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Invasive fungal infections are still an important cause of morbidity and mortality in immu-
nocompromised patients such as patients suffering from hematological malignancies or 
patients undergoing hematopoietic stem cell transplantion. In addition, other populations 
such as human immunodeficiency virus-patients are at higher risk for invasive fungal 
infection. Despite the availability of new antifungal compounds and better supportive 
care measures, the fatality rate of invasive fungal infection remained unacceptably high. 
It is therefore of major interest to improve our understanding of the host–pathogen inter-
action to develop new therapeutic approaches such as adoptive immunotherapy. As 
experimental methodologies have improved and we now better understand the complex 
network of the immune system, the insight in the interaction of the host with the fungus 
has significantly increased. It has become clear that host resistance to fungal infections is 
not only associated with strong innate immunity but that adaptive immunity (e.g., T cells) 
also plays an important role. The antifungal activity of natural killer (NK) cells has been 
underestimated for a long time. In vitro studies demonstrated that NK cells from murine 
and human origin are able to attack fungi of different genera and species. NK cells exhibit 
not only a direct antifungal activity via cytotoxic molecules but also an indirect antifungal 
activity via cytokines. However, it has been show that fungi exert immunosuppressive 
effects on NK cells. Whereas clinical data are scarce, animal models have clearly demon-
strated that NK cells play an important role in the host response against invasive fungal 
infections. In this review, we summarize clinical data as well as results from in vitro and 
animal studies on the impact of NK cells on fungal pathogens.

Keywords: natural killer cell, invasive fungal infection, Aspergillus, Candida, mucormycete, Cryptococcus, 
antifungal host response

iNTRODUCTiON

Invasive fungal infections are still associated with significant morbidity and mortality. For exam-
ple, a retrospective cohort study in the US demonstrated that as compared to patients without 
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invasive aspergillosis, patients suffering from the infection had a 
significant longer hospital stay, caused significantly higher costs, 
and, most importantly, had a significant higher mortality (1).  
A population-based analysis of invasive fungal infections in 
France revealed that between 2001 and 2010, the incidence of 
invasive fungal disease due to Candida spp., Aspergillus spp., and 
mucormycetes increased by 7.8, 4.4, and 7.3% per year, respec-
tively, which was highly significant for each pathogen (2). In 
contrast to cryptococcosis, which often occurs in human immu-
nodeficiency virus (HIV)-patients, the population at high risk for 
candidemia, invasive aspergillosis, and mucormycosis includes 
in particular patients with hematological malignancies, patients 
undergoing hematopoietic stem cell transplantation (HSCT) 
and solid organ recipients (2–6). These patient populations are 
characterized by the impairment of multiple arms of the immune 
system (7, 8), such as of natural barriers, the phagocyte system, 
innate immunity, and lymphocytes, all of which may increase the 
risk for an invasive fungal infection. Therefore, it is not surprising 
that the mortality rate of invasive fungal disease is extremely high 
in these patient populations, exceeding 70% in HSCT recipients 
suffering from invasive aspergillosis or mucormycosis (4).

It is well known that the recovery of the immune system has 
a major impact on the outcome of invasive fungal infection in 
an immunocompromised patient (9, 10). Unfortunately, to 
date, immunomodulation using cytokine and growth factor 
therapies, as well as adoptive immunotherapeutic strategies such 
as granulocyte transfusions or the administration of Aspergillus-
specific T-cells did not significantly improve the prognosis of 
immunocompromised patients with invasive fungal disease (11). 
It is therefore of major interest to improve our understanding of 
the host–pathogen interaction to develop new therapeutic strate-
gies for immunocompromised individuals suffering from fungal 
infection. This review will summarize available clinical data as 
well as results from in vitro and animal studies on the impact of 
natural killer (NK) cells on fungal pathogens.

THe HOST ReSPONSe TO FUNGAL 
iNFeCTiON

Over the last decades, we could witness major advances not only 
in the understanding of the complexity of the immune system but 
also in our knowledge on the immunopathogenesis of invasive 
fungal infections. The host response to a fungal pathogen includes, 
but is not restricted to various cells of the innate and adaptive 
immunity such as monocytes, neutrophils, dendritic cells (DCs), 
T and B lymphocytes, as well as multiple soluble molecules such 
as collectins, defensins, cytokines including interferons (IFNs) 
(12, 13). Although it is known for a long time that severe and pro-
longed neutropenia (e.g., absolute neutrophil count ≤500/μl and 
duration of neutropenia ≥10 days) is the single most important 
risk factor for invasive aspergillosis, invasive Candida infection, 
and mucormycosis in patients receiving cytotoxic chemotherapy 
or undergoing allogeneic HSCT (9, 14), recent studies refined our 
understanding how neutrophils are controlling in particular the 
early stages of invasive fungal infection. Neutrophils are attracted 
by cytokines released by endothelial cells and macrophages and 

are able to quickly migrate to a focus of infection. In addition 
to recruiting and activating other immune cells by the produc-
tion of pro-inflammatory cytokines, neutrophils may attack 
as front-line defense invading pathogens by phagocytosis, the 
production of reactive oxygen intermediates, and the release 
antimicrobial enzymes to the formation of complex extracellular 
traps (NETs) that help in the elimination of the fungus (15). 
DCs transport fungal antigens to the draining lymph nodes, 
where they orchestrate T cell activation and differentiation (16).  
A number of lymphocyte subsets have an important impact in the 
antifungal immunity, such as Th1 cells (important for inflamma-
tion and fungal clearance), Th17  cells (neutrophil recruitment, 
defensins), Th22 cells (defensins, tissue homeostasis), and Treg 
cells (immunosuppression). In addition, a number of cytokines 
play important roles in the complex crosstalk between different 
cells of the immune system, which modify and regulate innate and 
adaptive immune responses, such as the induction of prolifera-
tion and differentiation, as well as the activation or suppression 
of different target cells (11–13). Still, many open questions have 
to be resolved, including the influence of the genetic background 
in the delicate interplay of immune cells, the interaction of the 
innate and adaptive immune system in balancing protection and 
immunopathology in fungal infections (12), and the influence of 
fungal microbiota or “mycobiota” on health and disease (17). More 
importantly, we have to learn how to modify the immune system 
in the combat against invasive fungal infections, in particular 
in the immunocompromised host, which includes not only the 
activation of the immune response to eliminate the pathogen but 
also its suppression to avoid collateral tissue damage.

NK CeLL BiOLOGY

Human NK cells, which originate from the bone marrow, repre-
sent up to 15% of peripheral blood mononuclear cells. They are 
characterized by the expression of CD56 and by the absence of the 
T cell marker CD3. According to the surface expression density 
of CD56 and CD16, NK  cells can be subdivided in two main 
subpopulations, namely the cytotoxic CD56dimCD16bright and the 
immune regulatory CD56brightCD16dim subsets (18). Although 
NK cells were originally considered as cells of innate immunity, 
they demonstrate qualities of the adaptive immunity such as 
immunological memory (19–22). In this regard, animal models 
and human studies indicate that NK  cells are able to develop 
long-lasting antigen-specific memory (23–26). It has been dem-
onstrated that memory-like NK cells display a less differentiated 
phenotype in CD56dim NK cells, which were CD94+NKG2A+ but 
CD57−KIR− (27). The name “natural killer cell” originally came 
from their ability to kill tumor cells in  vitro and in  vivo with-
out previous stimulation (22, 28–31). Their antitumor activity 
includes activity against acute lymphoblastic leukemia (32), acute 
myeloid leukemia (33), and neuroblastoma (34, 35). In addition 
to their antitumor activity, NK cells play an important role in the 
host response against various pathogens which includes viruses 
such as cytomegalovirus (CMV), Epstein–Barr virus (23, 36–38), 
or hepatitis B and C virus (37, 39, 40), and Gram-positive, Gram-
negative, and intracellular bacteria, such as Salmonella typhi, 
Escherichia coli (41), or Listeria monocytogenes (42).
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Natural killer cells eliminate their potential targets either by 
directly using cytotoxic molecules such as perforin or granzyme 
B, which are stored in granules, or by death receptor-mediated 
apoptosis (36). In addition, CD16 (FcγRIII) triggers antibody-
dependent cell-mediated cytotoxicity on opsonized target 
cells (36). Education and differentiation are considered to be 
important mechanisms for both direct and antibody-dependent 
functionality of NK  cells (43–45). Several models have been 
developed to explain the process of “education” (43, 45–49). In 
general, the expression of self-recognizing inhibitory receptors 
(SRIR) results in the development of NK cells toward fully func-
tional mature form, which has been termed as “licensing” process 
(50). In contrast, the “disarming” model describes NK  cells 
lacking SRIR that become anergic due to chronic activation (51). 
The more dynamic “rheostat model” has been used to describe 
that stronger inhibitory signaling through more SRIR interac-
tions results in a greater functional responsiveness of NK  cells  
(52, 53). Importantly, cytokine stimulation can prime SRIR-
deficient NK cells to a functional state (50), and uneducated cells 
are also able to combat viral infections, as SRIR-deficient NK cells 
strongly respond toward murine CMV (54).

In addition to the direct cytotoxic abilities, NK  cells have 
recently been classified closely to group 1 innate lymphoid cells, 
which are characterized by the production of IFN-γ, whereas 
type 2 cytokines are not produced (55). Via the release of 
chemokines and cytokines such as IFN-γ, tumor necrosis factor 
alpha (TNF-α), granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), or chemokine ligand 5 (CCL5) [regulated upon 
activation, normal T-cell expressed, and secreted (RANTES)], 
NK cells modulate the activity of various immune cells including 
neutrophils, DCs, and T cells (46, 56), which complements their 
direct anti-pathogen and antibody-mediated activities.

NK CeLLS AND iNvASive FUNGAL 
iNFeCTiON: CLiNiCAL OBSeRvATiONS

Although clinical data suggest the importance of NK  cells in 
the risk and outcome of invasive fungal infection, the exact 
role of NK  cells is difficult to determine as multiple cells are 
involved in the antifungal host response, and as these cells 
interact in a complex network with both positive and negative 
feedback mechanisms (7, 8). A recent study analyzed 51 patients 
undergoing allogeneic HSCT, among them 9 patients in whom 
proven or probable invasive aspergillosis occurred (10). The 
study evaluated both the quantitative and qualitative reconstitu-
tion of immune cells including polymorphonuclear cells, CD4+ 
T  cells, CD8+ T  cells, and NK  cells, and the authors reported 
two important observations: first, transplant recipients suffer-
ing from invasive aspergillosis displayed insufficient NK  cell 
recovery with cell counts remaining less than 200/μl as well as 
lower reactive oxygen species (ROS) production. Second, HSCT 
transplant recipients who were cured from invasive aspergillosis 
had significantly higher ROS production and higher NK  cell 
counts as compared to those patients who had a poor outcome 
of the invasive fungal infection. As both cell count and ROS 
production were altered in each of the analyses, the importance 

of the NK cell count as single risk and single prognostic factor for 
invasive aspergillosis remains unresolved. Another study evalu-
ated 396 patients undergoing solid organ transplantation (57).  
A total of 304 patients were kidney and 92 patients were liver 
transplant recipients, and median followed-up time was 
504.5 days after transplantation. The analysis demonstrated that 
1 month after transplantation, patients who did not develop inva-
sive fungal disease at a later time point had significantly higher 
mean NK cell count as compared with those patients who devel-
oped fungal disease. In the non-transplant setting, larger clinical 
studies on the impact of NK cell-mediated immunity on fungal 
infections are lacking. Although it was observed that patients suf-
fering from chronic mucocutaneous candidiasis (CMCC) have a 
decrease of both NK cell number and cytotoxic activity (58–60), 
the exact impact of NK cells in the pathogenesis of the infection 
or in the progression of the disease is hard to define, in particular 
as cell-mediated immunity is also impaired in patients with 
CMCC. Although it may very well be that the pathologic NK cell 
findings are a risk factor for CMCC, other possible explanations 
for the decreased NK cell count and NK cell activity include that 
the fungus had a negative impact on originally normal NK cells, 
or that the observation is an epiphenomenon only. Similarly, it 
was reported that a patient developed a Trichophyton rubrum 
infection during corticosteroid treatment for systemic lupus 
erythematosus (61). Although immunosuppressive therapy was 
stopped, the infection remained. Further evaluation demon-
strated that both numbers and activity of NK cells were reduced. 
The authors speculated that the impairment of the NK cells was 
causing the infection, but again, one could also argue that the 
infection resulted in a decreased NK cell number and NK cell 
activity in this individual patient.

NK CeLLS DAMAGe vARiOUS  
FUNGi IN VITRO

Multiple studies published over the last three decades demonstrate 
that both murine and human NK cells exhibit antifungal activ-
ity in vitro against various fungal pathogens, such as Aspergillus 
fumigatus, Aspergillus niger, Candida albicans, Cryptococcus neo-
formans, Paracoccidioides brasiliensis, Rhizopus oryzae, and other 
mucormycetes including Lichthemia ramosa or Absidia corymbif-
era (62–70) (Figure 1). NK cells damage the hyphal form of A. 
fumigatus and R. oryzae, but are not able to exhibit fungicidal activ-
ity toward conidia (62, 63, 65). In C. albicans, human NK cell are 
cytotoxic against germ tubes and additionally are able to phagocyte  
C. albicans yeasts (8 ± 0.5% of C. albicans yeasts were phagocy-
tosed by NK cells within the first 2 h of interaction) (70). The lack 
of antifungal activity against conidia may be explained by the fact 
that conidia are often protected by capsules, by pigments such 
as melanin, or by hydrophobic layers, all of which may prevent 
recognition by various immune cells (71–74). For example, the 
rodlet/hydrophobin layer on dormant A. fumigatus conidia 
masks the recognition by the immune system and thus prevents 
an host immune response, whereas the genetical removal the rod-
let/hydrophobin layer in dormant conidia of the ΔrodA mutant 
resulted in the induction of maturation and activation of human 
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FiGURe 1 | Interplay of NK cells and fungal pathogens. Various fungal pathogens are able to activate NK cells. Once activated, NK cells directly damage fungi by 
cytotoxic molecules such as perforin or release cytokines, by which they modulate the antifungal host response via various immune cells. On the other hand, the 
fungus may compromise the host immune system. Green arrows indicate activation/stimulation, red arrows inhibition/damage. ADCC, antibody-dependent cell 
mediated cytotoxicity; IFN, interferon; GM-CSF, granulocyte-macrophage colony-stimulating factor; NK, natural killer.

TABLe 1 | Natural killer (NK) cell receptors in antifungal response.

Receptor Origin Ligand Fungus Remarks Reference

NKp30 Human, 
YT cell 
line

Undefined pathogen-
associated molecular 
pattern

Candida albicans, 
Cryprococcus 
neoformans

NKp30 required for YT cell cytotoxicity toward fungal pathogens in vitro
siRNA knockdown of NKp30 results in decreased release of perforin
Addition of anti-NKp30 antibody or inhibition of NKp30 via siRNA results in  
decreased antifungal activity

Li et al. (68)

NKp46 Human Fungal adhesins Epa1, 
Epa6, Epa7

Candida glabrata Human NKp46 and mouse ortholog NCR1 bind C. glabrata in vitro Vitenshtein 
et al. (77)NCR1 Mouse Clearing of systemic C. glabrata infection in vivo depends on recognition  

of fungal adhesins by NCR1

CD56 Human Unknown Aspergillus 
fumigatus

Blocking of CD56 by inhibitory antibodies reduces fungal-mediated NK cell  
activation and inhibits amount of secreted cytokines in vitro

Ziegler  
et al. (80)

CD16 Mouse Cryptococcal 
polysaccharide

Cryptococcus 
neoformans

Purified IgG fraction of rabbit anticryptococcal antibody augments growth  
inhibitory activity of murine splenic NK cells in vitro

Nabavi and 
Murphy 
(81)
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DCs (71). Similarly, the lack of a capsule in the strain CAP67 of 
the yeast-like fungus C. neoformans leads to a higher expression 
of the cytotoxic molecule perforin by NK cells as compared to the 
encapsulated strain B3501 (75).

ReCOGNiTiON OF FUNGi BY NK CeLLS

Over the last years, there were major advances in the identifi-
cation and characterization of receptors by which NK  cells 
recognize fungal pathogens (Figure 1, Table 1). NK cells express 

unique activating receptors on their surface, which are called 
natural cytotoxicity receptors (NCR) 1–3 (NKp46, NKp44, and 
NKp30; CD335–CD337). Studies using blocking antibodies and 
siRNA to knockdown the NKp30 expression on the surface of 
the cell line YT demonstrated that NK cells are able to directly 
recognize C. albicans and C. neoformans by the NKp30 receptor, 
which further mediates killing of these fungi (68). However, poly-
morphonuclear neutrophils and granulocyte myeloid-derived 
suppressor cells may decrease the NKp30 expression on NK cells, 
which results in reduced cytotoxicity toward A. fumigatus and a 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Schmidt et al. NK Cells in Antifungal Immunity

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1623

decrease in IFN-γ secretion (76). Recently, the NKp46 receptor 
and its mouse ortolog NCR1 were identified to play an important 
role in the NK  cell-mediated killing of C. glabrata (77). It was 
speculated whether NKp46/NCR1 may be a novel type of pattern 
recognition receptor, as these receptors not only recognize the  
C. glabrata adhesins Epa1, Epa6, and Epa7 but also bind viral 
adhesion receptors (77). The importance of the receptor is under-
lined by the observation that NCR1-deficient mice were unable 
to clear C. glabrata systemic infection (77). Because several fungi 
including Aspergillus, Cryptococcus, and Coccidioides express 
adhesins (78), further studies have to evaluate whether and to 
what extent these fungal adhesins are recognized by which of the 
NK cell receptors (79).

Recent studies suggested CD56 as pathogen recognition 
receptor, as it was demonstrated by flow cytometry that the fluo-
rescence positivity of the surface receptor significantly decreased 
upon fungal contact (80). The authors could visualize the direct 
interaction of NK cells and A. fumigatus via CD56, which was re-
organized and accumulated at this interaction site time depend-
ently. Importantly, blocking of CD56 surface receptor reduced 
fungal-mediated NK  cell activation and reduced cytokine 
secretion. Earlier studies have demonstrated that the low-affinity 
Fc-receptor CD16 [FcγRIIIa (CD16a) and FcγRIIIb (CD16b)] is 
also involved in the antifungal activity of NK cells, as NK cells 
inhibited the growth of Cryptococci more effectively in the pres-
ence of anti-cryptococcal IgG antibodies than in the presence of 
normal rabbit serum or medium (81). However, it is important to 
note that primary and pre-activated NK cells downregulate CD16 
after contact with C. albicans, which has also been described for 
the cellular adhesin CD56 and immunoreceptor tyrosine-based 
activation motif-bearing receptors NKG2D (CD314) and NKp46 
(CD335) (70). Taken together, we just begin to understand the 
complexity how NK cells are being activated by fungal pathogens.

DiReCT DAMAGe OF FUNGAL 
PATHOGeNS BY NK CeLLS

Various mechanisms are described by which NK cells directly kill 
tumor cells, which include the release of soluble cytotoxic mol-
ecules such as perforin or granzyme, or the induction of apoptosis 
by the Fas–FasL or the TNF pathway. Regarding fungal patho-
gens, several studies reported on the importance of lytic granules 
released by NK cells. For example, the use of monensin, which 
inhibits granule secretion, partially abrogated the growth inhibi-
tion of C. neoformans by human NK cells [reviewed in Ref. (79)].  
It further became clear that mainly perforin and granulysin 
mediate the direct NK cell cytotoxicity toward fungal pathogens 
(67, 82). When pretreating human NK cells with concanamycin 
A (ConA), which induces accelerated perforin degradation via an 
increase of pH in the lytic granules, significantly less damage of 
A. fumigatus and R. oryzae hyphae can be observed as compared 
to the addition of untreated NK cells to the fungus (62, 63, 83). 
Other studies used purified perforin and reported on fungal dam-
age of A. fumigatus hyphae (62), the inhibition of filamentation 
of C. albicans (84), and the inhibition of the metabolic activity of  
C. albicans and R. oryzae in a dose-dependent manner (63, 70). 

The fact that ConA did not totally abrogate NK  cell-mediated 
fungal damage suggests that other molecules than perforin 
also participate in the antifungal activity of human NK cells, as 
reported for A. fumigatus, C. albicans, and R. oryzae. Interestingly, 
inhibition of perforin by ConA or by small interfering RNA 
decreased NK cell anti-cryptococcal activity, whereas inhibition 
of granulysin did not alter the antifungal effect (67). However, it 
has been shown that the defective anti-cryptococcal activity of 
NK cells from HIV-patients can be corrected by ex vivo treatment 
with interleukin (IL)-12 (68), as IL-12 restores the lower perforin 
expression in NK cells from HIV-infected patients as well as the 
defective granule polarization in response to C. neoformans (85). 
In tumor cells, perforin perforates the membrane of the target, 
which leads to an influx of water and a loss of intracellular mol-
ecules, resulting in cell lysis (86, 87). Similarly, granulysin disrupts 
the target cell membrane, which results in higher intracellular 
calcium and lower intracellular potassium concentrations, both 
of which ultimately activate caspases and programmed cell death 
(apoptosis) (88–92). However, it is important to note that the 
mechanisms of the antifungal effect of perforin and granulysin 
have not fully been elucidated to date.

There is an ongoing controversy on the direct antifungal 
effect of IFN-γ. One study reported on a direct IFN-γ-mediated 
antifungal activity of NK  cells against Aspergillus, which was 
independent of degranulation of NK  cells and their cytotoxic 
molecules (65). The authors suggested as explanation that “IFN-γ 
might cooperate with fungal ribotoxins, (…), transforming them 
into suicide molecules for fungus” (65). Similarly, it was demon-
strated that IFN-γ at a concentration of 32 pg/ml exhibited a small 
but significant antifungal effect on A. fumigatus, A. flavus, and 
Saccharomyces cerevisiae, and inhibited the growth by 6, 11, and 
17%, respectively (93). As higher concentrations of IFN-γ, e.g., 
50 or 100 pg/ml, did not increase antifungal activity, and IFN-γ 
serum levels of 18 ± 30 pg/ml can be detected in healthy individu-
als (94), the importance of the direct antifungal effect in vivo is 
questionable. Corroborating the data of another report (70), no 
significant antifungal effects of IFN-γ were detected in Candida 
and C. neoformans (93). However, it is important to note that a 
combination of amphotericin B at a concentration of 1  µg/ml  
and IFN-γ at 32 pg/ml increased the efficacy of amphotericin B 
against A. fumigatus, which might be important for immuno-
therapeutic strategies.

Inducing apoptosis via the Fas–FasL or the TNF pathway is 
another mechanism by which NK cells are able to kill a target and 
has been described for various tumor cells as well as for pathogen 
infected cells (95, 96). Whereas data on apoptosis are missing for 
molds, apoptosis in yeast cells has been reported, but molecular 
mechanisms at the core of apoptotic execution is still unknown 
(97, 98). One recent study reported that blocking the death 
receptor ligands FasL and tumor necrosis factor-related apoptosis 
inducing ligand on the surface of human NK cells by antibodies 
did not have any impact on the antifungal activity (70). In addi-
tion, phagocytosis may be another mechanism of direct fungal 
damage by NK cells, which has been reported for C. albicans yeast 
(70). Notably, the IgG fraction of rabbit anti-cryptococcal serum 
enhanced the anti-cryptococcal activity of NK  cells via their 
CD16 receptor (81).
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MODULATiON OF THe ANTiFUNGAL 
HOST ReSPONSe BY NK CeLLS

Upon stimulation, NK  cells produce various cytokines, all of 
which modulate the host immunity against fungi. IFN-γ is one of 
the key molecules in the antifungal host response and is constitu-
tively produced by NK cells (99). IFN-γ exhibits multiple effects 
on various immune cells. For example, IFN-γ is able to stimulate 
migration, adherence, phagocytosis, as well as oxidative killing 
by neutrophils and macrophages. Conditioned medium from co-
incubation of NK cells and C. albicans enhanced polymorpho-
nuclear neutrophil activation (70). In addition, data of a murine 
model demonstrated the pivotal role of IFN-γ-producing NK cells 
in inducing the phagocytic activity of splenic macrophages, thus 
mediating protection against systemic infection with C. albicans 
(100). As NK cells are the main source of IFN-γ in neutropenic 
mice suffering from aspergillosis, depletion of NK cells resulted 
in diminished IFN-γ levels in the lungs followed by an increased 
fungal load (101). Interestingly, the fungal load could be reduced 
by the transfer of wild-type IFN-γ producing NK cells, whereas 
this was not seen when transferring NK cells from IFN-γ-deficient 
mice. Because IFN-γ also enhances maturation of DCs and plays 
a pivotal role in the protective TH1 cell response (11, 12, 102), the 
molecule was used as immunotherapy in invasive fungal disease. 
Whereas the administration of IFN-γ to mice with invasive 
aspergillosis was leading to reduced fungal burden and increased 
survival (103), available clinical data are inconclusive and do not 
allow a final conclusion on the usefulness of this strategy (11).

In addition to IFN-γ, NK  cells produce soluble molecules 
such as GM-CSF and RANTES, both of which augment the host 
immune response via the stimulation of phagocytes and T cells, 
respectively (104–106).

iNTeRPLAY OF NK CeLLS AND FUNGi

Fungi have developed strategies to counteract the complex 
and sophisticated antifungal immune response of the host. For 
example, A. fumigatus galactosaminogalactan induces apoptosis 
of polymorphonuclear neutrophils (107). Shedding of this 
molecule results in NK cell activation, which, in turn, leads to 
a Fas-dependent apoptosis-promoting signal in polymorphonu-
clear neutrophils (108). Galactosaminogalactan also induces IL-1 
receptor antagonist, which leads to the suppression of IL-17 and 
IL-22 in peripheral blood mononuclear cells (109), and similar 
effects were observed with Aspergillus chitin (110). In addition, 
mycotoxins such as gliotoxin or aflatoxin (111) inhibit the phago-
cytic activity of macrophages, induce the apoptosis of monocytes, 
decrease the activation of nicotinamide adenine dinucleotide 
phosphate oxidase in neutrophils, and impair functional T cell 
responses (112–116), all of which hampers the host immune 
response toward the pathogen.

When NK  cells are co-incubated with A. fumigatus or  
R. oryzae, lower levels of IFN-γ, GM-CSF, and RANTES are detected 
in the supernatant as compared to NK  cells incubated alone  
(62, 63). Surprisingly, A. fumigatus increases the gene expres-
sion of IFN-γ in NK cells, but inhibits its release, thus leading 

to intracellular accumulation and decreased extracellular avail-
ability (117). Similarly, various mucormycetes affect the IFN-γ 
release by human NK cells (64). In contrast, earlier studies report 
that C. neoformans downregulates of the production of GM-CSF 
and TNF-α in unstimulated human NK cells, as assessed by gene 
expression and supernatant protein levels (118).

When looking at the fungal pathogen, it has been demonstrated 
that co-incubation of NK cells with A. fumigatus upregulated the 
expression of several stress-related fungal genes (117). This has 
been demonstrated for the heat shock protein hsp90 or the ferric 
reductase freB (117). In A. fumigatus, Hsp90 plays an important 
role in the compensatory repair mechanisms of the cell wall in 
response to stress induced by antifungals, and Hsp90 has been 
described as a trigger for resistance to high concentrations of 
caspofungin, known as the paradoxical effect (119). FreB has 
recently been identified as an important enzyme in filamentous 
fungi which helps the fungus to adapt to iron starvation (120). 
Similarly, perforin-induced reduction of iron availability leads to 
the upregulation of the gene expression of CSA2 in C. albicans, 
which is involved in the uptake of iron of human hemoglobin 
(84). Further characterization of specific interactions of the 
host immune system and fungal pathogens might identify novel 
targets for the antifungal armamentarium, e.g., the disruption of 
Hsp90 circuitry by Hsp90 inhibitors or anti-calcineurin drugs.

NK CeLLS AND iNvASive FUNGAL 
iNFeCTiON: ANiMAL STUDieS

The few data of animal models clearly support the in vitro find-
ings that NK cells play an important role in the antifungal host 
immune response. An early study in mice infected with A. niger 
demonstrated the association of the proliferation of NK  cells 
and the inhibition of fungal growth (69). In addition, depletion 
of NK  cells in mice inoculated with C. neoformans resulted in 
a considerably higher fungal load in the lungs as compared to 
untreated animals (121). In addition, antibody-mediated deple-
tion of NK cells also decreased the phagocytosis of C. albicans by 
splenic macrophages as compared to controls (5.2 versus 21.5%) 
(100), and depletion of NK cells in mice via anti-asialo GM1 anti-
body resulted in enhanced susceptibility to Histoplasma capsula-
tum (122). Interestingly, in neutropenic mice, antibody-mediated 
depletion of NK cells also resulted in impaired clearance of the 
pathogen from the lungs and in a greater than twofold increase in 
mortality as compared to neutropenic mice with NK cells (123).

Importantly, the adoptive transfer of NK cells in mice lack-
ing these cells can restore antifungal resistance. For example, in 
cyclophosphamide-pretreated mice suffering from cryptococ-
cosis, the adoptive transfer of NK cell-enriched cell populations 
resulted in an enhanced clearance of the fungus as compared to 
controls receiving NK cell-depleted grafts (124, 125). As noted 
above, NK cell-derived IFN-γ plays an important role in the anti-
fungal host response. NK cell depletion in neutropenic mice with 
invasive aspergillosis was leading to reduced lung IFN-γ levels 
and increased pulmonary fungal load, which was independent 
of T and B cell lymphocytes (101). However, the transfer of acti-
vated NK cells from wild-type, but not from IFN-γ-deficient mice 
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resulted in better clearance of A. fumigatus from the lungs of both 
IFN-γ-deficient and wild-type recipients. Based on these findings, 
future studies have to assess in which clinical circumstances the 
adoptive transfer of NK cells to an immunocomoromised host 
suffering from an invasive fungal infection will be of benefit.

CONCLUSiON AND PeRSPeCTiveS

There is increasing evidence that NK cells play an important role 
in the antifungal host response. In vitro data show that multi-
ple fungal pathogens are able to activate NK  cells, and further 
research will hopefully shed more light in the characterization 
of the complex interplay of NK cell receptors and fungal ligands. 
Once activated, NK cells directly damage the fungus by soluble 
cytotoxic molecules such as perforin, whereas the role of other 
mechanisms such as the induction of apoptosis via different 
pathways is still relatively unclear. In addition to the direct fungal 
damage, NK cells release multiple cytokines and IFNs by which 
they modulate the immune system, e.g., via neutrophils and 

T cells. As cure from an infectious complication not only depends 
on the successful activation of the immune system but also from 
a timely downregulation and resolution of the inflammatory pro-
cess, further research needs to characterize the release of pro- and 
anti-inflammatory molecules. How and to what extent the fungus 
itself alters its gene expression profile in the presence of NK cells 
remains another research gap. In this regard, we have to learn how 
the fungus compromises the host immune system, which might 
offer new targets in our combat against the pathogen. In addition, 
animal studies will help to clarify the benefit and potential risks 
of using NK cells as adoptive preventive or therapeutic strategy, 
which may be a significant step toward decreasing morbidity and 
mortality of invasive fungal infection in the clinical setting.
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