300 1,128
AIIMS_509 8/M C 3,410 918
AIIMS_510 8/F C 11,500 676

FigUre 1 | Screening of cross-neutralizing plasma (CNP) samples for the presence of anti-CD4 binding site (CD4bs) antibodies. (a) Nine CNP samples were tested 
for the presence of anti-CD4bs antibodies using CD4bs specific probes RSC3 core wild-type (WT) and its mutant Δ371I/P363N at 2 µg/ml. (B) CNP samples were 
further tested for the presence of anti-CD4bs antibodies using HXBc2 WT and its mutant HXBc2 D368R gp120. Reciprocal Max50 binding titers were calculated 
using the least square regression method. The ELISA was repeated twice in triplicates. HD was the plasma of one healthy seronegative donor used as negative 
control. Mean reciprocal Max50 binding titers were compared using unpaired t-test for each plasma sample for RSC3 core WT and its mutant or HXBc2 WT and its 
mutant D368R. P values <0.05 were considered significant and shown by asterisk (*) symbol, (**) if p < 0.01 and (***) if p < 0.001. (c) The binding of RSC3 core WT 
and its mutant Δ371I/P363N was checked with anti-CD4bs mAb VRC01 and b12 (positive controls) and anti-V3 mAb 447-52D, anti-MPER mAb 2F5 and 
anti-Parvovirus mAb 1418 were used as negative controls. (D) The binding of HXB2 gp120 WT and its D368R mutant was tested with mAbs.
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neutralizing potential exhibited by their plasma antibodies (35, 
36, 38). The demographic and clinical profile of the study subjects 
is provided in Table 1. The infected donor plasma samples were 
analyzed for the presence of anti-CD4bs antibodies using recom-
binant gp120 proteins (13, 53) known to bind CD4bs-directed 
bnAbs and their corresponding mutants; the RSC3 core protein 
and its mutant Δ371I/P363N, HXBc2 WT gp120 and its mutant 
D368R. The plasma antibodies of 4 pediatric donors (AIIMS_341, 

AIIMS_346, AIIMS_357, and AIIMS_361) demonstrated high 
binding titers with RSC3 core WT protein as compared to its 
mutant Δ371I/P363N, suggesting the presence of VRC01 like 
anti-CD4bs antibodies in their plasma (Figure  1A); this was 
further confirmed with HXBc2 WT gp120 and its mutant D368R 
(Figure 1B). The results for the binding of positive and negative 
control antibodies with RSC3 core WT and its mutant Δ371I/
P363N are shown in (Figure 1C) and with HXBc2 WT and its 
mutant D368R in (Figure 1D).

anti-cD4bs specific scFv clones 
identified in the Pediatric anti-hiV-1  
scFv recombinant Phage library
The PBMCs from 9 pediatric cross-neutralizers were pooled and 
an anti-HIV-1 pediatric scFv phage library was constructed, as 
described in the methodology section. The variable genes for 
heavy chain (VH) and light chains kappa and lambda (VLκ and 
VLλ) were successfully amplified showing desired 400 bp bands, 
except VLκ3 and VLλ2 (Figures S1A–C in Supplementary 
Material) followed by successful construction of scFv gene 
(800 bp) by pull-through PCR (Figure S1D in Supplementary 
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TaBle 2 | The heavy and light chain gene sequence analysis of identified anti-CD4bs scFv clones.

heavy chain

scFv iD V-gene D-gene J-gene cDrh3 cDr3 length (amino acids) Vh nucleotide mutation frequency

2B10 IGHV1-2*02 IGHD6-19*01 IGHJ4*02 CARGDSSGWYGFDF 13 30/295 (10.1%)
2E4 IGHV1-2*02 IGHD6-13*01 IGHJ3*01 CARERVPYGSSWYNDAFDVW 18 33/296 (11.1%)

light chain

scFv iD V-gene J-gene cDrl3 cDr3 length (amino acids) Vh nucleotide mutation frequency

2B10 IGLV1-51*02 IGLJ2*01 CGTWDSSLSAVVF 13 09/293 (3.03%)
2E4 IGLV3-19*01 IGLJ2*01 CNSRDSSGNHLEF 13 0/290 (0%)

The genes of two scFv monoclonals 2B10 and 2E4 were sequenced commercially and their sequence was analyzed by using IMGT/V-Quest software.

FigUre 2 | Soluble phage ELISA for the identification of anti-CD4-binding site (CD4bs) specific scFv clones. RSC3 core WT along with its mutant Δ371I/P363N 
and negative control antigens PP-unrelated peptide pool and BSA was used at 2 µg/ml. Here, anti-CD4bs bnAbs VRC01 and b12 were used as positive controls; 
anti-CD4bs non-neutralizing antibody (non-nAb) b6, anti-V3 mAb 447-52D and anti-parvovirus mAb 1418 were used as negative controls along with anti-Hepatitis 
HepB scFv clone. The scFv Clones showing binding with RSC3 core WT antigen at least two times more than its mutant and three times than the negative control 
were considered as positive. The ELISA was repeated twice and mean binding titers were compared with negative controls.
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Material). Next, colony PCR of 20 random clones from the 
unselected phage library (before biopanning) showed two clones 
with no scFv inserts (Figure S2 in Supplementary Material) 
thus, confirming 90% ligation efficiency. DNA sequencing of 
18 colony PCR positive clones confirmed that sequence of all 
scFv inserts were distinct (Table S1 in Supplementary Material). 
On the basis of these results, it is inferred that, diversity of the 
constructed phage library was 90% with 9 × 108 diverse clones. 
Biopanning of the library was performed using RSC3 protein 
coated on magnetic beads. The integrity of coated RSC3 protein 
on the beads was checked by flow cytometry by using anti-CD4bs 
bnAb VRC01 and more than 99% beads were found coated 
with RSC3 core protein (Figure S3 in Supplementary Material). 
After five rounds of biopanning, 150 scFv clones were randomly 
selected, their binding specificity was checked and eight scFv 
clones were identified which showed highest binding with the 
RSC3 protein and a decrease in binding of at least twofold with 
RSC3 Δ 371I/P363N protein, demonstrating CD4bs specificity 
(Figure 2).

sequence analysis of identified scFv 
clones showed Distinct characteristics
The plasmid of eight soluble phage ELISA positive scFv clones 
was isolated and sequenced, and we found 7/8 clones were similar 
in sequence because of the enrichment of antigen-specific clones 
after five rounds of biopanning. Therefore, two clones (2B10 and 
2E4) out of eight identified scFv clones were distinct and were 
taken for further analysis. Analysis of the gene usage of the scFvs 
by IMGT/V-Quest software program revealed that both 2B10 
and 2E4 scFvs are variants of the same immunoglobulin heavy 
chain gene family IGHV1-02*02, but having different D and J 
region alleles, i.e., IGHD6-19*01 and IGHJ4*02 for 2B10 and 
IGHD6-13*01 and IGHJ3*01 for 2E4. The CDRH3 and CDRL3 
region of 2B10 is shorter (13 amino acids in CDRH3 and 12 
amino acids in CDRL3) than CDRH3 and CDRL3 regions of 2E4 
(18 amino acids in CDRH3 and 13 amino acids in CDRL3). Also, 
higher number of somatic hypermutations (SHMs) was present 
in the immunoglobulin heavy chain and light chain genes of 
2B10 than 2E4 (Table 2).
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FigUre 3 | ELISAs to determine epitope specificities of scFv monoclonals. (a) Purified scFv monoclonals were checked for binding reactivity with HXB2 gp120 
WT and its D368R mutant by ELISA. Here, anti-HIV-1 bnAbs VRC01 and b12 were used as positive controls and anti-V3 mAb 447-52D, anti-Parvovirus mAb 
1418 with anti-hepatitis scFv HepB were used as negative controls. Mean binding titers were compared using unpaired t-test. P values < 0.05 were considered 
significant and shown by asterisk (*) symbol, (**) if p < 0.01 and (***) if p < 0.001. Here, ns is designated for “not significant.” (B) Competition ELISA of biotinylated 
VRC01 (at fixed concentration of 50 ng/ml) to BG505:SOSIP.664 D-7324 with decreasing concentrations of scFvs (2B10 and 2E4) and mAbs (2G12, VRC01). 
2G12 bnAb was used as negative control, and the bnAb VRC01 was used as positive control for the assay. Dilution used for antibodies was 5 µg/ml to 
0.1526 µg/ml.

TaBle 3 | Assessment of N332 V3-glycan dependent neutralization activity of 
2B10 and 2E4 scFvs.

ic50 titers (μg/ml) Fold change

scFv iD caP256 WT caP256 n332a n332a

2B10 39.7 37.4 0.94
2E4 90.2 88.9 0.98

The neutralization reactivity with V3-glycan N332 of the identified scFv monoclonals 
2B10 and 2E4 was assessed by using human immunodeficiency virus type-1 
subtype C pseudoviruses CAP256 wild-type and its mutant N332A using a starting 
concentration of 100 µg/ml of scFvs. Neither of the two scFv monoclonals shows 
N332A dependent neutralization activity.
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The Pediatric scFv Monoclonals 2B10 and 
2e4 showed cD4bs epitope specificity in 
Binding assay confirmed by competitive 
elisa
The SDS-PAGE and Western blot analysis of the purified scFv 
clones 2B10 and 2E4 confirmed that both scFv proteins were 
more than 95% pure and showed the presence 32  kDa scFv 
bands (Figure S4 in Supplementary Material). The purified 
2B10 and 2E4 scFvs were tested further in ELISA binding 
assays using HXBc2 gp120 and its mutant D368R. Both the 
scFvs showed binding to HXBc2 gp120 protein, with no sig-
nificant binding to its corresponding HXBc2 D368R mutant, 
as is expected of CD4bs directed Abs (Figure  3A). This was 
further confirmed by competition ELISA with biotinylated 
VRC01 (Figure  3B). Moreover, both scFv monoclonals did 
not show any binding with V3 and MPER peptides (data not 
shown). In addition, the neutralization activity of both the 
scFv monoclonals was assessed for their V1V2 and V3-glycan 
reactivity by using CAP256 WT and its V3-glycan N332A 
mutant pseudoviruses (Table 3) and 16055 WT and its V1/V2  
mutants N156K, N160K, K169A, and K171A pseudoviruses 
(Table 4). We observed, neither of the two scFvs exhibit V1/V2 
or V3-glycan reactivity.

Binding reactivity and affinity 
Measurement of the Pediatric scFv 
Monoclonals 2B10 and 2e4 to Trimeric and 
Monomeric gp120 envelope glycoprotein 
confirms Their Binding to the native Viral 
envelope
The 2B10 and 2E4 scFvs were next tested for their ability to bind 
native-like HIV-1 trimeric envelope glycoprotein BG505:SOSIP.664 
D-7324, and we observed high binding of both the scFvs with 

the trimeric antigen, which is known to bind only to bnAbs with 
high affinity and negligible binding with non-NAbs (Figure 4A). 
Further, binding analysis of both scFv monoclonals with recom-
binant HIV-1 96ZM651 subtype C protein confirmed their ability 
to bind with subtype C viral envelopes (Figure 4B). The affinity 
dissociation constant (KD) of both 2B10 scFv-BG505:SOSIP.664 
gp140 complex and 2E4 scFv-BG505:SOSIP.664 gp140 complex 
was determined by ELISA and saturation binding curve was plot-
ted through non-linear regression analysis (Figure  5). The Kd 
value for 2B10 scFv is 9.2 ± 1.4 × 10−8 M (R2 = 0.9709) and for 
2E4 scFv is 1.4 ± 0.2 × 10−7 M (R2 = 0.9662). In binding analysis 
experiments, HepB, a scFv directed against hepatitis B antigen 
(54), was used as negative control and anti-CD4bs bnAb VRC01 
was used as positive control.

The 2B10 and 2e4 anti-cD4bs Pediatric 
scFvs exhibited Viral cross-neutralizing 
activity
We assessed the neutralization activity of 2B10 and 2E4 scFvs 
against a standard panel of 49 pseudoviruses and primary iso-
lates (7 subtype A, 13 subtype B, 24 subtype C, 1 subtype CD, 
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FigUre 4 | ELISA binding reactivity of 2B10 and 2E4 scFvs with HIV-1 monomeric and native-like trimeric envelope glycoproteins. ELISA was done to determine 
binding reactivity of the scFvs with (a) native-like HIV-1 BG505-SOSIP.664 D-7324 gp140 trimeric protein at 2 µg/ml. The anti-HIV-1 mAbs VRC01 and 2G12 were 
used as positive controls and anti-HIV-1 gp41 (MPER) 2F5, anti-V3 mAb 447-52D, anti-parvovirus mAb 1418, and anti-hepatitis scFv HepB were used as negative 
controls. (B) The binding analysis of scFvs with subtype C 96ZM651 gp120 monomer. The anti-HIV-1 gp120 mAbs VRC01 and 447-52D were used as positive 
controls and mAb 2F5, HepB scFv, and mAb 1418 were used as negative controls. Mean binding titers were compared with negative control using unpaired t-test. 
P values <0.05 were considered as significant, (**) if p < 0.01 and (***) if p < 0.001.

TaBle 4 | Assessment of V1V2 dependent neutralization activity of 2B10 and 2E4 scFvs.

ic50 Titers (μg/ml) Fold change

scFv iD 16055 WT n156K n160K K169a K171a n156K n160K K169a K171a

2B10 35.5 34.3 33.78 32.4 34.9 0.96 0.95 0.91 0.98
2E4 81.2 80.3 80.5 79.6 74.6 0.98 0.99 0.98 0.91

The neutralization reactivity with V1V2 region mutants of the 2B10 and 2E4 scFvs were performed using HIV-1 subtype C pseudovirus 16055 and its V1V2 mutants N156K, N160K, 
K169E, and K171A using a starting concentration of 100 µg/ml of scFvs. Neither of the two scFv monoclonals shows V1V2-dependent neutralization activity.

FigUre 5 | Analysis of the binding affinity of 2B10 and 2E4 scFvs by ELISA. 
Different dilutions of BG505:SOSIP.664 gp140 (10–800 nM) were incubated 
with fixed concentration of the two scFvs and unbound antibody was 
detected by ELISA. The experiment was repeated at least twice. Saturation 
binding curve was plotted between free antigen Vs specific binding through 
non-linear regression analysis.
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the viruses neutralized by scFvs were calculated directly using 
MS-Excel. The 2B10 scFv monoclonal neutralized 38/49 viruses 
with GMT (Geometric mean titer) 17.9 µg/ml (20/24 subtype C, 
9/13 subtype B, 5/7 subtype A, 1/1 subtype CD, 1/1 subtype AD, 
2/3 subtype CRF02 AG) whereas, 2E4 neutralized 16/49 viruses 
with GMT 51.2 µg/ml (8/25 subtype C, 4/14 subtype B, 2/7 sub-
type A, 0/1 subtype CD, 0/1 subtype AD, and 1/6 subtype CRF02 
AG) (Table 5). These results revealed better cross-neutralization 
breadth of the 2B10 scFv than 2E4; with 2B10 displaying cross 
neutralization across subtype C viruses from different geographi-
cal regions. The murine leukemia virus (MuLV) virus was used as 
negative control in all neutralization assays.

DiscUssiOn

The recently isolated second generation anti-HIV-1 bnAbs using 
high throughput techniques such as antigen-specific single 
B  cell sorting, memory B  cell expansion, micro neutralization  
assays, and recombinant techniques exhibited near pan 
neutralization breadth (14) and have a promising potential to 
be used for passive immunization and gene therapy (17–22,  
55, 56). One such bnAb that has cleared the safety and efficacy 
studies is VRC01, which targets the conserved CD4bs on gp120 
and neutralizes HIV-1 by partially mimicking the binding of 

1 subtype AD, and 3 subtype AG) of different origin. The scFv 
monoclonals were tested at a starting concentration of 100 µg/ml  
with three-fold serial dilutions. The Geometric Mean Titers for 
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CD4 to this region (13, 22). Presently, VRC01 is being tested, 
in a number of human trails, for its safety, pharmacokinetics, 
and virological impact in infants at risk of infection and in HIV-
1-infected aviremic and viremia subjects (20, 57). In addition 
to the therapeutic potential of whole IgGs, small antibody frag-
ments (scFvs) are being evaluated as potential reagents for their 
protective effect (56, 58). The scFvs, by virtue of their small size, 
can gain access to sterically occluded epitopes that cannot be 
approached by whole IgGs (59–61). One of the targets of bnAbs, 
the CD4 induced (CD4i) site, is only transiently exposed on 
conformational changes following binding of the viral envelope 
gp120 to the CD4 receptor on immune cells. Recently and in 
the previous studies, the scFvs, targeting the CD4i site, exhibited 
broad neutralization potential with 80–100 percent breadth 
against the HIV-1 viruses tested from different subtypes globally 
(62–64).

The scFvs, such as 2B10, generated in this study, can be used 
as potential anti-HIV-1 reagents for inhibiting HIV-1 subtype 
C infection, by virtue of the ability to further engineer such 
recombinant antibody fragments to increase their potency and 
breadth, and affinity by site directed mutagenesis. However, 
there are chances that such modifications can also lead to 
reduction in the potency and affinity of scFvs. Furthermore, 
the short half-life of scFvs can be circumvented by fusing them 
with immunoglobulin binding domains as described previously 
(65). Modifications such as conjugation with the Fc portion of 
antibodies (59, 66) can also impart scFvs with effector functions 
such as antibody-dependent cell mediated cytotoxicity (ADCC), 
enabling them to better serve as reagents for passive immuniza-
tion or gene therapy. Additionally, the scFvs with diverse epitope 
specificities can be used for the construction of bispecific anti-
bodies that have the ability to bind two different epitopes on the 
viral envelope (67).

We recently reported the cross-neutralizing potential of 
two anti-CD4bs scFv monoclonals (D11 and 1F6) and one 
N332 V3-glycan directed scFv monoclonal (C11) identified 

TaBle 5 | Neutralization profile of anti-CD4bs scFv monoclonals 2B10 and 2E4.

VirUs iD sUBTYPe Tier Origin 2B10 2e4 hepB

92RW020.2 A 2 Rawanda <0.4 8.7 >100

B1206.W6P.ENV.A1 A 2 Kenya 41.4 >100 >100

BG505.W6M. 
ENV.C2

A 2 Kenya 30.9 68.1 >100

BJ613.W6M.ENV.E1 A 2 Kenya 8.44 >100 >100

BL274.W6M.ENV.A3 A 2 Kenya 28.3 >100 >100

Q168ENVa2 A 2 Kenya >100 >100 >100

Q461ENVe2 A 2 Kenya >100 >100 >100

6535.3 B 1B USA >100 >100 >100

AC10.0.29 B 2 USA 32.6 >100 >100

CAAN5342.A2 B 2 USA 26.8 >100 >100

JRCSF.JB B 1 USA 10.0 41.57 >100

JRFL.JB B 2 USA 3.64 52.6 >100

PVO.4 B 3 Italy 36.75 >100 >100

QZ4589 B 2 Trinidad  
and Tobago

>100 >100 >100

REJO4541.67 B 2 USA >100 >100 >100

RHPA4259.7 B 2 USA 26.7 95.3 >100

SC422661.8 B 2 Trinidad  
and Tobago

>100 >100 >100

SF162.LS B 1A USA 9.92 24.8 >100

TRO.11 B 2 Italy 13.84 >100 >100

WITO4160.33 B 2 USA 63.8 >100 >100

001428-2.42 C 2 India <0.4 39.6 >100

00836-2.5 C 1B India 55.5 >100 >100

16055-2.3 C 2 India 38.25 88.58 >100

16936-2.21 C 2 India 36.4 >100 >100

25710-2.43 C 1B India <0.4 38.2 >100

25711-2.4 C 1B India 26.8 82.5 >100

26191-2.48 C 2 India 32.75 >100 >100

CAP45.2.00.G3 C 2 South Africa 25.5 >100 >100

CAP210.2.00.E8 C 2 South Africa >100 >100 >100

CAP256 C 2 South Africa 35.6 78.6 >100

DU156.12 C 2 South Africa 1.75 48.5 >100

DU172.17 C 2 South Africa 28.1 >100 >100

DU422.01 C 2 South Africa <0.4 22.03 >100

MW965.26 C 1A Malawi 7.58 >100 >100

ZM109F.PB4 C 1B Zambia 80.2 >100 >100

ZM249.PL1 C 2 Zambia 69.5 88.63 >100

ZM53M.PB12 C 2 Zambia 70.5 >100 >100

AIIMS_329 C 2 India 26.4 92.2 >100

AIIMS_346 C 2 India 68.5 >100 >100

AIIMS_355 C 2 India 29.7 >100 >100

AIIMS_126 C 2 India >100 >100 >100

AIIMS_201 C 2 India >100 >100 >100

AIIMS_212 C 2 India >100 >100 >100

VirUs iD sUBTYPe Tier Origin 2B10 2e4 hepB

AIIMS_254 C 2 India 64.8 >100 >100

BK184.W6M. 
ENV.D2

C/D 2 Kenya 28.3 >100 >100

BF535.W6M.ENV.A1 D/A 2 Kenya 36.8 >100 >100

33-7 CRF02_AG 3 Cameroon 72.13 96.41 >100

253-11 CRF02_AG 3 Cameroon 89.5 >100 >100

251-18 CRF02_AG 3 Cameroon >100 >100 >100

Murine leukemia 
virus (MuLV)

>100 >100 >100

The neutralization efficiency of 2B10 and 2E4 scFvs was tested with a standard panel 
of pseudoviruses and primary isolates of tier 1, 2, and 3. The scFv monoclonals were 
tested at starting concentrations of 100 µg/ml with serial threefold dilutions. HepB 
scFv was taken as negative control for scFvs. MuLV virus was used as a negative 
control. Non-linear regression curve straight line was plotted using the method of 
least squares to determine the IC50 values. Here, in this table, IC50 < 1 μg/ml is 
highlighted in red, 1 < IC50 < 10 μg/ml is in yellow, 10 < IC50 < 50 μg/ml is in leaf 
green, 50 < IC50 < 100 μg/ml is in faded green and IC50 < 100 μg/ml is in white.

(Continued )

TaBle 5 | Continued
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from a human recombinant phage display library constructed 
from the PBMCs of HIV-1 sybtype C-infected adult cross-
neutralizers. The CD4bs directed D11 scFv demonstrated 
66% neutralization breadth and neutralized 33/50 viruses 
of different HIV-1 subtypes (43). In a recently conducted 
study, we observed the relative resistance of pediatric HIV-1 
primary isolates to the existing bnAbs isolated from adults 
(33). HIV-1-infected children below the age of 2 if untreated, 
progress to AIDS, due to the immaturity of the immune 
system and limited exposure to diverse pathogens. Of  
late, however, cnAbs have been isolated from HIV-1 infected 
infants (31), providing us the impetus to generate a human 
recombinant scFv phage library and identify cross neutralizing 
CD4bs directed scFvs, using PBMCs from select pediatric 
cross-neutralizers. During the course of chronic infection, 
there is increase in breadth of the cnAbs induced by the diverse 
antigenicity of the circulating virus quasi-species (68–70). Our 
recent study on chronically infected children have also shown 
the presence of V1V2, V3, and CD4bs specific plasma antibod-
ies in children, suggesting the development of bnAbs targeting 
multiple epitopes on HIV-1 envelope in these infected children 
(38).

The advantage of pooling the PBMCs from these cross-
neutralizers is to obtain a recombinant scFv library of diverse 
epitope specificities with high probability of having scFvs with 
broad and potent neutralizing activity (43). Such libraries can be 
probed in future using newer HIV-1 antigens to identify scFvs 
directed at different regions on the envelope. It is less probable 
to get such potent bnAbs of diverse specificities from a single 
infected donor. Moreover, by way of generating recombinant 
antibodies, it is possible to get distinct antibody gene usages 
favoring breadth and potency that may not be seen to evolve in 
naturally infected donors. The plasma antibodies binding with 
RSC3 core protein at high titers and not with the RSC3 mutant 
Δ371I/P363N suggested the presence of VRC01-like antibodies 
in these pediatric donors that further increased the probability of 
identifying anti-CD4bs VRC01-like scFvs from the pediatric scFv 
phage library constructed in this study.

The scFv monoclonals 2B10 and 2E4 exhibited the same heavy 
chain gene usage of IGVH1-2, as is also shown by the anti-CD4bs 
VRC01 like bnAb lineage (13, 71). Also, unlike the anti-V1/V2 
antibodies and V3-glycan antibodies, which have large CDRH3 
lengths (8), the 2B10 and 2E4 scFv monoclonals have shorter 
CDRH3 lengths of 13 and 18 amino acid residues respectively, 
which is comparable with the CDRH3 lengths of VRC01-like 
antibodies (13). An interesting observation was the moderate fre-
quency of VH nucleotide SHM, 10.1 and 11.1% in the scFv genes 
of 2B10 and 2E4, respectively, contributing to the neutralization 
breadth (77%) demonstrated by 2B10 scFv, suggesting the evolu-
tion of bnAbs in chronically infected children with higher SHM. 
Low levels of SHM (2–7%) have earlier been shown in infant 
derived antibodies with limited neutralization breadth (31).

Genetic variations are documented between viruses of differ-
ent subtypes (inter-clade) and also within a subtype (intra-clade) 
(21, 23–26). A salient finding of this study is the ability of the 
2B10 scFv to effectively neutralizing subtype C viruses (77%); 

from India and across subtype C viruses from other geographical 
regions, identifying this monoclonal as a potential therapeutic 
reagent. It is important to generate similar antibodies that have 
neutralizing potential across viruses of each subtype that can 
serve as a pool of protective antibodies. Further, the 2B10 scFv 
specifically neutralized all the subtype C and subtype A viruses 
tested in this study, isolated from pediatric subjects which were 
previously reported to be resistant viruses when tested against a 
panel of first and second generation adult bnAbs (33). Some of the 
factors that may be responsible for this could be the differences in 
the immune responses that evolve in children than adults and the 
immune selection pressure on the circulating viruses in them. It 
could also be because the likelihood of intra-clade differences is 
less than inter-clade differences. Perhaps in the future, antibodies 
isolated from pediatric donors, such as the 2B10 scFv that neu-
tralizes subtype C pediatric viruses of different origin, may have 
an important clinical role in preventing infection in children. 
This is all the more important because most of the known bnAbs 
have originated from non-subtype C infected adults, whereas the 
disease burden is more with subtype C viruses.

To conclude, we have for the first time successfully generated 
a scFv phage library from HIV-1 subtype C chronically infected 
antiretroviral naïve children. From this library, we identified 
2B10 as a cross-neutralizing CD4bs directed scFv monoclonal 
with reasonable breadth and potency, demonstrating neutralizing 
activity against tier 1, 2, and 3 viruses, including viruses of both 
adult and pediatric origin. Such anti-HIV-1 human scFvs, are 
potential candidates for conferring passive protection. Moreover, 
a combination of scFvs with antiretroviral drugs can be an 
effective strategy to suppress viremia at an early stage and thus 
block HIV-1 infection in children, mainly acquiring infection by 
vertical transmission.
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