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Recent efforts have concentrated on approaches to expand and “specify” human reg-
ulatory T  cells (Tregs) and to apply them to modulate adverse immune responses in 
autoimmunity and hemophilia. We have used retroviral transduction of specific T-cell 
receptor, single chain Fv, or antigen domains in Tregs to achieve this goal. Each of these 
approaches have advantages and disadvantages. Results with these engineered T cells 
and evolution of the research developments and paths that led to the development of 
specific regulatory approaches for tolerance are summarized.
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iNTRODUCTiON

Self-non-self discrimination, i.e., immunologic tolerance, is a hallmark of the immune system. 
Implicit in this paradigm is specificity. Understanding how the immune system learns what is self 
can be demonstrated by a conversation from Sir Arthur Conan Doyle’s short story “Silver Blaze” 
about a murder that took place in the stable of this prize racehorse:

“Is there any other point to which you wish to direct my attention?” asked Dr. Watson.
“To the curious incident of the dog in the night time!”
“But the dog did nothing in the night time.”
“That,” remarked Sherlock Holmes, “was the curious incident.” (1)

As insightful as ever, the master detective realized that the watchdog in the stable recognized 
the culprit as “familiar” and thus did not respond. The watchdogs of the immune system, the  
T and B lymphocytes, also must learn what self (familiar) is and what is not (foreign) in order to 
provide specific responses to potential dangers. Immunologic tolerance must be learned (2, 3). 
This property of the immune system has driven research in my lab for decades, most recently in 
the area of specific regulatory T cells (Tregs). In this review, I will summarize the research that led 
to the development of specific Tregs to induce tolerance and reverse adverse immune responses.

Much of the early work was pioneered by the late Weigle and colleagues (4–6) with IgG as a 
tolerogen and extended by seminal studies from Yves Borel, who used IgG fusions as tolerogens 
(7, 8), the latter being shown to depend on the presence of the IgG Fc fragment (9, 10). Later, we 
used gene therapy of B cells expressing fusions of antigens with an IgG heavy chain to be highly 
tolerogenic in several systems (11–14) and showed that this approach was dependent on Tregs 
for both its induction and maintenance (15–17). Indeed, recent development of Fc fusions of 
clotting factors like Factor VIII (FVIII) and FIX, designed for a longer half-life in vivo (18–20), 
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have turned out to be tolerogenic and to induce Tregs (21, 22), 
as discussed below. This is supported by anecdotal cases in 
hemophilia A patients that suggest that FVIII-Fc is potentially 
tolerogenic (23–25), which is leading to a more highly powered 
clinical trial (26). The reason that Fc fusions are tolerogenic is 
not precisely known, but may involve regulatory epitopes in the 
constant region (27, 28) that turn on Tregs, and/or inhibitory 
Fc receptors (29).

In this review, we will summarize the evolution of the research 
paths that led to the development of specific Treg approaches for 
tolerance. We have concentrated recently on efforts to expand 
and “specify” Tregs (30, 31) and apply them to modulate adverse 
immune responses in autoimmunity and hemophilia.

Hemophilia A
Hemophilia A is an X-linked bleeding disorder caused by muta-
tions in the FVIII (F8) gene. This gene encodes a 250 kDa protein, 
FVIII, which is a critical component of the blood coagulation 
cascade. Severe hemophilia A results from major deletions or 
inversions in the F8 gene, such that these individual have less 
than 1% FVIII activity; mild hemophilia can occur with missense 
mutations, for example, that also lead to significantly reduced 
clotting efficacy. These disorders can be treated with recom-
binant or plasma-derived FVIII replacement therapy, either 
prophylactically or on demand. Unfortunately, a large subset of 
those receiving replacement FVIII develop an antidrug antibody 
response because they never developed tolerance to this human 
protein (unlike the dog in the nighttime!) In the hematology 
community, these antibodies are referred to as “inhibitors” 
because they can inhibit or neutralize the therapeutic function of 
FVIII, rendering this life-saving treatment ineffective. Inhibitor 
formation requires CD4+ T  cell help as evidenced originally 
in HIV-infected patients with inhibitors whose titers dropped 
when their T-cell levels diminished, but whose antibodies 
returned upon multi-drug therapy (32, 33). Further studies in a 
murine model (FVIII knockouts) verified this T-cell dependence  
(34, 35). Most of the inhibitory antibodies are directed at the 
A2 and C2 domains of the FVIII protein, which are critical for 
binding to partners in the cascade.

For several decades, the standard treatment in patients that 
develop inhibitors is repeated, high-dose FVIII therapy to reduce 
or eliminate titers, a process referred to clinically as “immune 
tolerance induction.” This is an expensive process and does 
not work for all inhibitor cases, being successful primarily in 
patients with low-titered antibodies. Thus, we have targeted the 
A2 and C2 domains of the FVIII protein in our approaches for 
inducing tolerance to FVIII (13, 22). This would be important 
to achieve in inhibitor positive patients or to prevent inhibitor 
responses, in the first place, which is of clinical importance.

Fc FUSiONS iN HeMOPHiLiA AND  
OTHeR DiSeASe MODeLS

As noted above, IgG carriers have been shown to be highly 
tolerogenic. In part, this may reflect their long half-life in the cir-
culation and even in tissues. In addition, binding to Fc receptors 

on B cells can deliver a negative signal that aborts full signaling 
(36). Teleologically, it is important that the immune system 
be tolerant of its own products. Immunoglobulins express an 
enormous range of specific receptors (idiotypes) that must be 
tolerated as their numbers increase and diversify during an 
immune response. Based on the hypothesis that IgG was a highly 
tolerogenic carrier, we devised a strategy to express a variety 
antigens in frame on an IgG heavy chain scaffold. Recombinant 
expression of these fusion proteins was predicted to be tolero-
genic, and indeed they were (22, 37). We also reasoned that 
retroviral expression in B cells in which the fusion heavy chain 
would be assembled with endogenous light chains would lead 
to secretion of hybrid molecules into the circulation to tolerize 
the autologous host. Indeed, this also occurred (11). However, 
this was not due to the secreted product, but rather by B-cell 
tolerogenic presentation (38), confirming the work of Eynon 
and Parker (39) and Fuchs and Matzinger (40). Importantly, we 
found that B-cell expression of MHC class II and B7, but not Fc 
receptors on the transduced B cells was required (41–43), and 
that the IgG scaffold enhanced the tolerogenicity of these cells 
(44). Further data suggested that IgG may contain tolerogenic 
epitopes (27).

Over the next decade, we utilized this system to induce toler-
ance to a variety of antigens in multiple autoimmune disease 
models (uveitis, EAE, diabetes, arthritis) and in hemophilia A 
(12, 13, 15, 45–48). In many of these studies, a role for Tregs was 
suggested or demonstrated for the induction or maintenance of 
tolerance (16, 47). Thus, we embarked on an effort to develop 
a platform for Treg-based tolerance protocol, focusing on two 
different diseases, hemophilia and multiple sclerosis (MS).  
In the former, an adverse (T-cell dependent) antibody response 
blocks effective therapy, whereas in the latter, T-cell-mediated 
pathology in the central nervous system is the target.

RATiONALe FOR DeSiGNiNG  
SPeCiFiC Tregs

Polyclonal human Tregs have been proposed to treat autoim-
mune diseases and transplant rejection, as well as to suppress 
undesirable immune responses to bio-therapeutics such as 
recom binant or plasma-derived FVIII. Several of these are 
already in clinical trials (49–51). While these appear to be safe, 
they are polyclonal T cells that include a diverse repertoire of spe-
cificities and large numbers of polyclonal Tregs are needed. Thus, 
there is the possibility that non-specific immunosuppression and 
viral reactivation could occur (52). Moreover, the frequency of 
relevant specific Tregs is quite low in a normal repertoire. One 
could attempt to enrich and expand Tregs using antigen and/or  
tetramers in the presence of antigen-presenting cells (APC) 
and IL-2, as long as they do not revert to an effector pathogenic 
phenotype.

We elected instead to render human Tregs specific, based on 
chimeric antigen receptor (CAR) therapy for cancer (53–55), 
and to maintain their functional properties during expansion 
with a novel approach (56). Hence, we engineered specificity 
into polyclonal Tregs via retroviral transduction of specific 
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FiGURe 1 | Scheme for transduction of Factor VIII-specific (T-cell) receptors into expanded human T cells, either CD4+ effector or CD25hi regulatory T cells.  
(A) Expanded polyclonal T cells. (B) Transduced antigen-specific T cells. Retroviral vector to express the T-cell receptors, for example, is shown in the large arrow.
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T-cell receptors (TCR) or CARs [single-chain variable fragment 
(scFv)], or even antigen [B-cell antibody receptor (BAR)].

FOUR FLAvORS OF SPeCiFiC Tregs

TCR-Transduced CD4 T Cells
Inspired by the success of engineered cytotoxic CAR T  cells 
in blood cancers (55), our goal was to apply this approach to 
directly create large numbers of specific Tregs with engineered 
receptors. As noted above, based on our experience with retro-
viral transduction of Fc fusions into activated B  cells, we had 
established a role for Tregs in the tolerance so induced. The buffy 
coat fractions in all of the experiments to be described below 
were from peripheral blood mononuclear cells (PBMC) from 
healthy normal adult donors from the American Red Cross or 
the NIH Blood Bank. CD4 fractions were isolated by magnetic 
cell enrichment, then labeled, and sorted based upon the follow-
ing cell surface markers: naïve CD4 effector T cells were CD4+, 
CD25− CD127+, and CD45RA+ and Tregs were CD4+, CD25high, 
CD127low (and the latter were Foxp3 and Helios positive, reflect-
ing their status as “natural” Tregs).

In collaboration with Dr. Kate Pratt, who had obtained 
multiple clones of FVIII-specific T effectors from patients with 
hemophilia A, we determined the TCR variable (V) region genes 
from two of these clones, termed 17195 and 171911. In the first 
iteration for specific CD4 effectors and Tregs, retroviral vectors 
were engineered to express the 17195 or 171911 TCR variable 
regions in polyclonal T cells activated initially with anti-human 
CD3. The transduced T  cells were expanded as described by 
Kim et al. (30) with irradiated PBMC’s as APC. Notably, Tregs 
were expanded but their cultures also contained random oligo-
nucleotides (ODNs), which Kim et al. (56) had shown serve to 
maintain Treg properties (Foxp3 and Helios). Figure 1 illustrates 
the principle.

With this approach, we obtained large numbers of 
expanded FVIII-specific T  cells expressing the 17195 or 
171911 TCRs that we demonstrated were highly reactive to 
the FVIII peptides, albeit with different affinities based on the 
affinity of the initial clones (57). The transduced T effectors 
proliferated and produced cytokines in response to the FVIII 
peptide (pC2, 2191–2210) on appropriate DR1 APCs just as 
effectively as anti-CD3 stimulation of the donors; moreover, 
specific antigen led to an expansion of the cells expressing 
the TCR as evidenced by tetramer binding (30). Transduced 
and expanded Tregs also responded to peptide and displayed 
increased levels of Foxp3, Helios, GARP, and LAP, typical 
of activated Tregs, but did not produce significant levels of 
IL-2 and interferon gamma (IFNγ). Thus, these cells looked 
like and smelled like human Tregs. We next tested whether 
they could suppress a FVIII-specific response and found that 
proliferation of FVIII-specific effector T cells was suppressed 
even when the effector cells were cultured at an 8:1 ratio to 
Tregs (30).

As noted above, the antibody response to FVIII in hemophilia 
A patients is a major hindrance to effective therapy for bleeding. 
Therefore, we have tested the effect of engineered FVIII-specific 
human Tregs on an in  vitro recall antibody response to FVIII 
in humanized (DR1) hemophilic knockout mice, using the 
approach of Hausl et al. (58). Despite being a xenogeneic system, 
the engineered Tregs were able to suppress the recall antibody 
response to FVIII (30). Interestingly, although the engineered 
TCR recognizes a single peptide in a large protein, the antibody 
response to other major epitopes of FVIII was also suppressed. 
This indicates that bystander suppression of other T (and B) cells 
had occurred in vitro. Subsequently, we demonstrated that this 
could also occur in  vivo so it was not due to a culture artifact 
(31). Thus, we have engineered specificity into expanding human 
Tregs and shown that they can suppress the antibody response to 
FVIII effectively.
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FiGURe 2 | Diagram of Factor VIII (FVIII)-specific T-cell receptors (TCR)-transduced (left) and single-chain variable fragment (scFv)-transduced human regulatory 
T cells (Tregs) (right).
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scFv Transduced CD4 T Cells
While these TCR-transduced Tregs were highly effective, they 
are MHC class II restricted, thus limiting their eventual utility 
to patients sharing the same MHC globally. Therefore, in col-
laboration with Anja Naumann Schmidt and Christoph Königs 
in Frankfurt, we developed a second approach to engineer 
specificity, namely a scFv, as shown in Figure 2. Dr. Schmidt used 
phage display to obtain a number of single chain antibodies that 
reacted with different domains of FVIII (59, 60). One of these, 
called ANS8, recognized the A2 domain of FVIII. This scFv was 
incorporated into our retroviral vector and used to transduce 
both CD4 effectors and Tregs. These scFv transduced cells rec-
ognized free FVIII but responded to membrane or plate bound 
FVIII more effectively (31), presumably reflecting the exposure  
of the A2 domain under these conditions.

ANS8 CAR human Tregs were generated and tested under 
the same conditions as the 17195 TCR Tregs. These Tregs 
also suppress the proliferation of FVIII-specific T effector 
cells, but most importantly suppressed the antibody response 
to FVIII both in  vitro and in  vivo (31). Notably, both the 
ANS8 CAR-transduced Tregs and 17195 (TCR)-transduced 
Tregs were effective in these assays at effector: target ratios 
with effector cells in excess (31). Suppression of the antibody 
response by these human Tregs in vivo lasted up to 8 weeks. 
When these mice were boosted with FVIII at 8  weeks post 
immunization, suppression was lost presumably because the 
human cells were rejected by the immunocompetent murine 
hosts. Nevertheless, these data demonstrate that both CAR- 
and TCR-transduced specific Tregs that recognize different 
B-cell and T-cell domains of FVIII can be suppressive against 
multiple epitopes of this large immunogenic protein. Despite 
this bystander effect, the response to an unrelated antigen 

(TNP-sheep RBC) was not affected. Thus, suppression in this 
model is specific.

“BAR” expressing CD4 Tregs and 
Cytotoxic T Cells
We recently applied the principle of engineered cytotoxic 
CAR T cells to directly target FVIII-specific B cells. In lieu of 
a chimeric antibody, we engineered immunodominant B-cell 
domains of FVIII into both expanded cytotoxic CD8 and 
regulatory CD4 T cells (Figure 3). The principle hypothesis was 
that FVIII-specific B cells possess IgM and IgD receptors that 
recognize FVIII conformational epitopes. When they would 
encounter engineered cytotoxic T cells, for example, they would 
bind these epitopes to form a synapse and would receive a puta-
tive negative signal from these cytotoxic cells. This was recently 
demonstrated by Ellebrecht et  al. (61), who used engineered 
cytotoxic T cells expressing a major skin target (desmoglein 3) 
in pemphigus vulgaris, a devastating skin disease. They showed 
that human cytotoxic T  cells expressing desmoglein 3 could 
kill B-cell hybridomas specific for desmoglein. To apply this 
for hemophilia, we engineered immunodominant C2 or A2 
domains (that are the major targets of inhibitory antibodies to 
FVIII into both human and mouse cytotoxic cells). These BAR 
expressing cytotoxic T cells were able to kill C2- and A2-specific 
hybridomas in  vitro and in  vivo. Moreover, their specificity 
for FVIII-specific B  cells was formally demonstrated in two 
additional assays: elimination of naïve B cells stimulated with 
polyclonal B-cell activator, LPS, and inhibition of the antibody 
response to FVIII in vivo. Because they are domain-specific and 
did not display a bystander effect, both C2- and A2-BARs were 
needed to eliminate the response to full-length FVIII (62).
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FiGURe 3 | Diagram of BAR-transduced regulatory T cells (Tregs) (left) and BAR-transduced cytotoxic CD8 T cells (right). BAR stands for B-cell antibody receptor, 
which in this case is a Factor VIII (FVIII) domain. The BCR (gold) binds the antigen on the Treg or cytotoxic T cells via its variable regions, which signals the T cell.
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What about BAR Tregs? Theoretically, BAR-expressing Tregs 
could also interact with specific B  cells, but we did not know 
whether they could directly or indirectly inhibit the B-cell 
response to FVIII. These data demonstrated that injections of 
human BAR Tregs into hemophilic mice did indeed prophylacti-
cally prevent the antibody response to FVIII (63). To examine 
the mechanism of this inhibition, we purified B and T cells from 
BAR tolerized and control mice and then performed classic 
mixing experiments. These results suggested that B cells may be 
directly targeted by BAR Tregs since they could not be “helped” 
by control non-tolerant T cells (64). Whether this is due to anergy 
or cytotoxicity of targeted B cells is under investigation.

DiSCUSSiON

Specific tolerance induction to treat a variety of adverse immune 
reactions is preferable to non-specific immune suppression. We 
have focused on the use of engineered specific Tregs and cytotoxic 
T cells and have developed four different approaches for appli-
cations to treat adverse immune responses in both monogenic 
diseases, like hemophilia (30, 31), as well as in autoimmunity. The 
notion of engineering specificity into T  cells was pioneered by 
Eshhar (54, 65) and colleagues with an approach that he termed 
“T-bodies.” Subsequent application of engineered cytotoxic 
T cells in the treatment of hematologic cancers has revolution-
ized therapy for those diseases (55, 66). Recently, several others 
have engineered T-Regs targeting different antigens (67–69). 
The most analogous to our studies are those of MacDonald et al. 
(68), who utilized a single chain Fv that targeted the HLA class I 
antigen, A2. We have used retroviral expression in human T-Regs 

of specific TCRs and an scFv that recognize FVIII T- and B-cell 
epitopes, respectively, for hemophilia, as well as antigen domains 
that would be recognized by B cells, all of which were functionally 
stable and competent to suppress FVIII responses in  vitro and 
in vivo. In addition, we have extended this approach with a myelin 
basic protein-specific TCR to suppress autoimmune responses in 
a model for MS (70).

The mechanism(s) of suppression are not fully understood. 
Recent data suggest that signals from IL-2 derived from effector 
cells “turn on” a program of suppression by the engineered Tregs, 
and that this leads to a bystander effect in the local milieu. Further 
characterization of the mediators is in progress.

Determination of which kind of engineered Tregs will be 
most applicable will depend in part on the target antigen(s) and 
the disease entity and effector targets. The process described 
herein is a personalized medicine that could be limited to 
autologous donors. Given this limitation, as well as HLA 
restriction and the possibility that Tregs may be defective in 
certain diseases (71, 72), we envision that a generic/univer-
sally applicable population of Tregs can be prepared in which 
CRISPR/Cas9 technology can be used to remove endogenous 
receptors and MHCII to avoid graft-versus-host and allorecog-
nition, respectively (73).

Future studies in larger animal species, such as dogs with 
hemophilia (74, 75), are planned as a step toward translation in 
human clinical studies.
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