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Sialic acid-binding immunoglobulin-type lectins (Siglecs) are a group of cell surface 
transmembrane receptors expressed on immune cells, and regulate immune balance in 
inflammatory diseases. Sepsis is a life-threatened inflammatory syndrome induced by 
infection, and the pathogenesis of sepsis includes immune dysregulation, inflammation, 
and coagulation disorder. Here, we reviewed the various roles acted by Siglecs family 
in the pathogenesis of sepsis. Siglec-1, Siglec-5, and Siglec-14 play bidirectional roles 
through modulation of inflammation and immunity. Siglec-2 regulates the immune 
balance during infection by modulating B  cell and T  cell response. Siglec-9 helps 
endocytosis of toll-like receptor 4, regulates macrophages polarization, and inhibits the 
function of neutrophils during infection. Siglec-10 inhibits danger-associated molecular 
patterns induced inflammation, helps the initiation of antigen response by T cells, and 
decreases B-1a cell population to weaken inflammation. Regulating the Siglecs function 
in the different stages of sepsis holds great potential in the therapy of sepsis.
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inTRODUCTiOn

Sialic acid-binding immunoglobulin-type lectins (Siglecs), a broad range of cell surface trans-
membrane receptors that contain 2–17 extracellular Ig domains, are found on the surface of both 
innate and adaptive immune cells (1). Through recognition of their glycan ligands, they are involved 
in the regulation of immune balance in sepsis, autoimmune diseases, and cancer (2–5). Siglecs can 
be divided into two groups. Group 1 consists of sialoadhesin, CD22, Siglec-4, and Siglec-15, which 
are conserved across mammals. Group 2 consists of CD33-related Siglecs that vary from species 
to species, and humans express a much larger variety of CD33-related Siglecs than rodents due to 
the loss of Siglecs genes in rodents (6). The extracellular Ig domains includes an amino-terminal 
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TAble 1 | Sialic acid-binding immunoglobulin-type lectins (Siglecs) related researches in sepsis.

Siglecs Research methods Mechanisms underlying Study type Results Reference

Siglec-1 Deletion of Siglec-1 Inflammation↑ vascular leakage↑ Plasmodium infected 
mice

MODS↑ Death↑ Gupta et al. (19)

Deletion of Siglec-1 IFN-I production↓ PD-L1↓; CD8+ 
T cell exhaustion (↓)

Mice with LCMV infection Immunopathology↑ Shaabani et al. (20)

Siglec-1↑ by LPS-induced 
tolerant

TGF-(↑) RAW264.7 macrophages Innate immunity (endotoxin 
tolerance↑)

Wu et al. (21)

Virus laden macrophages contacts 
to trans-infect B-1 cells and migrates 
into lymph nodes

MLV or HIV-1 infected 
mice

Spread of infection Sewald et al. (22)

Siglec-2 Soluble CD22 Elevated in serum Gram-negative bacterial 
septic patients

Correlated with severity of sepsis Jiang et al. (26)

Deletion of Siglec-2 Chemokine↑ WNV infected mice Accelerated infection Ma et al. (28)

Siglec-5 
and 
Siglec-14

Human THP-1 cells, 
monocyte, neutrophils

Activated p38, MAPK, and Akt 
signaling pathways

GBS infection Paired receptor to regulate 
immune response

Ali et al. (32)

Human tissue, THP-1 cells Bind to Hsp70 LPS stimulation Paired receptor to regulate 
immune response

Fong et al. (35)

Siglec-7 Ba/F3 cells Bind to SOCS3 Ba/F3 cells Regulate cytokine-induced 
proliferation

Orr et al. (42)

Siglec-9 BMDMs, 293T cells, TLR4-
HEK cells

MyD88-specific manner LPS stimulation Negative regulation of TLR4 
responses

Boyd et al. (47)

Siglec-E knockout mice NF-κB and MAPK p38 signal 
pathway

Infected with Escherichia 
coli

Provide immune balance Wu et al. (48)

RAW264.7 macrophages MAPK(MEK)/ERK pathways IL-4 stimulation Arg-1↑ Higuchi et al. (52)

Deletion of Siglec-E Akt activation Aerosol of LPS Neutrophil recruitment to lung↓; 
ROS↑

McMillan et al. (53)

Human PBMC-derived 
macrophages

HS9-Fab03 bind to Siglec-9 antigen LPS stimulation Pro-inflammatory cytokines↓ Chu et al. (57)

Siglec-10 BMDMs, CHO cells, THP-1 
cells

MyD88 and p38 MAPK signaling 
pathways

Campylobacter jejuni 
infection

Anti-inflammatory↑ Stephenson et al. (59)

Deletion of Siglec-G Bind with CD24 and DAMPs AAP-induced liver injury 
in mice

Negative regulation of 
inflammation

Chen et al. (62)

Deletion of Siglec-G Binds to the BCR of B-1a cells Siglec-G−/− mice Apoptosis↓ Jellusova et al. (68)
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V-set domain which contains the sialic acid-binding site, while 
the cytoplasmic domains have immunoreceptor tyrosine-based 
inhibitory motifs (ITIMs) which plays a key role in modulating 
function of immune cell via tyrosine phosphatases recruitment, 
such as the SH2 domain-containing protein tyrosine phos-
phatases SHP-1 and SHP-2 (2).

Sepsis is defined as life-threatening organ dysfunction induced 
by an uncontrolled host response to invading pathogens, which 
kills as many as one in four similar to acute myocardial infarc-
tion, stroke, or multiple injury, and is the leading cause of mor-
tality of patients in ICU worldwide and (7–13). Some patients 
die rapidly from septic shock accompanied multiple organs 
dysfunction caused by the cytokines storm, while some patients 
survive the initial phase of sepsis but die from the secondary 
infection caused by immunosuppression state in the late time 
of sepsis (14–16). Thus, it can be seen that the dysregulation of 
immune function by immune cells contribute to the high mor-
tality of sepsis. As important receptors in immune cells, Siglecs 
are involved in the pathogenesis and therapy of sepsis. Here, we 
present the recent developments at our understanding of the 
roles of some sepsis-related Siglecs family members (Siglec-1, 
Siglec-2, Siglec-5, Siglec-7, Siglec-9, Siglec-10, and Siglec-14) 

in immune regulation, and we also summarize current efforts 
to develop therapeutics targeting Siglecs for the treatment of 
sepsis (Table 1).

SiGleC-1

Siglec-1, also named sialoadhesin (CD169), a myeloid-cell 
receptor expressed on macrophages, recognizes viral membrane 
gangliosides and regulates the immune response of infection 
especially human immunodeficiency virus (HIV) infection  
(17, 18). On the one hand, Siglec-1 controls the severe immuno-
pathology in infection. A recent study showed that the deletion of 
Siglec-1 in the plasmodium-infected mice increased the inflam-
mation and vascular leakage, which increased the possibility 
of multiple organ dysfunction syndrome (19). Another recent 
study in the lymphocytic choriomeningitis virus infection, the 
interferon (IFN)-I production decreased, and mice exhibited 
severe immunopathology and died quickly after the deletion 
of Siglec-1 (20). Siglec-1 also promotes transforming growth 
factor-β (TGF-β) production in the in vitro macrophages, which 
suppresses the innate immunity and induces the endotoxin 
tolerance (21). On the other hand, Siglec-1 also promotes spread 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Siglec-5 and Siglec-14 serve as a paired receptor counteracting each other in regulating immune response of GBS infection. GBS, group B 
Streptococcus; MAPK, mitogen-activated protein kinase.
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of infection and helps virus escape from neutralization. A recent 
study from murine leukemia virus or HIV-1-infected mice 
indicated that, after the capture of viruses by Siglec-1 on mac-
rophages, the virus laden macrophages contacted to trans-infect 
B-1 cells, which subsequently migrated into the lymph node 
and contributed to the spread of infection (22). In an in vitro 
study, HIV-1 particles were inadequately accessed by anti-gp120 
broadly neutralizing antibodies and thus were less susceptible 
to neutralization in deep virus-containing compartments in the 
help of Siglec-1 (23). It can been seen that Siglec-1 controls the 
severe immunopathology through increasing the production 
of IFN-I and TGF-β, on the other side, it also promotes spread 
of virus infection at the same time. Therefore, Siglec-1 plays a 
bidirectional role in infection and acts as a potential target in 
the treatment of sepsis.

SiGleC-2

Siglec-2 (CD22) is a cell surface receptor expressed mostly on 
B  cells, and regulates B  cells proliferation, survival, signaling, 
and antibody production (24). A previous study using Siglec-2−/− 
mice confirmed that the absence of Siglec-2 did not interfere 
with the severity of arthritis, survival, bacterial clearance, and 
the inflammatory response during Staphylococcus aureus infec-
tion (25). However, with the gradual progress of Siglecs research 
in sepsis, it seems that Siglec-2 is closely associated with the 
development of sepsis. First, serum soluble CD22, a fragment 
of Siglec-2, was significantly elevated in patients with gram-
negative bacterial sepsis and was correlated with the severity of 
sepsis (26). Second, in septic patients, miR-19a in B cells was 
up-regulated, and it comprised a feedback loop with Siglec-2 for 
B cell response. That provided a potential therapeutic target to 

restore the immune homeostasis in sepsis (27). What is more, a 
recent Siglec-2−/− mice study confirmed that Siglec-2 helped to 
control West Nile virus infection through CD8 T cells response, 
promoted lymphocyte migration into the draining lymph nodes, 
and affected chemotaxis via controlling chemokine produc-
tion (28). Siglec-2 specific immunotoxins have been used in 
clinical studies for hairy cell leukemia and autoimmune diseases  
(29, 30), however, studies on the sepsis is still lacking. To sum 
up, Siglec-2 is involved in the immune balance of sepsis through 
regulating B cell response and controlling chemokine produc-
tion, and Siglec-2 targeting therapy holds a great potential for 
the treatment of sepsis.

SiGleC-5 AnD SiGleC-14

Siglec-5 and Siglec-14, a paired receptor system in the Siglecs 
family expressed on monocytes and neutrophils, share almost 
identical ligand-binding domains but have opposing effects 
in the regulation of host immunity. This idea was discovered 
in the research of group B Streptococcus (GBS) infection 
(Figure  1). Early study showed that GBS β protein bound to 
Siglec-5 and promoted bacterial survival through impairing 
human leukocyte phagocytosis, oxidative burst, and extracel-
lular trap production (31). Five years later, Ali et al. discovered 
that Siglec-14 also involved in the GBS infection as a paired 
receptor with Siglec-5. β protein of GBS bound to both Siglec-5 
and Siglec-14 on neutrophils, and Siglec-14 counteracted 
pathogen-induced host immune suppression by activating p38 
mitogen-activated protein kinase (MAPK) and Akt signaling 
pathways (32). As Siglec-14 is not expressed by all people, 
homozygous Siglec-14-null neutrophils are more susceptible to 
GBS immune subversion (32). This idea was also confirmed in 
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FiGURe 2 | Siglec-E/9 in the immune regulation of sepsis. (A) Siglec-E negatively regulates TLR4 responses in a MyD88-specific manner following LPS stimulation. 
(b) Siglec-E provides immune balance in inflammation when participating in the Escherichia coli-induced endocytosis of TLR4. (C) Siglec-9 enhances IL-4-induced 
Arg-1 and CD200R production through MAPK/ERK pathways. TLR, toll-like receptor; LPS, lipopolysaccharides; MyD, myeloid differentiation factor; NF-κB, nuclear 
factor-kappa B; TRIF, TIR-domain-containing adapter-inducing interferon-β; TRAM, TRIF-related adaptor molecule; IFN-β, interferon-β; IL-4, interleukin 4; MAPK/
ERK, mitogen-activated protein kinase/extracellular signal-regulated kinase; STAT, signal transducer and activator of transcription; IRF, interferon regulatory factor; 
Arg-1, arginase1.
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the research of chronic obstructive pulmonary disease (COPD). 
Loss of Siglec-14 reduces the risk of COPD exacerbation (33), 
and inhaled corticosteroids could exert two opposite effects 
depending on the patients’ phenotypes of Siglec-5 and Siglec-14 
(34). What’s more, a recently study found that heat shock pro-
tein (Hsp) 70, a danger-associated molecular pattern (DAMP), 
could bind to both Siglec-5 and Siglec-14 and play a two-way 
role in the immune modulation (35). This may explain the con-
tradictory conclusions on the function of extracellular Hsp70 in 
inflammation (36–38). In brief, the bidirectional action played 
by Siglec-5 and Siglec-14 involved both neutrophils function 
and Hsp70 modulation in infection.

SiGleC-7

Siglec-7 (CD328) is constitutively expressed on natural killer 
(NK) cells, mast cells, basophils, and platelets. It has been 
proven as a very important regulator of the immune response 
through inhibiting NK  cells activation, regulating apoptosis 
and death, and affecting IgE-mediated mast cells and basophils 
activation (39–41). In sepsis, Siglec-7 acts as a target of suppres-
sor of cytokine signaling 3 (SOCS3) and amplify inflammation 
through activating monocytes (42). SOCS3 in the spleen, lung, 
and peritoneal leukocytes is up-regulated during sepsis (43). 
SOCS3 binds the phosphorylated ITIMs carried by Siglec-7 and 
blocks Siglec-7 mediated inhibition of cytokine-induced prolif-
eration. This also contributes to the exaggerated inflammatory 
response induced by pro-inflammatory cytokines during infec-
tion (42).

Some pathogens escape host immune response through binding 
to Siglec-7 with sialic acids expressed on their surface. Varchetta 

et al. demonstrated that Siglec-7 activated a monocyte-mediated 
inflammatory and produced high level of pro-inflammatory 
cytokines and chemokines through phosphorylation of the 
extracellular signal-regulated kinase (ERK) pathway following 
pathogen recognition. What’s more, Siglec-7 also participated in 
generating a monocyte-mediated inflammatory when encoun-
tering pathogens not expressing sialylated glycans. This phe-
nomenon may provide an alternative mechanism that Siglec-7 
involved in sepsis (44).

SiGleC-9

Siglec-9, Siglec-E in murine, the major CD33-related Siglec, is 
mainly expressed on neutrophils, monocytes, macrophages, and 
dendritic cells (45), and involves in the pathogenesis of sepsis 
through interacting with TLR4, regulating the polarization of 
macrophages, and inhibiting the stimulation of neutrophils 
(Figure 2).

Broad and direct interaction exist between TLR4 and Siglec-E 
(46). Murine Siglec-E is induced by TLR4 in a myeloid differen-
tiation factor (MyD) 88-specific manner and negatively regulates 
TLR4 responses following lipopolysaccharides (LPS) stimulation 
(47). A recent study discovered that Siglec-E participated in the 
Escherichia coli-induced endocytosis of TLR4, and provided 
an immune balance in inflammation (48). Siglec-E deficient 
dendritic cells failed to internalize the TLR4 and resulted in high 
levels of pro-inflammatory cytokines through nuclear factor-
kappa B (NF-κB) and MAPK p38 signal pathway when infected 
with E. coli (48). Taken together, Siglec-E plays a novel role in 
controlling the septic response with TLR4 and helps to maintain 
a healthy cytokine balance following infection.
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FiGURe 3 | Siglec-G/10 in the immune regulation of sepsis. (A) Siglec-G decreases the inflammation induced by DAMPs through NF-κB signal pathway with the 
help of CD24. (b) Siglec-G inhibits CD 8T cells proliferation through impairing MHC class I-peptide complexes formation. (C) Siglec-10 increases IL-10 production 
through MyD88 and p38 MAPK signaling pathways in Campylobacter jejuni infection. DAMPs, danger-associated molecular patterns; TLRs, toll-like receptors; 
NF-κB, nuclear factor-kappa B; MHC, major histocompatibility complex; MyD, myeloid differentiation factor; MAPK, mitogen-activated protein kinase; IL-10, 
interleukin 10.
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Macrophages polarization plays a pivotal role in the patho-
genesis of sepsis, and regulating the phenotypes of macrophages 
in the different stages of sepsis holds a great potential in the 
treatment of sepsis (49, 50). Recent studies shown that Siglec-9 
enhanced induction of Arg-1 through MAPK/ERK pathways in 
the stimulation of interleukin 4 (IL-4) (51). Siglec-9 enhanced 
IL-4-induced CD200R expression and inhibited LPS-induced 
CCR7 in human macrophages (52). However, the detailed 
mechanisms under Siglec-E and macrophages polarization in 
sepsis need to be further elucidated.

As an important regulator expressed on neutrophils, Siglec-E 
function as an inhibitory receptor on the neutrophils stimulated 
by LPS. McMillan et al. (53) demonstrated that Siglec-E inhibited 
the β2-integrin-dependent neutrophil recruitment to the lung 
and enhanced nicotinamide adenine dinucleotide phosphate-
oxidase (NADPH) oxidase activation and reactive oxygen  
species production via Akt activation following exposure to LPS. 
What is interesting, the reason of neutrophils become much 
easier activated after separation from whole blood also involved 
in Siglec-9. A recent study discovered that the abundant sialo-
glycoprotein on erythrocytes engaged neutrophil Siglec-9 and 
dampened the innate immune cell activation (54).

What’s more, a recent study using mouse and Chinese ham-
ster ovary cells discovered a new role for Siglec-E/Siglec-9 (55). 
Siglec-E/Siglec-9 could specifically bind to vascular adhesion 
protein-1 (VAP-1), an endothelial cell molecule involved in 
granulocyte migration to sites of inflammation. Using 68Gallium-
labeled peptide of Siglec-9 to detect VAP-1 in vasculature as an 
imaging tool in inflammation in positron emission tomography 
will give great help in the treatment of inflammatory diseases.

Recently, great progress has been made in Siglec-E targeting 
therapy of sepsis. Spence et al. created nanoparticles decorated 
with sialic acid and developed a novel strategy to control 
inflammation. From human monocytes and macrophages 
in vitro model and human ex vivo model of lung injury, they 
revealed that those special nanoparticles blocked the produc-
tion of inflammatory mediators induced by LPS in a Siglec-
E-dependent manner through enhancing the oligomerization 
of Siglec-E receptor on macrophages (56). Another study 
from human peripheral blood mononuclear cell-derived 
macrophages showed that a human anti-Siglec-9 Fab fragment 
named hS9-Fab03, specially bound to Siglec-9 antigen with 
high affinity and attenuated LPS-induced pro-inflammatory 
cytokines production (57). Those discovery confirmed that 
Siglec-E/Siglec-9 as a druggable anti-inflammatory therapeu-
tic target for sepsis.

SiGleC-10

Siglec-10, Siglec-G in murine, is broadly expressed on B  cells, 
dendritic cells, and macrophages subsets, which is also a member 
of the CD33-related Siglecs family (58). It involves in the process 
of innate and adaptive immune response, and plays an anti-
inflammatory role in sepsis through increasing IL-10 expression, 
interacting with CD24, inhibiting dendritic cell cross presenta-
tion, and weakening B cell signaling (Figure 3).

Siglec-10 involved in the Campylobacter jejuni infection and 
promoted an anti-inflammatory function through binding to  
C. jejuni and purified flagellum and increasing IL-10 expression 
by MyD88 and p38 MAPK signaling pathways (59). Siglec-G 
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also mediated an immune evasion pathway in RNA virus 
infection. Chen et  al. discovered that RNA virus specifically 
up-regulated Siglec-G expression in macrophages by RIG-I or 
NF-κB-dependent mechanisms. Siglec-G recruited SHP-2 and 
E3 ubiquitin ligase c-Cbl to RIG-I and induced RIG-I degra-
dation via K48-linked ubiquitination at Lys813 by c-Cbl. The 
increased Siglec-G led to the persistence of RNA virus infection 
and severe immunopathology through the suppression of IFN-I 
production (60).

CD24 protects the host against the exaggerated inflammatory 
response in sepsis (61). CD24 is a small glycosyl-phosphoinositol-
anchored protein that is able to provide costimulatory signals to 
T cells. In sepsis, CD24 associates with DAMPs, such as high-
mobility group box 1, Hsp70, and Hsp90, negatively regulates 
their stimulatory activity and inhibits NF-κB activation through 
association with Siglec-G (62). What’s more, microbial sialidase 
targeting Siglec-G blocks the CD24-Siglec-G pathway and 
exacerbates inflammation. Using sialidase inhibitors to prevent 
disrupting sialic acid-based pattern recognition protected mice 
against cecal ligation and puncture (CLP) induced sepsis, and 
this process depended on the CD24 and Siglec-G interaction  
(63, 64). The pathogenesis of sepsis involves multiple inflamma-
tory mediators and a lot of them are regulated by the interaction 
of CD24 and Siglec-G. Therefore, sialidase inhibitors targeting 
CD24-Siglec-G interaction has a great clinical potential in the 
treatment of sepsis.

Siglec-G expressed on dendritic cells also contributed to the 
initiation of antigen response by T cells. Siglec-G inhibits cross-
presenting extracellular antigens with CD8 T cells by impairing 
major histocompatibility complex class I-peptide complexes 
formation. This process involves recruiting the phosphatase 
SHP-1 by Siglec-G, dephosphorylating the NADPH oxidase 
component p47phox, and inhibiting the activation of NOX2 on 
phagosomes (65). Soluble CD52 released by phospholipase C 
bound to Siglec-10 and impaired phosphorylation of the T cell 
receptor associated kinases Lck and Zap70 and T cell activation, 
which was distinct from regular T cells (66).

Siglec-G is also broadly expressed on B cells, and plays as a 
negative regulator of B cell receptor (BCR)-mediated signaling in 
inflammation. Siglec-G binds to the BCR on the B cell surface via 
interaction with sialic acid ligands, and controls B cell tolerance 
(67). Siglec-G−/− B-1a cells display an altered BCR repertoire and 
a higher expression levels of the transcription factor, and show a 
lower level of spontaneous apoptosis and a prolonged life span 
(68). Hence, Siglec-G negatively regulates the inflammation 
through decreasing B-1a cell population, weakening B-1 cell 
signaling, and shifting the immunoglobulin repertoire secreted 
by B-1 cells.

SUMMARY

Immune disorder contributes to the different stages of sepsis, 
while the Siglecs play significant roles in the immune regulation. 
There are heavy conjugations between Siglecs and the pathogen-
esis and therapy of sepsis. Siglec-1, Siglec-5, and Siglec-14 play 
bidirectional roles in sepsis through modulation of inflammation 
and immunity. Siglec-2 involves in B cell and T cell response dur-
ing infection and regulates the immune balance. Siglec-9 helps 
endocytosis of TLR4, regulates macrophages polarization, and 
inhibits the function of neutrophils during infection. Siglec-10 
inhibits DAMPs-induced inflammation, helps the initiation of 
antigen response by T cells, and decreases B-1a cell population 
to weaken inflammation.

However, our current knowledge of Siglecs in the patho-
genesis and therapy of sepsis is in its infancy. Most research 
has focused on the pathogens-related sepsis, but the researches 
using CLP model, the golden standard of sepsis, are few and 
far between. Therefore, more Siglecs-related studies using CLP 
model are in urgent demand. In addition, more researches are 
also needed in the function of T  cells and NK  cells with the 
participation of Siglecs in sepsis. As the cytokines storms stage 
and the immunosuppression stage of sepsis are totally different 
immune state, investigating the different functions of Siglecs in 
the different stages of sepsis is also very meaningful. Collectively, 
investigating the roles played by Siglecs in the immune response 
will not only contribute to the therapy of sepsis, but also hold 
great potentials in the treatment of other inflammatory diseases.
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