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Targeting TRIMS5a in HIV Cure
Strategies for the CRISPR-Cas9 Era
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Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom

In the past decade, studies of innate immune activity against HIV-1 and other retrovi-
ruses have revealed a powerful array of host factors that can attack the virus at various
stages of its life cycle in human and primate cells, raising the prospect that these antiviral
factors could be manipulated in immunotherapeutic strategies for HIV infection. This has
not proved straightforward: while HIV accessory genes encode proteins that subvert or
destroy many of these restriction factors, others, such as human TRIM5a show limited
potency against HIV-1. However, HIV-1 is much more susceptible to simian versions of
TRIM5a: could this information be translated into the development of an effective gene
therapy for HIV infection? Reigniting research into the restriction factor TRIM5« in the
era of superior gene editing technology such as CRISPR-Cas9 presents an exciting
opportunity to revisit this prospect.
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INTRODUCTION

The HIV/AIDS epidemic continues to present a humanitarian crisis for the world’s most disadvantaged
communities. Today, 36.9 million people are living with HIV, 70% of whom reside in sub-Saharan
Africa. Antiretroviral therapy (ART) confers near-normal life expectancy on those adherent to the
lifelong drug regimen. However, social and economic barriers to accessing care persist, and viral
latency, drug toxicity and resistance contribute to long-term concerns for those on treatment. This
means that there is a pressing need to achieve sustained virological remission in infected individuals.

TRIM5a restricts retroviral infection at an early post-entry stage in a species-specific manner
through interaction of its PRYSPRY/B30.2 domain with the viral capsid (1). Human TRIM5«
(huTRIM5a) has limited efficacy against HIV-1 in vivo, whereas the rhesus macaque TRIM5a
and TRIM5-CypA fusion are highly effective against primate lentiviruses (2). huTRIM5a potently
restricts another retrovirus, N-tropic murine leukemia virus (N-MLV) and appears to moderate
HIV-2 infection, potentially contributing to an attenuated disease course (3, 4).

CRISPR-Cas9 technology is a powerful tool for editing small regions of the genome. It has proven
superior to existing technologies exploiting targeted initiation of double-strand breaks including
zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases due to comparatively
low levels of off-target mutagenesis and fast results (5, 6). Preclinical studies in humanized mouse
models have shown that delivery of lentiviral vectors bearing hybrid TRIM5a isoforms leads to
effective HIV-1 restriction; however, engineering HIV-1 resistance without the need for vectors that
carry risks of immunogenicity and insertional mutagenesis would be a major advantage (7, 8).

TRIMS5«a

TRIM5a is an interferon-inducible restriction factor of the tripartite motif family of proteins, which
comprise over 70 members involved in various antiviral roles. The TRIMs feature a conserved set
of domains: a RING domain, one or two B-boxes and a coiled-coil domain. They are most variable
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at the C-terminus responsible for viral capsid recognition, where
24 members possess a PRY/SPRY (SPRY) domain (9). TRIM5a
is the most closely studied member of this family owing to the
discovery of its antiretroviral role through expression screens of
cDNA libraries from rhesus macaque cells (1). RNAi knockdown
of peptidyl-prolyl cis-trans isomerase cyclophilin A in owl
monkey cells yielded the discovery of another TRIM5 isoform
that could potently restrict HIV-1, TRIMCyp-A (10). TRIM5«
orthologs show significant interspecies variation in retroviral
restrictive ability, which is thought to limit transmission of ret-
roviral diseases between primates. Rhesus TRIM5a (thTRIM5a)
restricts HIV-1 and HIV-2 but does not restrict the closely related
SIVmac, while huTRIM5a has a limited ability to restrict HIV-1
and SIVmac, but partially controls HIV-2 and potently restricts
the gammavirus N-MLV (11).

The antiretroviral mechanisms of TRIM5a have not been fully
characterized; however, multiple studies describe two steps. In
the first step, TRIM5a specifically recognizes and assembles onto
the viral capsid lattice in hexagonal nets (11, 12). Following this,
TRIM5a induces abortive disassembly of the viral capsid core
by accelerating the uncoating process before reverse transcrip-
tion is complete, causing accumulation of reverse transcriptase
products. This second step is dependent upon the RING domain
E3 ubiquitin-ligase activity as the capsid-TRIM5a complex is
targeted for proteasomal degradation (13, 14). TRIM5a also acts
as a pattern-recognition receptor, and the restrictive ability of
TRIM5a has been shown to be dependent on its ability to activate
TAK-1-dependent innate immune signaling (11, 15). The capac-
ity for TRIM5a to restrict HIV-1 appears to be dependent on cell
type, TRIM5a restricts HIV-1 infection in Langerhans cells but
not in other dendritic cells (16).

TRIM5a EVOLUTION

The SPRY domain has been the subject of positive selection and
insertions/deletions associated with the divergence of New World
monkeys from Old World monkeys and hominids (17). This is
evident in the significant rates of nonsynonymous to synonymous
change at this locus across 17 primate genomes encompassing
33 million years of evolution. Isolating the last 23 million years
of primate evolution led to the identification of five residues
within the protein under positive selection, falling within an
11-13 amino acid (aa) segment of the SPRY domain (the 13-aa
“patch”) predicted to lie in coils at the protein—protein interface
(17). Construction of chimeric proteins of human and rhesus

orthologs showed that this patch was necessary and sufficient to
confer measurable HIV-1 restriction, although not as effective
as thTRIM5a (17). Alteration of arginine 332 to proline or any
uncharged residue (R332P) as the sole change in huTRIM5a was
shown to potentiate restriction of HIV-1 (18, 19). The Pan troglo-
dytes endogenous retrovirus (PtERV1), active 3-4 million years
ago, was shown to be one of the likely culprits for this change
as efficient restriction of chimeric PtERV was abrogated in the
presence of a hominid R332Q mutation but restriction of HIV-1
was improved (20). Taken together, this points to a situation of
evolutionary “trade-off, where fixation of R332 in the human
lineage conferred resistance to PtERV1 but in combination with
other antiretroviral factors rendered us poorly suited to the chal-
lenge of HIV infection.

TRIM5a AND HIV-1 DISEASE
ASSOCIATION STUDIES

Given the evolutionary history of TRIM5a, it was hypothesized
that present-day variation in huTRIM5a proteins might underlie
the spectrum of resistance to retroviral infection across the popu-
lation (21). Results from several studies evaluating the effects of
TRIM5 polymorphisms are summarized in Table 1. Much of
the published literature describes the relationship between HIV
susceptibility and TRIMS5, with less attention paid to the effects on
disease outcomes in infected individuals. At least one large study
has shown that in HIV-1 infection, TRIM5 genotype has little to
no impact on disease progression (22). The results described in
Table 1 are often inconsistent. This probably represents the com-
plementary effects of SNPs in TRIM5, linkage disequilibrium, and
variation in regulatory regions (21). Furthermore, none of the
described studies included the prevalence of HIV-1 capsid vari-
ants, such as the H87Q mutation, which may play an important
role in determining disease outcomes (23). The importance of
capsid sequences in determining sensitivity to TRIM5a has been
further demonstrated by the increased sensitivity of gag associated
CD8" T cell escape mutants to TRIM5q, indicating cooperation
between the innate and adaptive immune response (24).

TRIM5a AND HIV-2 AS A MODEL
OF ELITE CONTROL

While HIV-1 infection is globally distributed and continues to
increase in numbers, HIV-2 is endemic to West Africa and appears

TABLE 1 | TRIM5 polymorphisms and HIV disease associations.

Genotype TRIM5a domain affected Cohort population HIV disease association Reference
1 H43Y RING Central and South American  Diminished ability of TRIM5a to restrict HIV replication (25)
2 43Y homozygote RING Hans and Dai Chinese Allele appears paradoxically to protect against HIV infection (26)
3  G249D Linker 2 region between coiled-  Japanese and Indian Associated with increased susceptibility to HIV-1 infection (27)
coil and PRYSPRY domains
4  R136Q Coiled coil Kenyan Protects against infection (28)
5 R136Q Coiled coil European Americans More frequent in HIV-infected population (29
6 H43-136Q haplotype  RING and coiled coil North-East Brazil Increased frequency in HIV uninfected controls (80)
7 G110R B-box Japanese Increased susceptibility to HIV infection (31)
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to be declining in prevalence across the region. Intriguingly, for
many infected people HIV-2 has an attenuated clinical course
when compared to HIV-1. Approximately 35-40% of individu-
als infected with HIV-2 do not progress to AIDS and display a
prolonged asymptomatic stage with low/undetectable viremia
compatible with a normal lifespan (32). Could this “elite control”
be attributed to enhanced retroviral restriction by TRIM5a?

Mutations in the HIV-2 capsid determine vulnerability to
TRIMS5a: this has been mapped to residues 119 or 120 of the capsid
(p26), where the presence of proline confers increased sensitivity
to huTRIM5a and alanine or glutamine increases resistance (4).
Confirming the significance of P119 in virus-host interaction,
individuals in a West African HIV-2 cohort with this variant
showed better disease control evidenced by lower viral load.
A pattern demonstrating the cumulative effects of P119, P159,
and P178 conferring superior viral restriction was evident and
was predicted to reduce p26 dimer binding energies resulting
in a less stable viral core (33). This contributes to more efficient
epitope production and presentation, leading to stronger gag-
specific cytotoxic T lymphocyte responses (34). Reciprocally,
the amino acid sequence TFP found at positions 339-341 in
rhTRIM5a confers HIV-2 restrictive activity even in the absence
of P119 or P120 (35).

TRIM5a: A GOOD CANDIDATE FOR
CRISPR GENE THERAPY?

Preclinical Studies In Vitro

Several studies have demonstrated superior retroviral restriction
by human cells transduced with rhTRIM5a (36), but precise
manipulation of key residues that confer anti-HIV-1 properties
is still highly effective and less immunogenic. Simultaneously tar-
geting CCR5 and TRIMS5« has produced HIV-resistant CD133*
hematopoietic stem cells (HSCs) by shRNA silencing CCR5 and
TRIM5« site-directed mutagenesis (37). Macrophages derived
from these transgenic HSCs restricted R5 and dual-tropic HIV-1.
A library of TRIM5« variants generated by PCR-based random
mutagenesis showed R332-R335 double mutants have restrictive
efficacy superior to R332, which restricts HIV-1 in the order of
10- to 30-fold (19, 38). It was then reported that R332-R335
mutants restricted a wide variety of HIV-1 subtypes, including
CTL escape variants, with high efficacy. This was observed under
the influence of a weak promoter, reducing the risk of off-target
mutagenesis (39).

Humanized Mouse Models

Humanized mice have to some extent met the need for animal
models that faithfully reproduce HIV biology in vivo, overcom-
ing some of the limitations of SIV strains used in research, which
are problematic when considering the species-specific restric-
tion afforded by TRIM5a. In SCID-hu mouse model engrafted
with HSCs expressing a human-rhesus TRIM5a ortholog, it
was shown that transgenic cells differentiated into macrophages
resistant to HIV-1 infection. Mature, developmentally normal
T-cells harvested from thymic grafts injected with transduced
HSCs displayed eightfold restriction of an X4-tropic strain

of HIV-1 ex vivo. These cells had a survival advantage in a
mixed population in culture. Greater than 99% expressed the
transgene, suggesting therapeutic reconstitution of the T cell
repertoire with only HIV-1 resistant cells by competition might
be possible (40).

In the most recent study of this kind, humanized mice were
engrafted with HSCs transduced with a third-generation self-
inactivating lentiviral vector expressing three anti-HIV genes:
chimeric TRIM5a, a CCR5 shRNA and a trans-activation res-
ponse decoy to broaden anti-HIV coverage. The HSCs engrafted
at a rate of 17.5% without notable cytotoxic effects and induced
downregulation of CCR5 expression with modest expansion
when challenged with R5 and X4-tropic viruses. Gene-modified
cells showed a selective survival advantage when challenged with
R5 and X4-tropic strains in vivo. The mechanism was proposed
to be HIV-1 exerting selective pressure on the mixed population
of HSCs and the killing of infected unprotected HSCs. While
plasma viremia in all mice was still established through unpro-
tected infected cells, normal CD4* levels were maintained. The
authors state that in future stem-cell therapies, reconstitution
of the immune system with HSCs protected against HIV-1 (41)
would rely on such a protocol being optimized with regards to
transduction efficiency and in vivo engraftment of transgenic
stem cells (42).

HOW COULD TRIM5a BECOME A
REALISTIC THERAPEUTIC TARGET
IN LIGHT OF GENE EDITING?

The most significant advance in gene editing in recent years has
been the development of the CRISPR-associated Cas system.
Homology-directed repair is facilitated by a double-stranded
DNA targeting construct for precise insertion of a desired
sequence (43, 44). Screening Cas9 orthologs has yielded a smaller
Cas9 derived from Staphylococcus aureus suitable for packaging
in adeno-associated virus vectors along with regulatory ele-
ments, and for paired nickase applications (45, 46). The SaCas9
endonuclease has undergone evaluation in mice for future in vivo
applications and did not produce more off-target effects than
SpCas9 (47).

Using CRISPR-Cas9 with a repair template to effect the
R332P substitution or other advantageous mutations in HSCs
would be a first step in developing this strategy (see Figure 1).
Modeling a TRIM5a gene therapy on the proof-of-concept study
infusing autologous ZFN-engineered CD4* T cells homozygous
for CCR5 A32 into HIV-infected patients might be a logical next
step, as these studies demonstrated selective survival advantage
of autologous CD4* T cells detectable at 42 months in one patient
(48, 49). This would make TRIMS5a gene therapy a contemporary
of several other strategies modifying host factors to endow HIV
resistance. Recently, multiplex gene engineering using CRISPR-
Cas9 to ablate CCR5 and CXCR4 in primary human CD4*
T cells has proven effective in vitro, providing protection against
switching viral tropism (50). However, it is important to consider
the risk of neurological complications of West Nile virus in
CCR5-deficient individuals (51). Using CRISPR-Cas to disrupt
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FIGURE 1 | A theoretical model of TRIM5a gene therapy for HIV cure. This flow diagram demonstrates a theoretical model for ex vivo gene editing in hematopoietic
stem cells (HSCs) to effect the R332P substitution using the newly described SaCRISPR-Cas9 system. HSCs harvested from an HIV-positive patient would be
transduced with an adeno-associated virus (AAV) vector bearing the Cas9 apparatus, sgRNAs targeting TRIM5, and a repair template. A mixed population of HSCs
would then be reinfused and among them, transgenic long-term repopulating HSCs would engraft, resulting in a durable subset of anti-HIV CD4* T cells with a

both transcriptionally active and latent virus by targeting the
HIV-1 long-terminal repeat (LTR), which caps both ends of the
integrated proviral genome has also been reported but is limited
by the clustering of escape mutations at the Cas9 cleavage site
(52, 53). It was recently shown that intravenous administration
of saCas9/quadruplex sgRNAs in an all-in-one adeno-associated
viral vector could both excise integrated proviral DNA in
humanized mice and block active HIV-1 replication in standard
mice (54).

It has been suggested that translational CRISPR-Cas9 strategies
may work in concert with existing ART regimens to address the
latent reservoir when a suitable delivery method for establishing
stable Cas9 and sgRNA expression is found (55). Profiling the off-
target effects of CRISPR gene editing is already achievable (56)
and a strategy aimed at reducing the off-target effects that result
from long-term expression of Cas9 nuclease has been developed;
delivery of pre-packed Cas9 within lentiviral particles expressing
sgRNAs that facilitate gene editing in primary T cells offers a safer
approach for HIV gene therapy, albeit with a 20% reduction in
gene editing frequency (57). Furthermore, the search for a post-
translational regulator of Cas9 endonuclease has been fruitful
and an “off switch” derived from bacteriophage proteins has been
found to prevent unnecessary propagation of CRISPR-Cas9’s
effects after its work is done (58).

POTENTIAL PITFALLS AND STRATEGIES
TO OVERCOME THEM

Preclinical studies have identified potent anti-HIV transgenes;
however, a barrier to translating these findings lies in the genera-
tion of sufficient numbers of transgenic HSCs while maintaining
their repopulating capacity. To address this, new protocols to
optimize the process of ex vivo gene editing and expansion of
HSCs are in development. Selecting CD34*CD38~ HSCs spe-
cifically contributing to long-term multilineage hematopoiesis,
and shortening ex vivo culture time to 24 h has been suggested
as a technical update for HSC therapies involving long-term
expression of a transgene (59). Furthermore, the pyrimidoindole
derivative UM71 was shown to stimulate and maintain the ex
vivo expansion of HSCs for up to 7 days, potentially allowing
production of therapeutic volumes of transgenic HSCs (59).
Recently, it was shown that SCID-X1 mice could undergo
lymphoid reconstitution with transgenic HSCs generated by
homology-directed repair-mediated gene editing methods,
including CRISPR-Cas9, following immunotoxin-based selec-
tive depletion of hematopoietic cells (60). This relatively mild
conditioning regimen, thought to preserve tissue niches, was
sufficient for reconstitution when at least 10% of functional
HSCs engrafted (60). Furthermore, it was recently demonstrated
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that CRISPR-Cas9-mediated ablation of CCR5 did not impact
colony-forming potential in transgenic HSCs compared with
control cells (61). CCR5-deficient long-term repopulating HSCs
reconstituted multilineage hematopoiesis in mice, and following
infection with a CCR5-tropic strain of HIV-1, transgenic CD4*
T cells showed a survival advantage (61). These proof-of-concept
studies regarding the suitability of CRISPR-Cas9 for hematopoi-
etic stem-cell therapies may represent a significant step forwards;
however, it remains to be proven that transgenic HSCs could be
safely translated to clinical use.

Any strategy aiming to introduce a stably expressed transgene
in vivo will be beset with problems relating to immunogenicity.
Several studies have shown efficient immune clearance of gene-
engineered cells in the long term, even in severely immuno-
compromised patients (62-64). A potentially less immunogenic
strategy might build on the finding that stabilized huTRIM5«
is capable of HIV-1 restriction in vitro when expression is
increased 20- to 30-fold (65). Small-molecule “performance-
enhancing” therapies might present an alternative to gene
editing with fewer associated risks; endogenous enhancers of
TRIM5a antiviral activity include IFN« (66). Furthermore, the
ability of HIV-1 to evade most antiretroviral strategies has been
well documented in the case of pharmacological therapy (67)
and it is unsurprising that anti-HIV transgenes have proved no
exception. Both TRIMCyp- and TRIM5a-mediated restriction
can be overcome by HIV-1 capsid mutations with little fitness
cost to the virus (68, 69). However, the combined effect of HIV-1
capsid mutations, a gag-associated CTL response and TRIM5a
may pressure capsid sequences to strains with reduced viral
replicative capacity (70). The flexibility in this response should
be further investigated and may offer an attractive alternative
when compared to CCR5 ablation.

Persistence of transcriptionally inactive HIV in replication-
competent latent reservoirs is the main barrier to development
of a cure. Harbors of latent infection include the gut-associated
lymphoid tissue and glial cells (71, 72). The “shock and kill”
approach aims to reverse latency, then use combined ART and
an engineered host immune response to clear the viral reservoir.
The latency reversal agent SAHA in combination with ART effec-
tively induced CD8* T cell-mediated clearance in vitro (73, 74).
However, there was no significant impact on either HIV DNA
or quantitative viral outgrowth assay. A potential “shock” agent
has been identified in the dCas9-synergistic activation mediator
system for transcriptional activation at specified loci (75). This
has been adapted for activation of the HIV-1 LTR in latent cells
by targeting the enhancer of the LTR promoter, to provide the
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