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The global health burden associated with melanoma continues to increase while treat-
ment options for metastatic melanoma are limited. Nevertheless, in the past decade, the 
field of cancer immunotherapy has witnessed remarkable advances for the treatment 
of a number of malignancies including metastatic melanoma. Although the earliest 
observations of an immunological antitumor response were made nearly a century ago, 
it was only in the past 30 years, that immunotherapy emerged as a viable therapeutic 
option, in particular for cutaneous melanoma. As such, melanoma remains the focus of 
various preclinical and clinical studies to understand the immunobiology of cancer and 
to test various tumor immunotherapies. Here, we review key recent developments in 
the field of immune-mediated therapy of melanoma. Our primary focus is on therapies 
that have received regulatory approval. Thus, a brief overview of the pathophysiology 
of melanoma is provided. The purported functions of various tumor-infiltrating immune 
cell subsets are described, in particular the recently described roles of intratumoral 
dendritic cells. The section on immunotherapies focuses on strategies that have proved 
to be the most clinically successful such as immune checkpoint blockade. Prospects 
for novel therapeutics and the potential for combinatorial approaches are delineated. 
Finally, we briefly discuss nanotechnology-based platforms which can in theory, acti-
vate multiple arms of immune system to fight cancer. The promising advances in the 
field of immunotherapy signal the dawn of a new era in cancer treatment and warrant 
further investigation to understand the opportunities and barriers for future progress.

Keywords: melanoma, immunotherapy, immune checkpoint blockade, tumor microenvironment, adoptive T cell 
transfer, programmed cell death protein 1, tumor-infiltrating lymphocyte, tumor-infiltrating dendritic cell

MeTASTATiC MeLANOMA

Malignant melanoma is a highly aggressive cancer and accounts for the majority (60–80%) of 
deaths from skin cancer (1, 2). Non-melanoma skin cancers, including basal cell carcinomas and 
squamous cell carcinomas, have much lower metastatic potential and associated mortality than 
melanoma (3). Melanoma arises from pigment-producing cells called melanocytes that are found 
primarily in the skin and the eyes and to a lesser extent, in a wide range of body tissues (2, 4, 5). 
Melanocytes originate from the embryonic neural crest and migrate to the epidermis where they 
mature and produce melanin that is subsequently transferred to neighboring keratinocytes (6, 7). 
Melanin plays a crucial role in protecting the skin from ultraviolet (UV) solar radiation (6, 8). 
Neoplasia of melanocytes varies from benign melanocytic naevi to malignant melanomas (4, 5). 
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Malignancies can arise from any of the tissues where melanocytes 
are present but by far the most common type is cutaneous mela-
noma, comprising over 90% of all melanoma cases (5, 9). Hence, 
the central focus of this review will be on cutaneous melanoma. 
Due to the recent advances in tumor immunotherapy, a number 
of novel cancer treatment strategies have emerged. As such, this 
review will discuss the development of cancer immunotherapy 
in the context of melanoma and highlight potential avenues for 
further research.

epidemiology
Melanoma is a fairly common cancer with an estimated 
global incidence rate of 3 per 100,000 (9–11). In 2015, it was 
reported that there were approximately 352,000 new cases of 
melanoma worldwide with an age-standardized incidence rate 
of 5 cases per 100,000 persons (12). There were nearly 60,000 
deaths worldwide due to melanoma (12). The incidence rate is 
observed to be higher in males than in females and is associ-
ated with a younger median age (~57 years) at diagnosis than 
other solid tumors (~65 years) (9, 10, 12). The three regions 
with the highest incidence of melanoma were found to be 
Australasia (54%), North America (21%), and Western Europe 
(16%) (12). Furthermore, it is particularly concerning that the 
global incidence rates of melanoma continue to rise. In 2005, 
there were roughly 225,000 new cases of melanoma but in 
2015, that number climbed to roughly 352,000 cases, repre-
senting a 56% increase (13). A large-scale cohort study from 
39 countries showed that while incidence rates for melanoma 
are beginning to stabilize in North America and Australia, 
they are continuing to rise in Southern and Eastern Europe 
(11). Therefore, melanoma constitutes a significant burden of 
disease worldwide and warrants both novel treatments and 
prevention strategies.

Pathophysiology and Clinical Subtypes
The exact etiology of melanoma development is not well under-
stood (4). However, there has been tremendous study on the 
histological and molecular profiles of the various subtypes of 
melanoma (14–16). Overall, it has been observed that melanomas 
which arise from skin that is chronically sun-damaged (CSD) 
occur in anatomical locations such as the head and neck. By con-
trast, non-CSD melanomas are found in anatomical regions that 
suffer only limited sun exposure such as the trunk and extremities 
(4). Overall, non-CSD melanomas also have lower mutational 
loads than CSD melanomas (4, 16). A significant number of 
melanomas are usually associated with benign neoplasms of 
melanocytes. These lesions are termed naevi (commonly called 
moles), and an increased presence of naevi is deemed a risk 
factor for melanoma (2, 4). These lesions include benign naevi, 
dysplastic naevi, which display atypical cellular characteristics, 
and non-invasive melanoma in situ (4, 17). Melanoma in situ is by 
definition confined to the epidermis and if resected entirely, has a 
100% survival rate (17). The current staging system for melanoma 
is the one used by the American Joint Committee on Cancer 
(AJCC) and relies upon analysis of the tumor (T), the number 
of metastatic nodes (N), and the presence of distant metastases 

(M) (18, 19). These are then grouped to provide clinical stages of 
the cancer, ranging from 0 to stage IV (19). Stage IV melanoma 
is classified as metastatic melanoma due to the presence of dis-
tant metastases, while stage III is only marked by metastases in 
regional lymph nodes (LN) (20).

Historically, malignant melanoma was divided into four major 
histological subtypes but due to the complexity of the disease, 
a fraction of melanomas cannot be completely classified into 
either subtype (15, 21, 22). Moreover, as this classification system 
is reliant on clinical and morphological features, it yields little 
prognostic value but serves as a useful strategy in identifying the 
various histological forms of the disease (22). The four primary 
subtypes of melanoma are as follows: (i) superficial spreading 
melanoma (SSM), (ii) nodular melanoma (NM), (iii) lentigo 
maligna melanoma (LMM), and (iv) acral lentiginous melanoma 
(ALM) (14, 22). However, in recent years, a number of novel clini-
cal subtypes have also been defined. These include desmoplastic 
melanoma (DM), melanoma arising from a blue naevus and per-
sistent melanoma (22). The five common histogenic subtypes of 
melanoma warrant further description here. A pictorial overview 
of the clinical manifestation and histopathology of melanoma is 
presented in Figure 1.

Superficial Spreading Melanoma
Superficial spreading melanomas are the most common sub-
type representing between 50 and 70% of all cases (14, 23). They 
occur in relatively younger patients (~50 s) and present on ana-
tomical regions such as the trunk, back, and extremities (22). 
SSM presents as a flat or a slightly elevated lesion with varying 
pigmentation (24). Histologically, SSM is marked by atypical 
melanocytes with nested or single cell upward migration (22). 
Malignant melanocytes display lateral spreading throughout 
the epidermis, poor circumscription, and increased melaniza-
tion in the cytoplasm (14, 22).

Nodular Melanoma
Nodular melanomas are a fairly common subtype of melanoma 
(15–35%) that can present most commonly on the head and neck 
as a growing nodule that shows ulceration (22–24). Histologically, 
NMs show similarities to SSMs but differ in that they show 
distinct circumscription. They do not display radial growth but 
aggressive vertical growth evidenced by large dermal nests and 
sheets of atypical melanocytes (14, 22).

Lentigo Maligna Melanoma
Lentigo maligna melanomas present almost exclusively on the 
sun-exposed upper extremities or head and neck of elderly 
people (mostly octogenarians) (22). It is relatively uncommon 
(5–15%), and topically can be seen as patch of discolored 
skin showing variegated coloring (23, 24). Lentigo maligna 
(Hutchinson’s freckle) is the term for the in  situ melanoma 
phase, and a small percentage of these patients progress to 
invasive LMM (23). Histologically, the skin exhibits extensive 
solar damage resulting in an atrophic epidermis and len-
tiginous (back-to-back) proliferation of melanocytes, which 
are hyperchromatic (22). Multinucleated (starburst form) 
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FiguRe 1 | Clinical and histological presentation of melanoma.  
(A) Superficial spreading melanoma (SSM), (B) nodular melanoma (NM),  
(C) acrolentiginous melanoma (ALM), (D) H&E stain of NM depicting 
asymmetrical nodular tumor infiltrates in the upper dermis. Nests of  
atypical cells are visible in the dermis and at the dermoepidermal junction.  
(e) Immunohistochemical staining for Melan-A reveals red stained atypical 
tumor cells in the dermis and epidermis (Images courtesy of RH).
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melanocyte cells and solar elastosis are also hallmarks of this 
type of melanoma (14).

Acral Lentiginous Melanoma
Acral lentiginous melanomas are a fairly uncommon subtype 
(5–10%) and occur primarily in non-Caucasian populations 
such as people of African or Japanese descent (23). They pre-
sent on acral sites such as palms, soles of the feet, or under 
the nails. On the skin they present as slow growing patches 
with variegated pigmentation (22). Histologically, this subtype 
displays single cells or nests of melanocytes along the der-
mal–epidermal junction, and the association of lymphocyte 
infiltrates can be used as a diagnostic marker for this subtype 
of melanomas (14, 22).

Desmoplastic Melanoma
Desmoplastic melanoma is a rare form of melanoma compris-
ing 4% of primary melanomas and defined by the histological 
features observed in its dermal component (22, 25). It occurs 

primarily on the head and neck region in elderly individuals 
and is associated with higher probability of recurrence but a 
lower incidence of metastasis (25). Histologically, it is char-
acterized by spindle-shaped melanocytes and a desmoplastic 
stroma, i.e., new collagen formation, and usually appears to be 
amelanotic (22, 25).

Risk Factors and Driver Mutations
Melanoma occurs via a complex interplay of genetic and environ-
mental risk factors. The primary environmental risk factor of 
concern is UV solar radiation as well as, UV rays from tanning 
beds (26, 27). Individual risk factors include the increased 
presence of melanocytic naevi, skin complexion, and in certain 
cases, family history of melanoma (26, 28). Melanomas display 
one of the highest mutational burdens among solid tumors 
(25). Thus, the molecular profiles that are associated with vari-
ous subtypes of melanoma are the subject of current studies. 
In particular, it is crucial to distinguish “driver” mutations, or 
mutations that confer a survival advantage, from “passenger” 
mutations, which have negligible or no contribution to tumor 
growth (29). Understanding the mutational landscapes of 
a cancer allows for the development of targeted therapies 
that can significantly improve clinical outcomes. A massive 
study conducted by researchers of The Cancer Genome Atlas 
Network, was reported in 2015, and determined the first-ever 
comprehensive genomic classification system for cutaneous 
melanomas (30). These four distinct subtypes were based on 
the pattern of the major significantly mutated genes, i.e., BRAF, 
RAS, neurofibromin 1 (NF1), and triple wild type (WT), which 
denotes a lack of mutations in the three aforementioned genes 
but is associated with higher copy number and structural rear-
rangement abnormalities. These subtypes do not correlate with 
outcome but may help delineate the genomic changes associated 
with melanoma thereby providing potential molecular targets 
(30). Of further interest was the observation that immune gene 
expression, and immune cellular infiltrates did correlate with 
patient survival (30). As the studies of the major genomic aber-
rations in melanoma have been extensively reviewed elsewhere, 
this section will describe a number of the most common driver 
mutations seen in cutaneous melanoma [BRAF, NRAS, NF1, 
microphthalmia-associated transcription factor (MITF), and 
PTEN] (4, 15, 25, 28, 31).

BRAF
Nearly 60% of melanoma cases have mutations in BRAF (v-raf 
murine sarcoma viral oncogene homolog B) (25, 32). Thus, a 
brief overview of BRAF signaling is warranted. BRAF codes for 
a serine/threonine protein kinase constituting part of the RAS–
rapidly accelerated fibrosarcoma (RAF)–mitogen-activated pro-
tein kinase kinase (MEK)–extracellular signal-regulated kinase 
(ERK) [mitogen-activated protein kinase (MAPK)] pathway, 
which is activated by the binding of extracellular growth fac-
tors to receptor tyrosine kinases (32). This binding leads to the 
activation of RAS (named for Rat sarcoma) family of GTPases 
(proteins that bind and hydrolyze guanosine triphosphate to 
guanosine diphosphate, i.e., GTP to GDP), which recruit and 
activate RAF serine/threonine protein kinases, which in turn 
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activate MEK resulting finally in the phosphorylation of ERK 
(32–35). The activation of ERK leads to downstream signaling 
and activation of transcription factors that mediate cell differen-
tiation, growth, and inhibit cell death (33, 36).

BRAF is one of three mammalian RAF isoforms, and one 
that has the highest basal kinase activity and thus is the most 
common isoform mutated in human cancers that include mela-
noma but also hairy cell leukemia, papillary thyroid cancer and 
colorectal cancer (CRC) (33, 36). The missense mutation, 
V600E, results in a substitution from valine to glutamic acid 
at the 600th amino acid position and represents the majority 
(80%) of all BRAF activating mutations in melanoma (25, 28). 
Other BRAF mutations include V600K (valine–lysine) and 
V600R (valine–arginine). BRAF-activating mutations result in 
constitutively active MEK signaling leading to tumor progres-
sion. In vitro, the V600E mutation confers 500-fold higher 
activity in BRAF than normal and promotes the transforma-
tion of melanocytes to melanoma (37). BRAFV600E mutations 
are also found in benign naevi indicating that alone, these 
mutations may not be sufficient for tumor progression (38). 
The presence of these mutations has led to the development 
and approval of two BRAF inhibitors (BRAFi) for melanoma 
treatment, namely, vemurafenib (Genentech/Plexxikon) and 
dabrafenib (GlaxoSmithKline) as well as, a MEK inhibitor 
trametinib (GSK) (33, 39).

NRAS
The second most common type of driver mutations in melano-
mas occur in NRAS (neuroblastoma RAS viral v-ras oncogene) 
and are found in 15–20% of melanoma patients (28). The most 
common mutation in NRAS occurs at codon 61 resulting in 
the replacement of glutamine by lysine or arginine, thereby 
resulting in a constitutively active RAS (38). This leads to 
upregulation of both the MAPK and phosphatidylinositol 3′ 
kinase (PI3K) pathways and results in increased cell prolif-
eration and invasiveness (25). NRAS mutant melanomas have 
increased thickness and display high rates of mitosis (25). 
NRAS mutations are also found in benign congenital nevi (28). 
NRAS and BRAF activations rarely occur in the same mela-
noma, albeit NRAS mutations being observed in patients with 
advanced BRAF tumors who had failed BRAFi therapy and 
which therefore may mechanistically contribute to resistance 
to BRAFi treatment (28). Efforts to target NRAS have focused 
on downstream inhibitors for the MAPK pathway and include 
the MEK inhibitor binimetinib, which is undergoing clinical 
trials (25).

Neurofibromin 1
Neurofibromin 1 encodes a large protein of more than 2,800 
amino acids with multiple functional domains (40). It contains 
several functional domains with one domain bearing resem-
blance to the catalytic region of GTPase-activating protein. 
This is the most well-characterized domain of NF1 and acts 
as a negative regulator for RAS by converting the active RAS-
GTP to the inactive RAS-GDP, thus playing the role of a tumor 
suppressor gene (40, 41). Germline mutations in NF1 lead to 
a genetic syndrome called neurofibromatosis type 1 (NF1), a 

relatively frequent genetic condition with an incidence of 1 in 
3,000, resulting in a higher predisposition to multiple tumors 
arising from various cell types (40). The incidence of melanoma 
in patients with neurofibromatosis type 1 is very low. However, 
NF1 somatic mutations are found in a range of cancers, and 
it is the third common driver mutation in melanoma found 
in nearly 14% of tumors (25, 41). Mutations in NF1 are more 
commonly observed on skin with chronic UV exposure and in 
elderly patients (40). NF1 inactivating mutations were found in 
48% of a cohort of wild-type BRAF and NRAS melanomas and 
are often associated with mutations in other RAS-related genes 
such as RAS p21 protein activator 2 (RASA2), PTPN11, and 
SPRED1 (25, 40). Recent studies have also shown that NF1 may 
be a unique driver mutation in DMs as NF1 loss-of-function in 
DM is more common than for other histogenic subtypes (25). 
Due to the crucial role of NF1 upstream of RAS/MAPK and 
PI3K/mTOR pathways, NF1 mutant tumors have been targeted 
with tyrosine kinase inhibitors (e.g., imatinib), MEK inhibitors 
(trametinib), and mTOR inhibitors (sirolimus), but to date, 
none of these agents have been reported in treatment of NF1 
mutant melanomas (40).

Microphthalmia-Associated Transcription Factor
Microphthalmia-associated transcription factor is a helix-
loop-helix leucine zipper transcription factor required for 
differentiation, proliferation, and survival of melanocytes and 
thus, its expression is also necessary for melanoma survival  
(42, 43). MITF also plays an important antiapoptotic function 
in melanoma cells by activating the expression of genes such as 
BLC2A1, BCL2, and BIRC7 (43). MITF is observed to be ampli-
fied in 20% of metastatic melanomas and is associated with 
poor survival (25). MITF is regulated by the MAPK pathway 
and in particular, BRAFV600E causes induction of MITF through 
the transcription factor BRN2 (N-Oct-3) (25). Alternately, 
increased ERK signaling can also target MITF for degradation 
(44). Finally, MITF is also purported to contribute to BRAFi 
resistance through the regulation of the BCL2A1 antiapoptotic 
gene (44). Although targeting of MITF directly may not be 
viable, the use of histone deacetylase (HDAC) inhibitors can 
reduce MITF expression. Hence, the HDAC inhibitor panobi-
nostat in combination with decitabine and chemotherapy is 
being studied in clinical trials for metastatic melanoma treat-
ment (25).

PTEN
Phosphatase and tensin homolog (PTEN) is a commonly 
mutated gene in melanoma and PTEN mutations were found in 
14% of all melanoma samples from the TCGA genome classifica-
tion study mentioned above (25, 30). PTEN codes for a phos-
phatase which targets phosphatidylinositol (3,4,5)-triphosphate  
and thus plays a crucial role in the aforementioned PI3K–Akt 
pathway (45). PTEN silencing therefore results in dys-
regulated apoptosis, cell cycle progression and migration, 
contributing to tumorigenesis (25, 45). It has been observed 
that PTEN mutations are more frequent in metastatic 
melanomas as opposed to early stage primary tumors (25). 
The loss of PTEN also interferes with genetic stability, thus 
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sensitizing PTEN-deficient cells to polyadenosine diphosphate 
ribose polymerase (PARP) inhibitors (46). Currently, there  
are no PARP inhibitor trials underway for the treatment of 
metastatic melanoma (46).

Current Treatments for Malignant 
Melanoma
The multiple clinical approaches to the treatment of early 
and advanced melanoma are reviewed elsewhere (18, 20, 47). 
As previously mentioned, the median survival associated 
with metastatic melanoma (stage IV) remains very poor, 
and the 10-year survival for all patients is under 10% (47). 
Melanoma treatments involve the use of surgery, radiation or 
systemic therapy (which includes immunotherapy) (18, 20). 
For most primary melanomas, surgical excision of the tumor 
remains the standard-of-care therapy. Biopsy and histological 
examination of the sentinel LN is an important component of 
melanoma staging and has been found to be a strong prognos-
tic measure (18, 20). When surgical excision is not an option, 
primary lentigo maligna may also be treated with radiation 
or cryotherapy (20). The treatment modalities for metastatic 
melanoma are more complex as most single or even combina-
tion therapies are only successful in a subset of patients (18, 
48). For patients with oligometastatic disease, surgery remains 
a primary treatment (18, 48). Melanoma is considered a 
relatively radiation-resistant cancer type, but radiation therapy 
continues to be utilized for patients with brain metastases (47, 48).  
Systemic therapy includes chemotherapy, targeted therapy, and 
immunotherapy (18, 47). Studies with various agents, includ ing 
combination chemotherapy approaches, have shown that it has 
limited efficacy in melanoma (18, 47). The major chemotherapy 
drugs that have been used to treat melanoma including the 
alkylating agents dacarbazine, temozolomide, and nitrosoureas 
such as fotemustine and carmustine (47). Platinum analogs 
(e.g., cisplatin) and antimicrotubular agents such as vinblastine 
and paclitaxel have also shown modest efficacies in patients with 
metastatic melanoma (47). Recently, clinical studies have been 
performed using biochemotherapy, which combines cytotoxic 
drugs with immunotherapies such as interleukin-2 (IL-2) and 
IFNα (interferon alpha), and despite showing increased response 
rates these patients did not experience prolonged overall sur-
vival (OS) (18). In patients with recurrent metastatic melanoma 
in the limb, high doses of the cytotoxic drug melphalan and 
recently, tumor necrosis factor (TNF) and IFNγ are given to the 
patient via isolated limb perfusion to reduce systemic toxicity 
(48). A significant improvement in melanoma treatment was 
observed using targeted therapies, which pharmacologically 
inhibit key mutations in melanoma. These include the BRAFi 
drugs vemurafenib and dabrafenib, and the MEK inhibitor 
trametinib (39). Targeted therapies for melanoma have been 
expertly reviewed elsewhere (39, 49). The major clinically 
approved immunotherapies for melanoma include adjuvant 
treatments such as IL-2 and interferon alfa (18, 48). A few clini-
cal groups have had success with adoptive T cell therapy in a 
subset of patients (50). Finally, immune checkpoint blockade 
(ICB) with antibodies targeted to cytotoxic T  lymphocyte 

antigen-4 (CTLA-4) (ipilimumab) and programmed cell death 
protein 1 (PD-1) (nivolumab and pembrolizumab) has resulted 
in significant improvements in clinical outcomes for a propor-
tion of melanoma patients (39). Targeting the ligand for PD-1 
(i.e. PD-L1) is also being studied in clinical trials (51, 52). This 
review will summarize the evolution of immunotherapies in the 
context of melanoma and discuss novel opportunities to sig-
nificantly enhance tumor immunotherapy. To assess the results 
of clinical studies, it is pertinent to mention some of the key 
measures used in clinical trials and criteria defined within the 
RECIST (Response Evaluation Criteria in Solid Tumors) (53). 
OS is defined as the time from randomization of the treatment 
subject to time of death due to any cause, while the more utilized 
progression-free survival (PFS) metric, denotes time from ran-
domization until tumor progression or death (54). The overall 
objective response rate (ORR) is a measure of the percentage of 
patients who have had either a partial response (PR) or complete 
response (CR) to treatment (54). PR is defined as a decrease 
of at least 30% in the sum of the diameters of the target tumor 
lesions while CR indicates the disappearance of all target lesions 
(53). Finally, progressive disease (PD) is defined as at least a  
20% increase in the sum of the target lesions’ diameters while 
stable disease (SD) denotes a state where the lesions do not 
shrink enough to signal PR or increase sufficiently to indicate 
PD (53). Thus, these parameters provide an objective methodol-
ogy to measure the results of a treatment (53, 54).

iMMuNOBiOLOgY OF MeLANOMA

Cancer immunoediting
Over the past decade, cancer immunotherapy has emerged as 
a vital new approach to cancer treatment (55, 56). The earliest 
evidence of the involvement of the immune response in fight-
ing cancer was observed over a century ago. In 1893, William 
Coley, a surgeon in New York published a report describing 
tumor regression in a number of patients treated with cultures 
of the bacterium Streptococcus pyogenes (57, 58). However, the 
immunological basis of these results was not yet known and 
the approach did not gain wide acceptance in the medical field. 
Nevertheless, subsequent observations in murine models led to 
the formulation of the “cancer immunosurveillance” hypothesis 
by Macfarlane Burnet and Lewis Thomas in the middle of the 
century (59, 60). The hypothesis posited that lymphocytes 
played a protective role by continuous recognition and elimina-
tion of malignant cells (61). Currently, the concept of “cancer 
immunoediting” is forwarded as a comprehensive depiction 
of the continuous interplay between tumors and the immune 
system (62, 63). Cancer immunoediting posits the existence 
of three distinct phases, namely, elimination, equilibrium, and 
escape (63, 64). In the elimination phase, innate and adaptive 
immune mechanisms eradicate neoplastic cells before they 
become clinically detectable cancers (64). This phase has not 
been directly observed in vivo but the increased susceptibility to 
developing cancer in immunodeficient mouse models provides 
evidence of the existence of this stage of immunoediting (64). 
Further observations in humans such as the increased risks of 
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cancers in patients with immunodeficiencies or undergoing 
immunosuppression for organ transplantation, as well as cases 
of spontaneous tumor regression lend further proof to this 
paradigm (64,  65). During the equilibrium stage, rare cancer-
ous cells that were not destroyed during the elimination phase, 
are kept in check by the immune system while influencing 
the immunogenicity of the tumor (62). This state results in a 
form of tumor dormancy and is considered to last a long time, 
potentially lasting the lifetime of an individual. Furthermore, 
this phase enacts a selective pressure on the tumor cells, allow-
ing those with the potential to evade the immune system to 
escape immune control and manifest as clinical disease (62, 
64). A landmark study in 2007 demonstrated the existence of 
the equilibrium phase in vivo. Using a carcinogenic compound 
(3′-methylcholanthrene -MCA), the authors were able to study 
stable tumor masses at the site of MCA injection (66). When 
treated with a cocktail of antibodies targeting CD4, CD8, and 
IFNγ, 60% of the mice developed rapidly growing tumors. 
Furthermore, the authors demonstrated that these rapidly grow-
ing tumors resembled “unedited” tumors from MCA-injected 
RAG−/− mice (mice lacking recombination activation gene 
RAG1) (66). Finally, it was shown that this equilibrium state 
required components of adaptive immunity (IL-12, IFNγ, CD4+, 
and CD8+ cells) but not key components of innate immunity 
such as NK cell recognition and effector functions (66). Thus, 
while the immune system is capable of controlling cancerous 
cells during the equilibrium phase, it also drives the selection 
of cells that are able to evade immune attack and develop into a 
progressively growing tumor. This stage is known as the escape 
phase of immunoediting. This escape is made possible due to a 
number of potential mechanisms which have been reviewed in 
detail (61, 63, 65). Briefly, the cells can evade immune detection 
by reducing the expression of immunogenic tumor antigens or 
by reducing major histocompatibility complex class I (MHC I) 
(62, 64). Another route of escape involves decreased susceptibil-
ity to immune-mediated cytotoxicity through upregulation of 
oncogenes and anti-apoptotic mediators (64). Finally, tumor 
cells harbor the potential to modulate the immune system by 
producing immunosuppressive cytokines such as transforming 
growth factor beta (TGFβ) and vascular endothelial growth 
factor (VEGF). Moreover, tumor cells can recruit regulatory 
immune cells [e.g., regulatory T  cells (Treg)] or engage in 
adaptive immune resistance via the expression of immune 
checkpoint ligands such as programmed death-ligand 1 (PD-L1) 
(64). Finally, the notion of “reverse immunoediting” has been 
proposed as some cancers can cause the selective depletion of 
specific high-avidity cytotoxic T cell (CTL) clones via hitherto 
unknown mechanisms and thus actively shape the immune 
repertoire of the host (67). The pathways used by tumor cells 
to escape the immune system are therefore studied extensively 
to devise immunotherapeutic approaches for cancer treatment.

immune Response to Melanoma
The immune response to tumor cells is currently one of the 
major areas of research in biomedical science. An overview of 
antitumor immune response is provided by the concept of the 
cancer-immunity cycle as described by Chen and Mellman (68). 

It commences with the release of tumor antigens that are pre-
sented by antigen-presenting cells (APC), primarily den dritic 
cells (DC), to T cells in the LN (Figure 2). This is followed by 
the trafficking of T cells including CD8+ cytotoxic T lymphocytes 
(CTL), to the tumor where they can recognize and kill malignant 
cells, thereby releasing more cancer antigens (68). However, 
at each step, there are negative regulators that can disrupt the 
cancer-immunity cycle and allow progression of the tumor (68). 
One of the primary aims of cancer immunotherapy is therefore 
to ensure a sustained T cell response against the tumor (55). The 
complex biology of the interactions between tumor cells and 
the innate and adaptive immune system has been extensively 
reviewed elsewhere (68–72). Thus, the primary focus of this 
section will be to provide a basic primer to cancer immunology 
and in particular, to the biological and therapeutic significance 
of the major types of immune cells in the tumor microenviron-
ment (TME) in melanomas. For the purposes of this review, the 
populations of interest are tumor-infiltrating lymphocytes (TIL), 
tumor-infiltrating dendritic cells (TIDC), and tumor-infiltrating 
natural killer (NK) cells. The cancer-specific roles of tumor-
associated macrophages (TAM), NKT  cells, the more recently 
described myeloid-derived suppressor cells (MDSC), and non-
NK innate lymphoid cell subsets (ILC) have been thoroughly 
reviewed elsewhere (73–77).

Tumor Antigens
As tumors arise from a host’s own tissue, immune recognition 
of these cells is hindered by the fact that a majority of poten-
tially autoimmune cells are deleted during central (thymic) and 
peripheral mechanisms of self-tolerance (78). However, as early 
as 1943, it was observed that mice could immunologically reject 
chemically induced tumors (79). In the late 1970s, the ability to 
grow CTL cultures using IL-2 allowed for screening of tumor-
derived DNA libraries to characterize tumor antigens (79). In 
1988, the gene coding for a murine tumor antigen (P91A) was 
cloned (80). Shortly afterward, the first human tumor antigen 
gene was identified in melanoma, namely, MAGEA1 (melanoma 
antigen family A, 1) and was found to be expressed in various 
types of tumors (81). Interestingly, the gene was not observed 
to be expressed in normal tissue except for trophoblastic cells 
and male germline cells (79). Since then, several tumor antigens 
have been discovered, and their underlying biology has been 
the subject of much study (82, 83). There are several types of 
tumor antigens, but they have been broadly classified into three 
major categories. The first category includes antigens that are 
caused by non-synonymous mutations, or are encoded by viral 
genes in tumors of viral etiology (83). These are labeled tumor-
specific antigens (TSA) or “neoantigens” (83, 84). Alternately, 
tumor-associated antigens (TSA) are usually expressed at low 
levels in normal tissues but are found to be overexpressed 
in cancer cells such the surface receptor, human epidermal 
growth factor 2 (HER2 or ERBB2) in breast cancer, and other 
malignancies (85). Finally, cancer/testis antigens (CTA) such 
as the aforementioned MAGE family of proteins are expressed 
in several tumor types and only in normal germline cells such 
as trophoblasts, ovaries and the testes (82, 83). The advent of 
high-throughput next-generation sequencing technology has 
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FiguRe 2 | Schematic of the roles dendritic cells (DC) play in antitumor immune response. DC take up and process tumor-associated/tumor-specific 
antigens (TAA/TSA) from dying tumor cells, undergo maturation, and migrate to tumor draining lymph nodes (LN) where they can present antigen to 
lymphocytes. Tumor-specific T cells then egress from the LN and infiltrate the tumor. Effector CD8+ cytotoxic T lymphocytes play a major role in killing tumor 
cells, leading to further release of TAA/TSA for DC uptake and subsequent presentation. Inset panel: Costimulatory and inhibitory interactions at the 
antigen-presenting cell (APC)–T cell immunological synapse. The activation of T cells by APC is tightly regulated by multiple ligand–receptor interactions. 
TCR binds to cognate antigen (AG) in the context of their specific MHC. Costimulatory molecules such as CD80 (B7.1) and CD86 (B7.2) on APC can either 
bind to CD28 on T cells resulting in downstream activation of T cell effector genes or to cytotoxic T lymphocyte antigen-4 (CTLA-4) resulting in inhibition. 
Further T cell activation is achieved through cytokines. Programmed cell death protein 1 (PD-1) is another immune checkpoint receptor and is expressed  
on activated T cells. The primary ligand for PD-1 (PD-L1) is expressed on APC and on some tumor cells, and upon binding to PD-1 acts to inhibit T cell 
activation.
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allowed for relatively low-cost detection of somatic mutations 
in tumor cells. There are currently several approaches being 
formulated to tailor individualized immunotherapies for 
patients on the basis of their expression of tumor neoantigens 
(83). Although currently personalized approaches are highly 
expensive, it is posited that with the continuing reduction of 
sequencing costs and using combinatorial treatments, it may 
be possible to even target tumors that are non-responsive to 
immunotherapy (83). Since their discovery, tumor antigens 
have been used for multiple purposes in cancer treatment. They 
have been used as diagnostic markers, cancer vaccines, and as 
targets for adoptive T cell therapy (82, 86, 87). In general, most 
tumor antigens elicit a weak immune response against cancer 
and have been tested clinically in combination with adjuvants 
or additional treatments (87). To date, cancer vaccination or 
adoptive transfer targeting specific tumor antigens has not 
shown major survival advantages in melanoma (48, 88). The 
three major types of tumor antigens that have been described 
and used in melanoma immunotherapy are discussed below. 
A majority of described melanoma antigens are restricted to 
human leukocyte antigen A2 (HLA-A2) (89).

MAGE Family
The MAGE (melanoma antigen) family is divided into two major 
groups type I MAGEs and type II MAGEs. The type I MAGE 

subfamily consists of 25 functional genes located on the X chro-
mosome in the regions MAGEA, MAGEB, and MAGEC (82, 90). 
These genes are classified as CTAs and are expressed in melanoma 
as well as other cancer types such as colon cancer, non-small 
cell lung cancer (NSCLC), and breast cancers (90). Conversely, 
type II MAGE genes are expressed in several types of normal 
tissue and are not X chromosome restricted. Both type I and 
type II MAGEs contain the MAGE homology domain (90). Due 
to the extensive homology between the MAGE proteins, there 
is a lack of antibodies that recognize specific MAGE antigens. 
In several cancer types, nuclear and cytoplasmic staining using 
widely reactive anti-MAGE antibodies have been performed and 
although the functions of MAGE proteins are not known, there 
is some evidence that they play a role in cell cycle progression 
and apoptosis (91). The MAGE family of proteins may serve 
as useful targets for immunotherapy. After encouraging results 
from Phase I/II studies, the DERMA phase III clinical trial aimed 
to assess a vaccine using MAGE-A3 protein in combination with 
an immunostimulant, in melanoma patients following tumor 
resection (92). However, in 2016 the trial was ended as it failed to 
show efficacy (NCT 00796445). Nevertheless, the lack of MAGE 
family gene expression in normal tissue and their overexpression 
in cancer cells is one of the key reasons they remain attractive 
targets for future immunotherapy treatments. Other CTAs 
observed in melanoma include the B-M antigen-1 (BAGE) and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Sadozai et al. Advances and Perspectives in Immunotherapy of Melanoma

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1617

G antigen (GAGE) family of proteins, and their functions are 
currently being studied (86).

NY-ESO-1
NY-ESO-1 (New York esophageal squamous cell carcinoma-1) is 
a CTA that is also located on chromosome X and is expressed in 
a wide range of malignancies (93). In normal cells, this antigen 
is primarily expressed on spermatogonia and at very low levels 
in pancreas, liver, and placenta (93). A homolog of NY-ESO-1, 
LAGE-1 has also been reported and is expressed in a wide variety 
of human cancer types. The biological functions of both proteins 
are unknown (93). NY-ESO-1 is a highly immunogenic tumor 
antigen and is able to elicit a detectable antibody response. In 
human melanoma, it is observed in a large frequency of mela-
noma patients (46%) and some studies indicate that its expression 
may be higher in metastatic lesions (93, 94). Due to its expression 
in a large fraction of melanomas, immunotherapy trials continue 
to be conducted using the NY-ESO-1 antigen as part of a tumor 
vaccine, or more recently using adoptively transferred lympho-
cytes with recombinant TCRs specific for NY-ESO-1 (95, 96). The 
adoptive transfer trial resulted in objective responses in 55% of 
treated melanoma patients but the most efficacious strategy for 
targeting NY-ESO-1 in melanoma immunotherapy remains to be 
determined.

Melanoma Differentiation Antigens
A number of TAA in melanoma that are recognized by both CD4+ 
and CD8+ T lymphocytes are on proteins specifically expressed 
on melanocytes and involved in melanocyte-specific functions 
(86, 97). These TAA are located in melanosomes, the organelles in 
which melanin is synthesized. Moreover, their role in oncogenesis 
is not known (86). These antigens include tyrosinase, tyrosinase-
related proteins 1 and 2 (TRP-1 and TRP-2), Melan-A (MART-1), 
and gp100 (pmel17) (82, 97). Tyrosinase and TRP-1/-2 are copper 
and zinc containing metalloenzymes with homology at several 
sequences and they play crucial roles in melanin synthesis (98). 
Tyrosinase is the key enzyme in melanin synthesis and is located 
on the membrane of melanosomes. It is observed in over 80% 
of primary and metastatic melanomas (86). The exact function 
of TRP-1 (gp75) remains unclear, but it is purported to play a 
role in stabilizing tyrosinase (98). TRP-2 is a DOPAchrome 
tautomerase and its overexpression is believed to contribute to 
the chemoresistance and radiotherapy resistance of metastatic 
melanoma (86, 97). Melan-A (melanoma antigen recognized 
by T  cells-1 or MART-1) is a single domain transmembrane 
protein of 118 amino acids found primarily in melanosomes, 
endoplasmic reticulum, and trans-Golgi network (86, 99). 
MART-1 is crucial for the expression, trafficking, and stability of 
the protein gp100 (pmel17) (99). It is expressed in all melanocytic 
naevi, and a majority of primary and metastatic melanomas 
(86). It has been observed that significantly higher frequencies 
(100- to 1,000-fold) of naive CTL are found against a specific 
MART-1 peptide (Melan-A26–35) compared to other antigens in 
normal (non- cancerous) individuals who express HLA-A2 (79). 
However, T cell recognition of MART-1 does not necessarily result 
in improved clinical outcomes (97). Finally, the protein gp100 
(premelanosomal protein-pmel17), is a transmembrane protein 

that has a role in melanosome biogenesis and melanin polymeri-
zation (86). The gp100 gene was found to be widely expressed in 
malignant melanoma at all stages but was significantly reduced 
in normal melanocytes (100). HMB-45, a mouse monoclonal 
antibody (mAb) to gp100, is used for diagnostic purposes to 
distinguish non-melanocytic from melanocytic tumors (99). All 
of the aforementioned differentiation antigens are recognized 
by CD4+ and CD8+ T cells, while TRP-1, TRP-2, tyrosinase, and 
gp100 can also elicit antibody responses (97). Thus, these antigens 
are considered to be useful targets for melanoma immunotherapy 
(86). The B16 syngeneic transplant model, obtained initially from 
C57BL/6 mice, is one of the most widely utilized models in mela-
noma research (101). The most obvious advantage of this model 
is that it expresses murine homologs of the melanoma differentia-
tion antigens (tyrosinase, gp100, MART-1, TRP-1, and TRP-2) 
(102). Melanocyte differentiation antigens continue to be used 
in a number of clinical studies in combination with various adju-
vants and immunostimulants such as granulocyte-macrophage 
colony-stimulating factor (GM-CSF), but none of the studies 
have to date shown significant improvements in OS in melanoma 
patients (87, 103, 104). Due to the multiple mechanisms of tumor 
immune escape, it remains particularly difficult to sustain a pro-
longed response to cancer antigens. However, recently the use of 
nanoparticles (NP) containing mRNA encoding the melanoma 
antigens, NY-ESO-1, tyrosinase, MAGE-A3, and a novel CTA 
TPTE (a transmembrane phosphatase), has shown early clinical 
promise in a pilot study of three patients (105). To be successful, 
future immunotherapy trials will need to not only consider the 
tumor antigens to be used but also the delivery vector, the format 
(RNA, DNA or protein), and the appropriate adjuvants.

Tumor-Infiltrating Lymphocytes
A cardinal feature of cancer is the immunosuppressive TME 
(106, 107). As the disease progresses, T cells in the TME exhibit a 
phenotype analogous to that seen in chronic viral infection known 
as T cell exhaustion (108). T cell exhaustion denotes a state of 
hyporesponsiveness to antigen with reduced cytokine secretion 
and cytotoxic function (108, 109). Nevertheless, the overwhelm-
ing majority of studies in human patients have demonstrated a 
correlation between TIL and better disease outcomes in cancers 
(110, 111). An exception to this observation is that FOXP3 expres-
sion, a marker of Treg that has been shown to correlate to poor 
prognosis in various types of human cancer (112, 113). The term 
TIL was first described by Wallace Clark, who was instrumental 
in developing the first histological classifications for melanoma as 
mentioned above (114, 115). TIL have been described in primary 
tumors, tumor-bearing LN, and in metastases of melanoma and 
various other cancer types (114). The range of immune cells that 
infiltrate a tumor, i.e., the “immune contexture” of a tumor is 
heterogeneous and consists of various types of T  lymphocytes, 
B  cells, NK  cells, macrophages, and DC (111, 114). In 1989, 
Clark published a classification of the three major patterns of 
lymphocyte infiltration that are commonly used today (115). The 
brisk pattern is indicated by interposed lymphocytes between 
tumor cells that may be diffusely present throughout the tumor 
nodule or along the advancing (basal) periphery of the nodule 
(114, 115). The non-brisk pattern delineates a scattered multifocal 
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presence of lymphocytes throughout the vertical growth phase 
of the nodule. Finally, an absent pattern is associated with a 
lack of lymphocytes in the tumor, or if they are present, their 
lack of interaction with melanoma cells (115). In recent years, 
various groups have attempted to further classify TIL or propose 
novel grading schemes, but the Clark model remains widely 
accepted and highly reproducible (114). In a recently published 
report, it was shown that melanoma tumors with brisk TIL pat-
terns in primary melanoma H&E tissue, even in the absence 
of immunohistochemistry for specific markers, was associated 
with increased OS in patients versus tumors with non-brisk and 
absent patterns (116). The importance of TIL has been used to 
establish a novel classification system for cancer based on an 
“Immunoscore,” which relies upon the quantitation of CD3 and 
CD8 lymphocytes with the additional marker CD45RO used 
to mark memory T cells. The “Immunoscore” was found to be 
superior to the conventional AJCC TNM system for prognosis of 
stage I–III colorectal cancer (CRC) (117). Similar approaches are 
now being tested for immunoscoring of melanoma but have not 
been tested in large patient cohorts (118).

An additional feature observed in cancer, and other situa-
tions of chronic inflammation is the formation of tertiary lym-
phoid structures (TLS—also called tertiary lymphoid organs)  
(119, 120). These TLS can range from loose aggregates of various 
immune cells to complex structures that resemble secondary 
lymphoid organs such as LN. They consist of T cell-rich regions 
containing mature DC expressing DC-LAMP (lysosomal associ-
ated membrane protein), B cells, and high endothelial venules, 
which play a role in immune cell extravasation and production 
of key chemokines (120). In 2012, Messina et al. reported that a 
gene expression profile consisting of 12 chemokines could accu-
rately predict the histological presence of LN-like TLS in stage 
IV melanoma (primary tumors and metastases), and the TLS 
correlated strongly with improved overall patient survival (121). 
Other studies have shown that the presence of TLS is a positive 
prognostic indicator in melanoma and a range of other cancer 
types including breast carcinoma, CRC, and pancreatic cancer 
(120). Thus, these results suggest that lymphocyte infiltration 
mediates a protective immune response to cancer.

However, many tumors are not T  cell inflamed, and the 
mechanisms underlying T  cell infiltration into the tumor are 
poorly understood (89, 122). In the context of melanoma, a recent 
study compared all major classes of melanoma tumor antigens 
between T  cell inflamed and non-T  cell inflamed tumors and 
found that there were no differences between both groups in 
terms of antigen load (123). Rather it was shown that non-T cell 
inflamed melanomas displayed reduced gene expression associ-
ated with Batf3-dependent, CD141+ DC (123). Furthermore, 
studies have pointed to the ability of tumors to interfere with 
chemokines that recruit leukocytes to tumors. Finally, the abnor-
mal tumor vasculature may express reduced adhesion molecules 
required for homing and directly or indirectly suppress T cells by 
expression of molecules such as PD-L1, PD-L2, VEGF, and TGFβ 
(122). Once T cells infiltrate the TME, they are acted upon by a 
range of immunoregulatory mechanisms that prevent complete 
eradication of the tumor (72). These can be tumor-specific escape 
mechanisms or the recruitment of suppressive immune cells. For 

instance, mutations in BRAF or PTEN loss are associated with 
increased T cell inhibition by production of IL-1 and VEGF (72). 
Furthermore, conserved immunoregulatory mechanisms are also 
at play within the TME the production of immunosuppressive 
mediators [TGFβ and indoleamine 2,3 dioxygenase (IDO)], and 
the recruitment of regulatory myeloid and lymphoid cell popula-
tions (72). Another important consideration is that although, 
CD8+ T  cells are canonically considered the primary cytotoxic 
cells involved in tumor eradication, CD4+ T  cells can also kill 
tumor cells (89). However, the precise mechanisms of CD4+ 
antitumor immunity are not well described, and the role of CD4+ 
T cell infiltration in the TME has not been explored significantly 
with the exception of FOXP3+CD4+ Treg (72, 89). A recently con-
cluded meta-analysis demonstrated that FOXP3+ Treg infiltrates 
were predominantly associated with worse OS in a review of over 
17 types of cancer (124). In most tumors, such as cervical, renal, 
breast cancers, and melanoma, FOXP3+ Treg infiltrates correlated 
with shorter OS whereas they were associated with improved sur-
vival in patients with colorectal, head and neck, and esophageal 
cancers (124). In recent years, several studies have described 
the heterogeneity in FOXP3-expressing cell populations (125). 
In 2016, Saito et al. showed that human CRCs could be distin-
guished by the extent of infiltration of two distinct FOXP3+CD4+ 
T  cell populations (126). Type A CRCs had low frequencies 
(<9.8%) while Type B had comparatively higher frequencies 
(>9.8%) of infiltrating non-suppressive FOXP3loCD45− T  cells. 
Infiltration by these non-suppressive T cells was correlated with 
the presence of intestinal bacteria, in particular Fusobacterium 
nucleatum within the tumor (126). Furthermore, Type B CRCs 
were marked by high mRNA expression of IL12A and TGFB1 
compared with Type A and tumors with high expression of these 
mRNAs exhibited significantly longer disease-free survival versus 
low expressing tumors. Thus, FOXP3+ T cell infiltration must be 
considered in combination with other immune signatures while 
determining the immune status of a tumor. In addition to T cells, 
the roles of B cells in the TME are being currently explored as they 
have both APC and effector lymphocyte functions (127). Studies 
in melanoma have demonstrated that CD20+ infiltrating B cells 
are found in most tumors and higher levels of these infiltrates 
correlated with improved patient survival (127). Furthermore, 
B cells are known to produce IgG antibodies that can recognize 
tumor cells and within a murine model of organ transplanta-
tion have been observed to promote chronic allograft rejection 
through antigen presentation rather than their antibody secreting 
functions (127, 128). Finally, recent studies have also focused on 
the roles of putative regulatory B  cells in the context of trans-
plantation and autoimmunity, as these cells can produce potent 
immunosuppressive mediators such as IL-10 and TGFβ (129). 
The multiple immunoregulatory mechanisms that effect TIL are 
the targets of a majority of current immunotherapies. However, 
as the aforementioned observations indicate, there are several 
functionally redundant pathways that allow for immunological 
escape of tumors in immunocompetent individuals. Thus, to be 
successful, the field of immunotherapy must move toward combi-
natorial and multipronged approaches for tumor treatment. This 
involves investigation of the mechanisms of innate immune cells 
such as NK cells, TAM, and TIDC within the TME.
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Tumor-Infiltrating Dendritic Cells
Despite their discovery over 40 years ago, the exact mechanisms 
underlying DC dysfunction in cancer remain poorly understood 
(107). In both mice and humans, DC are classified into two 
major subsets comprised of conventional or cDC, and plasma-
cytoid DC (pDC) (130). In non-steady state conditions such as 
cancer or autoimmune disease, inflammatory DC derived from 
monocytes have also been described in humans and in mice 
(130, 131). Despite the fact that nearly all DC subsets express 
the surface marker CD11c, there are unique transcription factors 
and surface proteins that characterize the major DC subsets in 
human and mice. These markers have been extensively reviewed 
in the literature, but further study is needed to accurately profile 
each subset (130, 132, 133). DC canonically present extracellular 
antigens on MHC class II while intracellular or self-antigens 
are presented on MHC class I (134). However, murine and 
human DC also possess the capacity to cross-present antigens 
of extracellular origin on MHC class I to activate CD8+ CTL 
(135, 136). In humans, the primary cross-presenting DC subset 
is characterized by CD141 (BDCA-3) while in mice this subset 
is marked by surface expression of CD8α or CD103 (137). The 
mechanistic roles played by various DC subsets in both tumor 
progression and the response to treatment are a key area of 
research for cancer immunotherapy with little consensus as 
to their frequencies and functions (102, 107). In 2008, it was 
reported that knocking out Batf3 in mice eliminated CD8α+ 
DC, and consequently it was demonstrated that these mice were 
incapable of cross-presenting antigen or rejecting highly immu-
nogenic fibrosarcomas (138). Although pDC are purportedly not 
efficient at cross-presentation, studies have shown their capacity 
to mediate direct tumor killing and to activate NK cells via the 
production of type I IFN (139). Despite the key roles played by 
TIDC in promoting antitumor responses, generally TIDC are 
skewed in both phenotype and function toward an immunosup-
pressive role in the microenvironment (107). These alterations 
in TIDC have been mechanistically studied in murine models 
(107, 140). The TME has been reported to induce a “paralyzed” 
state in TIDC resembling an immature phenotype with reduced 
expression of costimulatory CD80 and CD86 molecules and a 
diminished capacity to present antigens (107). This induction 
is a result of various immunosuppressive factors such as VEGF, 
TGFβ, IDO produced by tumor cells as well as by other cells in 
the TME (72, 107). Furthermore, DC paralysis in mouse models 
has been observed to be associated with upregulation of immune 
checkpoint receptors such as PD-1 and T cell immunoglobulin 
and mucin-domain containing-3 (TIM-3), which was reported 
to interact with the alarmin protein high mobility group box 1 
(HMGB1) resulting in reduced DC sensing of tumor-derived 
nucleic acids (107). TIDC with immature and paralyzed phe-
notypes themselves suppress immune cells in the TME through 
various mechanisms such as but not limited to, expression 
of inhibitory molecules (PD-L1), production of regulatory 
cytokines such as IDO and induction of Tregs (107, 141).

As previously noted, there has been significant research on TIL 
in melanoma. On the other hand, the mechanistic roles of TIDC 
in melanoma are not well studied. Melanoma is of particular 
interest due to the fact that skin contains multiple DC subsets. 

The five major DC subsets found in human skin are Langerhans 
cells, CD14+ DC, CD1c+ DC, CD1a+ DC, and CD141+ DC (133). 
The correlations between various TIDC subsets and disease 
outcome, their association with other cells and specific functions 
have not yet been fully elucidated (102). However, recently it 
was demonstrated that intratumoral CD103+ DC in mice were 
crucial for trafficking of melanoma tumor antigen to LN and 
were dependent on surface expression of CCR7 (142). Enhanced 
CCR7 mRNA expression in human melanoma samples was also 
correlated to increased T  cell infiltrates and improved patient 
outcomes (142). In general, it is observed that there are higher 
frequencies of TIDC in the peritumoral region than within the 
tumor (102). These peritumoral DC include arguably the most 
mature population of DC-LAMP+CD83+fascin+ cells (102). In 
fact, DC-LAMP expression is associated with positive prognosis 
in not only melanoma but also lung, breast, and metastatic CRC 
(120). On the other hand, CD123+ pDC that do in principle pos-
sess the capacity to promote antitumor responses are found to 
be associated with early relapse and poor prognosis in human 
melanoma (102, 143). It was shown in both ex vivo patient sam-
ples and in that a humanized melanoma mouse model that pDC 
in melanoma are directed toward a TH2 promoting phenotype 
by induction of the molecules OX-40L (TNFSF4) and ICOSL 
(inducible T cell costimulator ligand), which then drive tumor 
progression (143). To comprehensively characterize TIDC in 
melanoma, it is crucial to obtain genomic data to appropriately 
distinguish and profile TIDC subsets. Pyfferoen et al. performed 
transcriptomic profiling of DC in a murine model of lung carci-
noma and demonstrated that TIDC had significantly increased 
expression of PD-L1, acquisition of TAM surface markers and a 
pro-metastatic microRNA signature (144). To date, similar stud-
ies have not been performed in human melanoma. There have 
been several studies in murine models that have demonstrated 
the therapeutic reprogramming of TIDC (107). Thus, manipula-
tion of TIDC represents a hitherto unexplored target for future 
melanoma immunotherapies. Many of the same agents that have 
been shown to induce DC activation and maturation in  vitro 
have been tested for direct targeting of DC in  vivo (133, 145). 
For instance, direct administration of BCG has been utilized for 
the treatment of bladder cancer for over 30  years although its 
precise mechanisms of action in vivo are still under study (146). 
Direct modulation of DC in vivo using DC maturation agents and 
mAbs is a highly desirable goal in tumor immunotherapy. This 
is due to the excessive costs, safety considerations, and practical 
limitations of using cellular products (147). As such, the identi-
fication of both targetable DC receptors and maturation stimuli 
continues to be an active area of research interest. In particular, 
targeting antigen-coupled antibodies to DC C-type lectin recep-
tors (CLRs) such as DEC205 (CD205), Clec9A, and DC-SIGN in 
murine and in vitro studies resulted in effective CD4+ and CD8+ 
T cell responses (145, 148). Additional receptors such as XCR1 
(expressed entirely on CD141+ DC) are also being studied for 
their effects on DC function (133). Clinical trials for multiple 
cancer types are presently underway to investigate the efficacy of 
anti-DEC205 conjugated to the cancer–testis antigen NY-ESO-1, 
which is also used for melanoma immunotherapy (133, 149). 
Recently, a series of seminal papers have shown the importance of 
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the cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase 
(cGAS) in promoting antitumor immunity (150–152). DNA 
introduced to the cytosol as a result of viral infections or cellular 
damage is a potent immune activator that leads to the production 
of type I IFN (153). Upon detection of DNA by cGAS, it catalyzes 
the production of cGAMP that binds to the adaptor protein 
stimulator of interferon genes (STING) ultimately resulting in the 
production of type I IFN (153). In 2014, Woo et al. demonstrated 
in a mouse model that tumor-derived DNA was responsible for 
inducing IFNβ production and the consequent activation of APC 
and CD8+ T  cells versus melanoma in  vivo (150). Alternately, 
mice deficient in STING failed to reject these tumors highlighting 
the crucial role played by this pathway in the immune response 
to cancer (150, 151). In a more recent paper, Wang et al. showed 
the role of cGAMP in mediating the effects of ICB (152). It was 
reported that in mice lacking either cGAS or STING, PD-L1 
blockade did not result in significant shrinkage of tumor volume 
or increase in survival compared with WT mice. Moreover, 
intramuscular injection of cGAMP in combination with PD-L1 
significantly enhanced survival, compared with PD-L1 or cGAMP 
alone (152). Finally, it was also shown that cGAMP treatment 
of BMDC enhanced expression of DC activation markers and 
increased DC antigen cross-presentation. Another molecule that 
has recently gained interest for its effects on DC is IL-32. In 2012, 
Schenk et al., identified an IL-32-dependent mechanism for DC 
differentiation in response to nucleotide-binding oligomerization 
domain containing protein (NOD2) activation through its ligand 
muramyl dipeptide (154). DC obtained from IL-32 differentiation 
were found to express higher levels of MHC class I and CD86, 
as well as, present antigen to CD8+ T cells more effectively than 
GM-CSF differentiated DC (154). These studies highlight the 
multiple pathways that may be targeted to generate effective DC 
in vivo, which is essential for antitumor immunity.

NK Cells
Natural killer cells were characterized over 40 years and are the 
first population of ILC to be described and studied (155, 156). 
NK cell defects lead to enhanced susceptibility to viruses and 
many forms of cancer in humans and in mouse models (156). 
NK cell functions are modulated by a number of surface recep-
tors that provide either NK activating or inhibitory signals (156, 
157). NK cells are broadly defined as CD3−CD56+ in humans 
and CD3−NK1.1+ in mice while both murine and human 
NK  cells express the surface receptor NKp46 (CD335) (156). 
In humans, NK  cells are further divided into CD16+CD56dim 
which predominate in blood, and CD16−CD56bright populations 
(156). Canonically, NK cells can recognize tumor cells that have 
downregulated MHC class I molecules or upregulated induced 
stress molecules (155, 156). NK cells can also bind to antibod-
ies bound to tumor antigens and mediate antibody-dependent 
cellular cytotoxicity (156). As with CD8+ CTL, NK cells mediate 
their cytotoxic functions through perforin and granzymes, as 
well as, by expressing death mediating ligands such as FasL 
(CD95L) and TRAIL (TNF-related apoptosis inducing ligand) 
(156). Activated NK  cells also produce IFNγ, among other 
cytokines, which leads to recruitment of other immune cell 
populations (156).

The roles of NK  cells in the TME are currently not fully 
described (155, 157). Several studies have indicated that NK cell 
infiltration is generally a positive prognostic factor in various 
types of cancer (155). In the context of melanoma, the roles of 
NK cells are an important venue of research. Analysis of several 
melanoma cell lines indicated that a high percentage of mela-
noma cells possess ligands for a NK activating receptors such as 
NKG2D and DNAM1, while ligands have also been identified 
for NK-bound NCR (natural cytotoxicity receptors) such as 
NKp30 (157). Melanoma cells are also known to have decreased 
MHC class I expression as a mechanism to escape CD8+ T cells, 
thus making them targets for NK  cells (157). Despite these 
observations, melanoma immunoediting leads to tumor escape 
from NK  cells via multiple mechanisms (157). Melanoma 
immunoediting by NK cells increases expression of MHC I, or 
downregulates NK ligands supported by the decreased expres-
sion of MICA reported in metastatic versus primary melanoma 
(157). IDO and prostaglandin E2 (PGE2) produced by melanoma 
cells act directly to inhibit NK cells while increased expression of 
ligands to regulatory receptors such as TIGIT modulate NK cell 
activity (157). In light of these observations, it will be important 
to identify NK populations that have persistent antitumor activ-
ity and characterize their phenotypes to better understand the 
mechanism involved in effective NK immunity. Recently, it was 
reported that tumor-bearing/infiltrated LN in melanoma patients 
contained twice as many NK cells as ipsilateral tumor-free LN 
(158). These tumor-infiltrated LN also contained a population 
of highly cytotoxic CD56dimKIR+CCR7+ NK cells that may have 
prognostic potential for melanoma (158). Conversely, mela-
noma, breast, and colon cancers were found to be infiltrated by 
CD56bright NK subsets, which are similar to decidual NK  cells 
during pregnancy thus implying a potentially regulatory role for 
this subset (159). NK cells remain an important target for immu-
notherapy. Along with T cells, NK cells were used early on for 
adoptive cell transfer therapy of melanoma in the 1980s and both 
autologous and allogeneic NK cell adoptive transfers are being 
studied in clinical trials (156, 157). Currently, two antibodies 
for the blockade of NK checkpoints are under clinical develop-
ment, namely, lirilumab (anti-KIR-studied in combination with 
ipilimumab) and IPH2201 (anti-NKG2A) for various types of 
cancers including melanoma (157). However, further study of 
NK  cells in the melanoma TME is required to understand the 
several mechanisms of immune escape from NK cells and CD8+ 
CTL and thus devise, rational combinatorial immunotherapies.

MeLANOMA iMMuNOTHeRAPY

In 2013, the journal Science hailed cancer immunotherapy as 
the breakthrough of the year (56). This was in recognition of the 
promising clinical responses that can be achieved by directing 
the immune system to fight cancer. Despite highly encouraging 
advances, current immunotherapies only result in clinical benefit 
for a subset of patients (160, 161). Thus, there is a significant sci-
entific effort to understand the tumor cell-intrinsic and extrinsic 
mechanisms of resistance to immunotherapy (162). The three 
major mechanisms of resistance to immunotherapies have been 
conceptualized as follows. Primary resistance denotes a clinical 
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TABLe 1 | Key immunotherapeutics and their primary mechanisms of action.

Treatment Clinically tested agents Mechanism(s) of action Reference

immune activating mAbs

αCTLA-4 Ipilimumab (Yervoy®)  – Blockade of T cell checkpoint receptor
 – Depletion of intratumoral Treg

(160, 167)

αPD-1 Nivolumab (Opdivo®), pembrolizumab (Keytruda®)  – Blockade of T cell checkpoint receptor (167, 168)
αPD-L1 Atezolizumab, durvalumab, avelumab  – Blockade of inhibitory checkpoint ligand expressed on 

immune cells and tumor cells
(167, 169)

αCD137 (4-1BB) Urelumab  – Agonist of T cell costimulatory receptor (170)
αKIR Lirilumab  – Blockade of NK cell inhibitory receptor (157, 171)
αLAG-3 BMS986016  – Blockade of T cell surface inhibitory molecule (167)

Adoptive T cell therapy
TIL Ex vivo expanded TIL  – Infusion of pool of antitumor T cells (50, 172)
Engineered T cells Transgenic TCR or CAR bearing T lymphocytes  – Infusion of engineered T cells specific for tumor antigens (50, 173)

vaccines
Cell-based vaccines Tumor cells or activated DC/APC  – Induction of tumor-specific adaptive immunity (87, 174, 175)
Peptide vaccines Various tumor antigen peptides/lysates + adjuvant  – Induction of tumor-specific adaptive immunity (165, 176)
Oncolytic viral vaccines Talimogene laherparepvec (T-VEC/Imlygic™)  – Viral induction of tumor cell lysis and adjuvant  

mediated host immune activation
(177, 178)

Cytokines
Interleukin-2 Aldesleukin (Proleukin®)  – Activates and expands T cells (179, 180)
Interferon alpha Interferon alfa 2b (Intron® A, Sylatron™)  – Activates multiple facets of immunity and has direct  

effects on tumor cells
(181, 182)

An overview of current immunotherapy approaches and their proposed mechanisms of action as discussed in this review.  
Trade names are provided for drugs that have received clinical approval in melanoma. References provided for further description of each approach.
KIR, killer-cell immunoglobulin-like receptor; DC, dendritic cells; APC, antigen-presenting cell; TCR, T cell receptor; CAR, chimeric antigen receptor;  
TIL, tumor-infiltrating lymphocyte; NK, natural killer; Treg, regulatory T cells.
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setting where the initial immunotherapy is unsuccessful. This 
can be due to adaptive resistance which defines a mechanism 
whereby there are initial antitumor immune responses but are 
inhibited by adaptation and immune escape of the tumor (162). 
Clinically, adaptive resistance may be seen as primary resistance, 
mixed responses or acquired resistance. Acquired resistance 
describes a clinical scenario where the tumor initially responded 
to immunotherapy but has eventually progressed and acquired 
resistance to the therapy (162). To overcome resistance to various 
forms of immunotherapy, it will be important to understand the 
mechanisms that allow tumor cells to escape immune attack. 
The clinical experience with melanoma immunotherapies has 
shown significant promise and there is increasing evidence that 
a multipronged approach may be required to ensure durable 
responses in a majority of patients. This section describes the 
major immunotherapies that have already been developed or are 
under clinical development for the treatment of metastatic mela-
noma (summarized in Table 1). Advances in immunotherapy for 
other types of cancers, as well as, the use of mAbs to specifically 
target tumors have been previously reviewed in detail (163–166).

early Advances in Melanoma 
immunotherapy
As previously noted, the mechanistic basis for Coley’s observa-
tions remained unknown for some time and during this time, 
surgery, radiation treatment, and cytotoxic chemotherapy 
became the primary means of cancer treatment. However, in 
the context of melanoma, two major forms of immunotherapy 
witnessed encouraging breakthroughs starting in the 1980s and 

led to renewed interest in the entire field. These breakthroughs 
occurred in systemic cytokine therapy with IL-2 and adoptive cell 
transfer using TIL (183). In 1985, Rosenberg et al., demonstrated 
in C57BL/6 mice that intraperitoneal injections of recombinant 
IL-2 were capable of significantly attenuating pulmonary metas-
tases from tumors generated by the MCA-105 and -106 syngeneic 
sarcoma and B16 syngeneic melanoma lines (184). Retrospective 
analyses of metastatic melanoma patients who had been treated 
with IL-2 demonstrated an ORR of 16% and represented a signifi-
cant advance in the treatment (185). IL-2 received FDA approval 
in 1998 for metastatic melanoma. However, as systemic treatment 
of IL-2 resulted in various toxicities, several groups have shifted 
to intralesional administration of IL-2, which resulted in CR 
rates of between 41 and 76% in various trials (48). In parallel 
to the successes achieved with IL-2, Rosenberg and colleagues 
reported the first successful use of adoptive T cell transfer for 
the treatment of solid cancers (186). Patients were treated with 
IL-2 and autologous TIL expanded from surgically resected 
melanomas. Objective responses were observed in 60% (9/15) 
of treated patients (186). Subsequently, in 2002, this approach 
was combined with lymphodepletion prior T  cell transfer and 
demonstrated enhanced responses in patients (50). Currently, 
adoptive cell therapy (ACT) using TIL remains one of the most 
effective therapies for metastatic melanoma (183).

immune Checkpoint Blockade
Drugs that mediate ICB by targeting the inhibitory receptors 
CTLA-4 and PD-1 (Figure  2 inset panel) have been shown to 
induce durable responses in subsets of patients with various types 
of cancer including melanoma, NSCLC, and renal cell cancer 
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(RCC) (187–190). Furthermore, antibodies targeted to the PD-1 
ligand, PD-L1, are undergoing clinical trials and have resulted 
in objective responses for multiple cancer types (51, 191). To 
date, the FDA has approved four mAbs for ICB therapy: (1) ipili-
mumab (αCTLA-4); (2) nivolumab (αPD-1); (3) pembrolizumab 
(αPD-1); and (4) atezolizumab (αPD-L1) (192). They have been 
approved for various advanced and metastatic cancers ranging 
from unresectable or metastatic melanoma to urothelial carci-
noma (atezolizumab) (168, 192). Currently, only ipilimumab, 
nivolumab, and pembrolizumab have received FDA approval for 
melanoma (167). Due to the fact that checkpoint receptors play 
important roles in regulating autoimmunity, the major toxicities 
associated with the use of ICB drugs include a range of autoim-
mune symptoms labeled immune-related adverse events (IRAEs) 
(193). The incidence of IRAEs is quite high, ranging from 70% 
in patients treated with αPD-1/αPD-L1 antibodies to as high 
as 90% in patients treated with αCTLA-4 and require careful 
management in the clinic with immunosuppressive medications 
(193). As ICB results in objective responses for only a subset of 
patients, there is a crucial need to identify biomarkers that can 
potentially predict the efficacy of a particular ICB treatment or 
designate a particular subset of patients who may benefit from 
ICB therapy (194).

CTLA-4
Cytotoxic T  lymphocyte antigen-4 (also termed cytotoxic 
T-lymphocyte-associated protein 4), is a crucial regulator of 
T cell activation and ipilimumab, a human IgG1 mAb targeted 
to this molecule was the first ICB drug to show clinical efficacy 
in advanced melanoma and a number of other cancer types 
(48, 195). CTLA-4 plays a key role in T  cell immunity and its 
molecular biology has been recently reviewed elsewhere (167, 
196). However, to understand the clinical role of CTLA-4 block-
ade, a brief summary of its mechanism of action is warranted. 
Naive T cells are modulated by APC through the interaction of 
multiple surface receptors in a region referred to as the “immu-
nological synapse” (197). Canonically, naive T  cells require 3 
signals for complete activation (Figure 2 inset panel) (198). The 
engagement of the TCR by peptide antigen presented in the 
context of MHC, provides the first signal of T  cell activation 
(signal 1) (198, 199). T cells require further signaling from the 
binding of costimulatory molecules on T cells such as CD28, to 
its respective ligands CD80/86 on APC (signal 2). Finally, the 
complete activation requires cytokines (IL-2) binding to their 
cognate receptors on T cells (Signal 3) (199). As an evolutionary 
checkpoint to autoimmunity, activated T  cells induce surface 
CTLA-4 expression, which binds with greater affinity to CD80/86 
and mediates T  cell inhibition and cell cycle arrest (195, 200). 
CTLA-4 is also expressed constitutively on Treg (167). The crucial 
role of CTLA-4 in maintaining tolerance is demonstrated by the 
severe multiorgan autoimmune pathologies and early mortality 
(3–4  weeks) observed in CTLA-4−/− mice (201). Humans with 
heterozygous germline muta tions in CTLA-4 also exhibit autoan-
tibodies, increased intra-organ lymphocyte infiltration and other 
symptoms of immune dysregulation (167).

In 2010, Hodi et  al. demonstrated the clinical efficacy of 
ipilimumab in patients with stage III and IV unresectable and 

metastatic melanoma whose tumors were refractory to prior 
treatments (187). The treatment subjects received ipilimumab 
alone, ipilimumab plus the peptide gp100 or gp100 alone. 
Patients receiving ipilimumab alone or ipilimumab plus gp100 
had significantly increased median OS compared with those 
receiving gp100 alone (roughly 10 versus 6  months) (187). 
Currently, ipilimumab has only received FDA approval for 
melanoma. However, a number of studies have shown modest 
responses to ipilimumab in other tumor types such as metastatic 
RCC and NSCLC, and it continues to be studied in clinical trials 
as combination therapy with PD-1/PD-L1 (discussed below)  
(160, 167). As mentioned previously, a number of immunological 
toxicities (IRAEs) are commonly observed to occur in patients 
treated with ipilimumab primarily in the skin, GI tract, and the 
endocrine system and in some rare cases result in deaths (193). 
The frequency of severe toxicities (grade 3 or 4) in the prelimi-
nary phase III trials of ipilimumab was demonstrated to be 20%, 
but this value was not significantly higher than the toxicities 
associated with many chemotherapy or targeted therapy drugs 
(163, 195). Most IRAEs can be resolved within 6–12 weeks of 
steroid therapy but for steroid-resistant adverse events, patients 
can also be treated with immunosuppressive antimetabolite 
drugs such as azathioprine and mycophenolate mofetil (193). 
Novel CTLA-4 blockade agents including modified versions 
of ipilimumab are also currently under study for a number of 
advanced solid tumors with the aim of improving safety profiles 
and tumor-specific delivery (202).

PD-1/PD-1 Ligand (PD-L1)
The most clinically successful agents for ICB to date target the 
inhibitory PD-1/PD-L1 axis (169, 195). The transmembrane 
receptor PD-1 (CD279) plays a crucial role in regulating 
antigen-specific T  cell responses (169, 203). PD-1 is not only 
expressed on activated effector T  cells but also on NK  cells, 
B  cells, macrophages, and Tregs (167, 203). Similar to the 
activating co-receptor CD28, PD-1 is acted upon by two 
distinct ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, 
CD273) (203). Whereas PD-L2 expression has hitherto been 
observed only on professional APC (including B cells), PD-L1 
is expressed on various tissue types such as epithelial tissue, 
vascular endothelium, stromal cells as well as tumor cells and 
virus-infected cells (167, 203). The induction of PD-L1 expres-
sion is generally in response to pro-inflammatory cytokines such 
as interferons, TNF-α, and VEGF (167, 169). PD-1 does not, 
as its name implies, directly induce cell death. The binding of 
PD-1 to its ligands instead serves to attenuate T cell activation 
by recruiting the tyrosine phosphatase SHP-2, which interferes 
with signaling downstream of the TCR and leading to decreased 
T cell growth and reduced cytokine production (203). However, 
PD-1 signaling can also reduce the expression of antiapoptotic 
genes while upregulating proapoptotic gene expression thus 
impairing T cell survival (167).

PD-1-deficient mice do not display as severe a phenotype as 
CTLA-4−/− mice, developing glomerulonephritis and arthritis 
in a C57BL/6 background and autoantibody induced dilated 
cardiomyopathy in BALB/c mice as they age (204, 205). This 
is arguably due to the more direct inhibitory and Treg-related 
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functions of CTLA-4, whereas PD-1 serves to limit T  cell 
activation indirectly and prevent peripheral autoimmunity 
(169). As noted previously, in certain conditions of persistent 
antigen exposure such as in chronic viral infections or in cancer, 
T cells are observed to develop a dysfunctional or “exhausted” 
phenotype (72, 167). Such T cells are also marked by elevated 
expression of PD-1 and other inhibitory receptors such as TIM-3 
and LAG3 (72). Furthermore, PD-L1 and/or PD-L2 are both 
observed to be expressed on a number of tumor-infiltrating APC 
and tumor cells themselves, not only as a result of cytokines but 
also due to alternative factors such as gain of chromosomes car-
rying PD-L1 and PD-L2 or the signaling of the epidermal growth 
factor pathway (167). Recent studies have shown that APC and 
tumor cells bearing PD-L1 play additive non-redundant roles in 
the suppression of antitumor immunity (206). Thus, blockade of 
the PD-1/PD-L1 axis remains a critical area of interest in tumor 
immunotherapy with studies on its efficacy in nearly 20 types of 
solid tumors and hematological cancers (169).

In the context of melanoma, nivolumab, and pembrolizumab, 
both of which target PD-1 have been shown to have significant 
clinical efficacies (160, 169, 195). In 2012, results from a phase I 
study comparing various doses of nivolumab in NSCLC, pros-
tate cancer, CRC, renal cell carcinoma, and melanoma patients 
were reported (188). The highest activity was demonstrated in 
melanoma patients where the cumulative response rate (for all 
doses) was 28% compared with 27% for renal carcinoma and 18% 
for NSCLC (188). In the same year, an αPD-L1 antibody (BMS-
963559) was tested in advanced cancers ranging from melanoma 
to RCC and was shown to have comparatively low response 
rates (6–17%) (191). A number of recently concluded trials have 
also demonstrated the potency of pembrolizumab. The large 
multicenter phase II trial KEYNOTE-002 examined the efficacy 
and safety of pembrolizumab in patients who had progressed on 
ipilimumab therapy, and in patients with BRAF mutations, those 
who had received either BRAF or MEK inhibitor treatment (207). 
Patients received either two separate doses of pembrolizumab 
(2 or 10  mg/kg) or chemotherapy of the investigators choice 
(carboplatin, dacarbazine, paclitaxel, and temozolomide). The 
results were highly encouraging as the 6-month PFS was shown 
to be 38% (10 mg/kg) and 34% (2 mg/kg) in the pembrolizumab 
group compared with only 16% in the chemotherapy group (207). 
Similar efficacy over investigator choice chemotherapy (32 versus 
11%) has also been reported from an open-label phase III trial of 
nivolumab in patients who had progressed on ipilimumab (195). 
Furthermore, pembrolizumab was shown to have significantly 
higher activity than ipilimumab in patients with advanced mela-
noma. Robert et al. compared two dosing schedules (every 2 or 
3 weeks) of pembrolizumab to ipilimumab and reported 6-month 
PFS in the range of 46–47% (response rates of roughly 33%) for 
the pembrolizumab group versus 26.5% (RR of 11.9%) for the 
ipilimumab-treated patients (208). Finally, in a phase III trial of 
nivolumab in previously untreated advanced melanoma patients 
(without BRAF mutations), ICB therapy was demonstrated to 
have significantly higher efficacy compared with dacarbazine 
with a 1 year survival rate of 72.9% in the nivolumab  treated 
group versus 42% in the dacarbazine group (189). The suc-
cesses of αPD-1 in melanoma treatment have also been 

observed (albeit at lower rates) in a range of other cancer types  
(167, 169). Furthermore, the rate of grade 3 or 4 treatment related 
adverse events is lower in patients receiving PD-1 blockade 
therapy versus ipilimumab which is similar to the decreased 
severity of autoimmune pathologies observed in PD-1 versus 
CTLA-4 knockout mice (169, 193). In contrast to PD-1 blockade 
antibodies, the αPD-L1 agent atezolizumab (MPDL3280A) has 
thus far received FDA approval only for urothelial bladder cancer 
and lung cancer (169, 209). Recently, studies have further compli-
cated the role of PD-L1 by demonstrating that it binds to CD80 on 
T cells and provides another inhibitory signal (210). Thus, further 
studies are warranted to determine the role of PD-L1 in T cell 
inhibition in tumors and investigate which tumor types may 
benefit most from PD-L1 versus PD-1 blockade. A large number 
of clinical trials are currently underway targeting PD-1/PD-L1 
as well as novel combination approaches (169). As previously 
mentioned, further study will be required to determine biomark-
ers of response to ICB and further mechanistic knowledge will 
be necessary to design effective combinatorial immunotherapies. 
Four clinical biomarker profiles for ICB treatment have already 
been proposed based on the presence of PD-L1 and TIL (211). 
The tumor are characterized as type I (PD-L1+TIL+), type II 
(PD-L1−TIL−), type III (PD-L1+TIL−), and type IV (PD-L1−TIL+) 
(211). In melanoma, where the data are most complete, the major-
ity of patients are either type I (~38%) or type II (~41%). Type I 
patients are deemed to be the best responders to PD-1 blockade 
whereas type II tumors are estimated to have very poor prognosis 
due to their lack of immune cell infiltrates (211). Currently, the 
mechanisms that regulate the immune composition of a tumor 
are not well understood and there is a significant interest in 
treatments that can convert T cell non-inflamed (non-infiltrated) 
tumors to T cell inflamed (infiltrated) tumors (212).

Combinatorial Checkpoint Blockade
Despite the tremendous successes of ICB, to date, only a sub-
set of patients achieve durable clinical responses (160, 167). 
However, the potency of immune checkpoint therapies has 
ushered in a new era of cancer treatment by offering the pos-
sibility of combining these drugs with conventional cancer treat-
ments such as radiation, chemotherapy, and targeted molecular 
therapy (e.g., BRAF/MEK inhibitors). The prospects for such 
combination treatments in melanoma and other cancer types, 
as well as the clinical findings to date using such approaches 
have been expertly reviewed this year (213–215). The primary 
focus of this section will be to discuss the approaches involving 
combination checkpoint blockade therapies for melanoma that 
have demonstrated efficacy thus far. Nevertheless, it is pertinent 
to note that currently there are no clinical data to distinguish 
between ICB or BRAFi/MEKi targeted therapy as first line 
treatment for melanoma and a clinical trial (NCT02224781) is 
being conducted to provide direct com parisons between clinical 
outcomes in patients receiving checkpoint blockade drugs fol-
lowing targeted therapies and vice versa (215).

The success of combined ipilimumab and nivolumab has also 
been recently reported in a number of clinical trials. In 2015, 
Postow et  al. reported the results of a study where previously 
untreated patients with metastatic melanoma received either 
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ipilimumab in combination with nivolumab or with placebo pre-
ceding a subsequent treatment with nivolumab or placebo (216). 
The ORR was 61% in the combination treatment group versus 
11% in the ipilimumab plus placebo group. Moreover, nearly 
22% of patients treated with combination therapy achieved 
CR compared with none of the patients given ipilimumab and 
placebo (216). In the same year, results were published from a 
phase III trial in 945 patients with unresectable stage III or IV 
melanoma treated with nivolumab alone, nivolumab plus ipili-
mumab, or ipilimumab alone. The median PFS was 11.5 months 
for the combination group, 6.9 months for the nivolumab group, 
and 2.9  months for the ipilimumab group (217). However, 
serious (grade 3 or 5) treatment related adverse events in the 
combination treatment group were significantly higher reaching 
55% compared with 27% for the ipilimumab group (217). These 
studies also indicate the superiority of combinatorial checkpoint 
blockade over monotherapy leading to the approval of ipilimumab 
and nivolumab dual therapy for melanoma in the USA, while its 
efficacy in other tumor types continues to be investigated (218). 
The successful use of combined checkpoint blockade has also 
sparked clinical interest in additional immune checkpoints some 
of which are undergoing preclinical or clinical investigation (167, 
169, 218). A target of particular interest is the CD4 homolog lym-
phocyte activation gene-3 (LAG-3), which is expressed on Treg, 
effector CD4+ and CD8+ T cells, NK cells, B cells, and pDC and 
which also binds to MHC class II (167, 219). LAG-3 is an impor-
tant negative regulator of CD4+ and CD8+ T cells and is required 
for Treg activity (219). The αLAG-3 antibody BMS986016 is 
currently being examined in a clinical trial (NCT01968109) for 
several advanced tumors both as a monotherapy and in combi-
nation with nivolumab (167). Another immune checkpoint that 
has exciting potential for tumor immunotherapy is TIGIT (T cell 
immunoreceptor with immunoglobulin and ITIM domain) 
(167). TIGIT is expressed by activated T cells, NK cells and is 
also expressed on highly functional subsets of Treg (219, 220). 
TIGIT has two ligands, namely, CD155 (poliovirus receptor, 
PVR) and CD112 (PVRL2) that are expressed on APC as well as 
on tumor cells (167). Likewise, TIGIT is reportedly expressed on 
TIL (219). The immunoregulatory functions of TIGIT are only 
recently beginning to be described (221). TIGIT can bind to 
CD155 on DC resulting in increased IL-10 and decreased IL-12 
secretion (167). Ligation of TIGIT on Treg results in the expres-
sion of fibrinogen-like protein 2 (Fgl2), a Treg effector molecule 
that has broad immunosuppressive effects such as mediating 
Th1 and Th17 phenotype suppression in favor of Th2 (167, 222).  
In human melanoma, tumor-specific CD8+ T cells in peripheral 
circulation and CD8+ TIL were found to express both TIGIT and 
PD-1 and furthermore, TIGIT was upregulated in response to 
PD-1 blockade (223). Thus, the described functions of TIGIT 
further complicate our understanding of the immune response 
to αPD-1 treatment and provides further proof of the need 
of combinatorial approaches to overcome current barriers 
to ICB treatment. The positive results associated with ICB 
treatment have also renewed interest in a parallel treatment 
approach involving the development of agonistic antibodies for 
T cell costimulatory molecules such as CD137 (4-1BB), GITR 
(glucocorticoid-induced TNFR family related gene), and OX40 

(CD134) many of which are currently undergoing clinical trials 
in combination with nivolumab (167, 169, 218). In 2016, early 
results were showcased for the antibody urelumab (αCD137) in 
combination with nivolumab (202). In melanoma, the ORR was 
observed to be 50% in patients who had not previously received 
checkpoint blockade therapy and was found to be independent 
of tumor PD-L1 status (202). Thus immune agonistic antibod-
ies have revealed a plethora of novel possibilities for cancer 
treatment. Future studies will involve analyses of various com-
binations aimed at developing immunotherapies tailored to the 
specific tumor immune microenvironment (224).

Adoptive Cell Therapy
Adoptive cell therapy involves the use of ex vivo manipulated 
cells transferred directly to patients to mediate antitumor immu-
nity (50, 172). Thus far, the majority of clinical research in ACT 
has been conducted using autologous tumor-specific T  cells 
(TIL) harvested and cultured from resected melanoma tissue  
(161, 173). Other cell types such as NK  cells have also been 
investigated since the 1980s for their use in adoptive transfer 
therapy but have yet to be as widely studied as T cells (156). Thus, 
the primary focus of this section will be on studies with T cell 
ACT. The benefits of this approach are that it allows for the ex 
vivo expansion of tumor-specific cells that are not modulated by 
the immunosuppressive TME and can be administered in suffi-
cient numbers to induce tumor regressions (50). As mentioned 
previously, this field was pioneered by Rosenberg and colleagues 
using autologous TIL from patients with metastatic melanoma 
and resulted in durable antitumor responses (186). Since that 
time, developments in molecular biology allowed for the eluci-
dation of various tumor antigens and the development of geneti-
cally engineered T  cell products with tumor-specific TCR or 
chimeric antigen receptors (CARs) (50, 225). To date, successful 
ACT through TIL transfer has been largely limited to melanoma 
although it is currently being studied in metastatic HPV-
associated cancer and has been demonstrated to induce potent 
prophylactic clinical responses in HSCT recipients against 
Epstein–Barr virus-associated lymphoproliferative disorders 
(225). Lymphodepletion before TIL therapy has been shown to 
significantly augment clinical response, and although its precise 
mechanisms of action are not well understood, it is posited to 
complement TIL transfer by eliminating suppressive Treg and 
myeloid cells (50). In patients treated with autologous TIL 
therapy post lymphodepletion, the group of Rosenberg and col-
leagues at the NCI (Bethesda, MD, USA) has reported OR rates 
of 55% (226). These results are similar to those observed in 
patients from other centers that perform ACT using TIL such as 
MD Anderson (Houston, TX, USA) with an ORR of 48% in their 
patient cohort and Ella Cancer Institute (Raman Gat, Israel) with 
an ORR of 40% (50, 227). Overall, TIL therapy is not reported to 
be associated with severe adverse events, and the major toxic side 
effects are associated with the lymphoablative conditioning regi-
mens (226). The primary hematological pathologies observed 
are anemia and thrombocytopenia necessitating transfusion in 
these patients, while patients in cohorts that receive TIL and IL-2 
may report to develop grade 3 and 4 non-hematological toxici-
ties (228). Currently, the predominant clinical form of ACT for 
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melanoma is TIL therapy (50, 173). Nevertheless, there is also 
significant clinical interest in the use of highly specific T cells 
expressing TCRs specific to tumor antigens. These T cells can be 
generated through in vitro selection and expansion of specific 
antitumor clones (173). However, engineered T  cells bearing 
conventional antitumor alpha beta TCRs or CARs have gener-
ated significant interest in the field of adoptive cell therapies 
(229). CARs are artificial receptors that were developed to cir-
cumvent the requirement of MHC–TCR interactions as many 
tumor cells downregulate MHC expression to escape the immune 
system (173). CARs consist of an extracellular ligand-binding 
domain constructed with immunoglobulin heavy and light 
chain variable regions fused through a transmembrane domain 
to intracellular CD3 zeta signaling chains in addition to CD28 or 
CD137 costimulatory domains for induction of complete T cell 
activation (50, 229). Currently, CAR T cells have demonstrated 
efficacy only in B cell malignancies using anti-CD19 CARs, to 
achieve response rates of up to 90% (173). However, a number of 
studies are currently underway investigating the use of CAR 
T cells in solid tumors (173). On the other hand, studies using 
transgenic tumor-specific TCRs have been tested in melanoma 
with the first proof-of-concept study being performed in 2006 
using T cells transduced with a TCR against the melanoma dif-
ferentiation antigen MART-1 (230). This early study showed 
evidence of clinical activity in only 2 out of 17 patients but a 
more recent report by Chodon et al. (231) demonstrated that 
MART-1 specific T cells in combination with MART-1 pulsed 
DC vaccine were able to induce tumor regression in 9 out of 13 
studied patients (231). Thus, combining ACT with other immu-
notherapies may unveil potentially novel synergistic treatments 
that can overcome the current barriers to ACT. A number of 
clinical trials using ACT in conjunction with checkpoint block-
ade agents (nivolumab-NCT02652455) or targeted therapy 
(vemurafenib-NCT01659151) are being tested in patients with 
melanoma (173). A number of salient factors warrant considera-
tion when discussing the merits of ACT immunotherapies for 
cancer. First, it is pertinent to mention that ACT requires ex vivo 
manipulation of cells, which is both expensive and labor inten-
sive (173). Therefore ACT currently remains limited to a few 
specialized centers around the world (50). Furthermore, engi-
neered T  cells have the potential to induce stronger toxicities 
versus conventional TIL due to their clonal specificity toward a 
single antigen. This is a particular concern with TCRs targeted 
to antigens that are shared by tumor and normal tissue resulting 
in an immune activation versus the target but not necessarily 
against the tumor (on-target, off-tumor toxicity) (173). This 
effect has been observed in a number of trials. In a study treating 
patients with T cells bearing transgenic TCRs specific to MART-1 
and gp100, several patients developed toxicities in the skin, ears, 
and eyes due to the presence of melanocytes in these organs 
(232). This effect has also been seen in other tumor types such as 
metastatic renal cancer where in a recent report, 4 out of 12 
patients treated with CAR T cells specific to carbonic anhydrase 
IX (CAIX), developed liver toxicity due to the presence of this 
antigen in the bile duct (233). Thus, strategies will need to be 
developed to overcome such off-target effects of engineered 
lymphocytes and in the case of the aforementioned CAIX trial, 

hepatic T cell mediated toxicity was significantly lowered by 
treatment with blocking anti-CAIX antibodies (233). Although 
early studies showed that MART-1 and gp100 are among the 
major tumor antigens recognized by anti-melanoma TIL, recent 
advances in whole-exome sequencing offer the potential to 
reveal novel antigens (i.e. neoantigens) resulting from mutations 
that may be highly immunogenic but also safe due to their 
absence from the rest of the body (50). Another concerning 
immune-related toxicity observed in CAR and conventional 
T cell therapy is cytokine release syndrome, which presents as a 
systemic multisymptomatic inflammation causing fever, hypo-
tension, and tachycardia (173). In terms of efficacy, a key concern 
using CAR T  cells is that while they have shown remarkable 
results for hematological cancers, solid tumors are more difficult 
to treat and have a highly suppressive TME (173, 229). 
Nevertheless, advances in lymphocyte engineering have allowed 
for the conceptualization of a number of novel types of CAR 
T cells which can be switched on conditionally, or lack check-
point molecules to prevent suppression. These novel CARs may 
have high utility for solid cancers and have been reviewed 
expertly elsewhere (229). Similarly, a novel type of molecule that 
has recently gained attention is a bispecific antibody construct 
that can bind to CD3 thus activating T cells as well as, a tumor 
antigen and is termed a bispecific T cell engager (BiTE®) (234). 
The anti-CD19 BiTE® blinatumomab was approved by the FDA 
after showing activity in acute lymphoblastic leukemia but to 
date, none of the tested BiTE® constructs tested in solid tumors 
have exhibited noteworthy antitumor responses (234). Novel 
developments in the field of genomic sequencing as well as T cell 
engineering have allowed for the conceptualization of highly 
personalized ACT treatment for cancer. Nevertheless, as dis-
cussed previously, without breakthroughs in ex vivo cell handling 
and automation, this therapy will remain highly costly and be 
limited to a few centers of excellence around the world.

Cancer vaccines
Vaccination for infectious disease represents a landmark of 
human medical achievement. Cancer vaccines seek to activate 
the immune system, in particular the T cells, to attack the tumor 
with the presentation of the tumor antigen in combination with 
an adjuvant (176). The vaccines may be univalent incorporating 
a single target antigen or polyvalent, consisting of allogeneic 
whole cells, or autologous tumor lysates (48). To date, none of the 
vaccine combinations tested in established tumors have shown 
the same efficacy as checkpoint blockade or ACT (165, 176).  
A number of studies have shown modest increases in clinical 
activity such as the study by Schwartzentruber et  al. in 2011 
that showed that patients with advanced melanoma treated 
with IL-2 and a gp100 peptide vaccine fared better than patients 
treated with IL-2 alone (median OS 18 versus 11  months, 
respectively) (48, 235). Nevertheless, cancer vaccination for 
solid tumors becomes particularly challenging due to the 
immunosuppressive TME and a constantly evolving tumor 
geared toward immune escape (165). In the past 30  years, as 
research unveiled the crucial role of DC in antigen processing 
and T cell activation, DC-targeted vaccines also became a major 
focus of cancer vaccination research (161). DC are considered 
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to be ideal tools for inducing effective anticancer immunity due 
to their central role in antigen presentation and their ability to 
produce crucial effector cytokines (174, 236). The use of DC as 
anticancer vaccines has been comprehensively reviewed else-
where (133, 145, 174, 237). Generally, this approach involves 
the generation of DC from isolated patient PBMC, which 
are then loaded with antigen and reinfused into the patient 
(161). Clinically a widely accepted DC maturation protocol 
involves the use of a cocktail containing TNFα, IL-1β, IL-6, and 
PGE2, resulting in the upregulation of MHC class I and II and 
costimulatory molecules (133). Other approaches in the clinic 
have used mixtures of prophylactic vaccines (which contain 
TLR agonists) containing Bacillus Calmette–Guerin (BCG)-
SSI, Influvac, and Typhim (133, 238). DC maturation can also 
be induced by targeting the costimulatory receptor CD40 with 
CD40L (which is expressed by a range of immune cells but its 
most functionally important expression is on activated T cells 
in vivo) or anti-CD40 mAbs, resulting in the upregulation of 
costimulatory molecules and production of IL-12 (133, 237, 
239). Currently, there is no gold standard in terms of maturation 
cocktails for DC and novel combinations continue to be tested 
both preclinically and in clinical trials (174). GVAX® (Cell 
Genesys, San Francisco, CA, USA) are a cell product composed 
of irradiated autologous or allogeneic, tumor cells engineered to 
produce GM-CSF (240). GVAX® vaccines were shown to elicit 
antitumor immune responses in a number of early clinical stud-
ies (241). However, a phase III trial using allogeneic GVAX® in 
prostate cancer observed that this approach was not superior to 
current treatments (241). In melanoma, the GVAX® approach 
has not shown significant clinical activity including a recent 
study by Lipson et  al. that demonstrated that although mela-
noma GVAX® was safely tolerated, it did not result in mark-
edly increased anti-melanoma responses in peripheral blood 
T cells (175, 241). These early and currently ongoing studies 
demonstrate the difficulty of using cell-based approaches for 
cancer vaccination. Currently, Sipuleucel-T (Provenge®) is 
the only cell-based vaccine to be approved by the FDA for its 
observed clinically significant but modest increases in the OS 
of patients with prostate cancer (174). No such vaccine has yet 
received FDA approval for melanoma (161). In 2013, Carreno 
et al. reported the use of an autologous CD40L/IFNγ-matured 
DC vaccine pulsed with gp100-derived peptides and capable of 
producing IL-12 (242). In six out seven patients, this treatment 
successfully induced immune responses with three out of the six 
responding patients exhibiting tumor remissions (242). Despite 
these encouraging results, a number of concerns with cancer 
vaccination still exist, in particular with the choice of target 
antigen as tumors continue to continuously evade the immune 
response while novel mutated epitopes may not be sufficient for 
inducing potent antitumor T cell responses (161). Thus, there 
has been a significant clinical interest in the use of oncolytic 
viral vaccines for directly inducing cell death in tumors (48, 
161). This approach attempts to harness the specificity of some 
oncolytic viruses for tumor cells as well as the induction of 
tumor cytolysis as an immune activating stimulus against non-
infected tumor cells (177, 161). The first viral product to receive 
FDA approval is talimogene laherparepvec (T-VEC) which is 

a construct derived from herpes simplex virus 1 with deleted 
ICP34.5 and ICP47 genes and coding for human GM-CSF 
(177). In 2015, T-VEC was the first virotherapy that showed 
durable antitumor responses in patients with melanoma (178). 
Over 400 patients were treated with intralesional T-VEC or 
subcutaneous GM-CSF, and median OS was demonstrably 
higher in the T-VEC group versus the GM-CSF group (23 
versus 19 months, respectively) (178). Moreover, the durable 
response rates and overall response rates were also higher in 
the T-VEC group than in the GM-CSF group with very limited 
toxicities associated with T-VEC treatment (178). As a result 
of these findings, the field of cancer vaccine research has been 
energized, and currently trials are underway to examine poten-
tial combination approaches using ICB in combination with 
oncolytic vaccine regimens to induce a long-lasting antitumor 
immune response (39, 161). The major limitation of the T-VEC 
approach is that it was found to be more effective in patients 
with less advanced (stage III and locally metastatic) melanoma 
than in patients with visceral metastatic disease (178, 161). 
Thus, in patients with established and advanced tumors, cancer 
vaccination approaches at best provide part of the solution for 
complete cure. With the complex immunoregulatory pathways 
that are established in advanced tumors, it may be difficult 
to achieve continued DC stimulation and activation through 
vaccines. Thus, a number of studies have begun to investigate 
the targeting of DC in vivo as crucial for the success for future 
immunotherapies (133). The success of T  cell checkpoint 
therapy has already demonstrated the utility of treatments that 
mediate in vivo activation of antitumor immunity. Although a 
number of other cell types such as NK cells and MDSC have 
recently gained interest as targetable populations, DC remain 
a primary cell of interest for in vivo targeted immunotherapy 
due to their crucial roles as APC and in cytokine production 
(237, 243, 244).

Nanoparticles as Multifunctional 
immunotherapeutics
The past two decades have witnessed significant advances in 
our understanding of tumor immunology and the development 
of immunotherapeutic drugs (56, 163). In parallel, improve-
ments in the field of nanomedicine provides us with a number 
of opportunities that can be used in combination with modern 
immunotherapies to enhance their antitumor efficacy (245–248). 
The primary advantage to NP is the supreme versatility in 
their design as their size, shape, constituent biomaterials, and 
surface modifications can be tailored for specific uses in tumor 
immunotherapy (Figure  3) (245, 247). Liposomes are self-
assembling nanosized vesicles comprised of phospholipids and 
cholesterol arranged in one or more lipid bilayers enclosing an 
aqueous core (246, 249). Liposome-encapsulated drugs have been 
demonstrated to have reduced systemic toxicity profiles owing 
to improved pharmacokinetics and biodistribution (247, 249). 
Liposomal doxorubicin (Doxil) first received FDA approval in 
1995, and even though it did not enhance OS, it is associated 
with improved toxicity profiles (247). This is of particular use for 
immunotherapy as many powerful adjuvants such as IL-2 and 
IFN-α have serious toxic side effects (161). In 2012, Park et al. 
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demonstrated the utility of a biodegradable liposome and solid 
polymer hybrid gel as a dual delivery platform for IL-2 as well 
as an inhibitor of the immunoregulatory cytokine TGF-β (250). 
Treatment with this platform showed no significant toxicity in 
treated animals and more importantly delayed tumor growth 
was mediated via increased intratumoral NK and CD8+ T  cell 
infiltration (250). Thus, NP can not only deliver drugs but also 
serve as platforms for simultaneous delivery of multiple agents. 
In the context of immunotherapy, NP can deliver tumor antigens, 
nucleic acids, and adjuvants (246, 248). There has also been 
research in the field of artificial APC NP platforms that present 
antigen loaded MHC I in combination with antibodies to the 
T cell costimulatory molecule CD28 (246). Finally, the surfaces of 
NP can be functionalized with specific polymers and antibodies 
to increase their targeting to certain types of cells (245). Even 
without direct targeting, systemically treated NP can accumulate 
at tumor sites due to “leaky” tumor vasculature (247). Earlier this 
year, Koshy et al. reported the antitumor potency of liposome-
encapsulated cGAMP (251). The authors showed that cationic 
liposome loaded with cGAMP resulted in passive lung-specific 
delivery in metastatic B16F10 melanoma lung tumors leading 
to pronounced antitumor activity and the formation of immune 
memory (251). Currently, a number of unique immunotherapeu-
tic NP are being investigated in Phase I–III clinical trials (247). 
However, to date no directly DC-targeted NP formulation has 

reached clinical trials. As DC play central roles in priming 
antitumor immunity as well as directly influencing the immune 
infiltration of T cells into cancer (212), NP targeted to DC war-
rant inclusion in future combinatorial immunotherapies (252).  
In 2016, Kranz et  al. developed a strategy to deliver RNA-NP 
to DC in a pilot study with three melanoma patients (105). 
The RNA encoded for the melanoma antigens NY-ESO-1, 
MAGE-A3, tyrosinase, and TPTE (transmembrane phosphatase 
with tensin homology) and resulted in IFNα and antigen-specific 
T  cell responses in all three patients (105). This approach was 
administered systemically and was not found to be associated 
with any adverse effects. This study thus opens a new field of 
DC-targeted, highly potent immunotherapies for cancer. NP are 
biodegradable, relatively cost-effective (compared with ex vivo 
manipulated cells) (133) and highly multifunctional platforms for 
enhancing modern immunotherapies or developing independent 
DC-targeted treatments (247).

SuMMARY

Currently, the field of immunotherapy is one of the most promis-
ing avenues of research in the quest to develop long-term broadly 
acting treatments for cancer (55, 161, 253). The possibilities for 
synergistic combinations with radiation, chemotherapy, and 
small molecule targeted treatments have also unveiled countless 
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possibilities for tailoring individualized therapies in the drive 
towards “precision medicine” (213, 214, 254). However, evo-
lutionary checkpoints against autoimmunity and the fact that 
cancer arises from self-tissue presents a particularly challenging 
landscape for developing multitargeted immunotherapies that 
are cost-effective, safe, and efficacious. Conceptually, there are 
four general facets of tumor immunity that must be achieved for 
successful immunotherapy (253). These are the removal of immu-
nosuppressive cues, the induction of immunogenic cell death in 
tumors, improved activity of APC and increased T cell effector 
functions (253). In addition to a comprehensive overview of the 
immune contexture of a tumor, other host specific factors such as 
genetics and individual microbiota must be further dissected to 
determine their interplay with immunotherapeutic agents (255). 
In recent years, advances in high-throughput techniques such 
as next-generation sequencing and mass cytometry (CyTOF) 
have enabled highly detailed phenotyping of cancer (256, 257). 
However, there is still an unmet need for bioinformatics plat-
forms and deep-learning algorithms that can assist biologists with 
mining and analyzing such massive datasets (258). Finally, due 

to the need to finely target various facets of tumor immunology 
in immunotherapy, NP technology may become indispensable as 
the delivery vectors and the platforms upon which these multi-
functional therapeutics are designed (248).
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