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It is well established that cholesterol and glycosphingolipids are enriched in the plasma 
membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell acti-
vation and function. Moreover, changes in PM lipid composition affect the biophysical 
properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we 
review the role of transcriptional regulators of lipid metabolism including liver X receptors 
α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and 
sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface 
between lipid metabolism and immune cell function and are endogenously activated by 
lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glyco-
sphingolipid, and phospholipid levels but are also known to modulate a broad spectrum 
of immune responses. The current evidence supporting a role for lipid metabolism 
pathways in controlling immune cell activation by influencing PM lipid raft composition in 
health and disease, and the potential for targeting lipid biosynthesis pathways to control 
unwanted T-cell activation in autoimmunity is reviewed.
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inTRODUCTiOn

CD4+ T-cells play a central role in the adaptive immune system. Upon activation, they proliferate, 
traffic to inflamed sites, and acquire functions that mediate the immune response against infection 
and malignancy (1). These processes have significant metabolic demands and understanding how 
metabolites (including glucose, amino acids, and cholesterol) are modulated to meet these increased 
energetic demands is an urgent challenge (1). The majority of current studies refer to changes in 
intracellular metabolites and how they affect T-cell function. In this review, we will focus on the role 
of cellular lipid metabolism in the regulation of plasma membrane (PM) lipid composition and the 
importance of this to T-cell function—a mechanism which has only just begun to be explored (2, 3).

Abbreviations: PM, plasma membrane; LXR, liver-X-receptor; PPAR, peroxisome proliferator-activated receptor; ER, estrogen 
receptor; SREBP, sterol regulatory element-binding proteins; ABCA1/G1, ATP-binding cassette transporter A1/G1; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; NF-κB, nuclear factor kappa B; FAS, 
fatty acid synthesis; FAYSN, fatty acid synthase; FAO, fatty acid oxidation; HMG-CoAR, hydroxymethylglutaryl-coenzyme-
A reductase; RXR, retinoid-X-receptor; TCR, T-cell receptor; TLR, toll-like receptor; GSL, glycosphingolipid; LPCAT3, 
lysophosphatidylcholine acyltransferase 3; MAPK, mitogen-activated protein kinase; APOA/G1, apolipoprotein A1/G1; IFN, 
interferon; IL, interleukin; PPRE, PPAR response element; ERE, estrogen response element; IDOL, inducible degrader of the 
low-density lipoprotein receptor; SRE, sterol response element; LXRE, LXR response element.
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T-CeLL PM AnD LiPiD RAFTS

The T-cell PM provides a flexible interface where signals gener-
ated by cell surface receptors lead to functional outcomes, includ-
ing activation, proliferation, and cytokine production. Lipids 
and proteins are both essential PM constituents, but while PM 
proteins have been widely studied, there is a gap in our knowledge 
about the fundamental role and regulation of lipid PM compo-
nents (4). This gap impedes our understanding of how PM lipids 
influence immune cell function and how they could be targeted 
or manipulated therapeutically.

Cholesterol and glycosphingolipids (GSLs) are particularly 
enriched in the PM and form signaling platforms known as 
lipid rafts. Signaling molecules accumulate at high density in 
lipid rafts and they are essential for immune cell activation and 
function (5, 6).

Cholesterol helps to maintain lipid raft structure; the amount 
of cholesterol, cholesterol intermediates such as lanosterol, or 
oxidized cholesterol in the PM can alter lipid raft stability and 
affect cell function by modifying the lateral mobility of membrane 
receptors and signaling molecules (7–11). More specifically in 
T-cells, PM cholesterol has been shown to mediate T-cell recep-
tor (TCR) clustering, inhibit spontaneous TCR activation and 
reduce TCR mobility in the membrane (12–14). Similarly, GSLs 
influence T-cell functions including TCR-mediated signaling and 
responsiveness to cytokine stimulation (15–18), apoptosis, and 
recycling/endocytosis of membrane signaling and receptor mol-
ecules (19). Changes in lipid composition affect the biophysical 
properties of PM lipid rafts (20). Studies also show that distinct 
PM lipid profiles (GSL and cholesterol content) are associated 
with well-defined T helper (Th) cell subsets (Th1, Th2, and Th17) 
(15, 17, 18, 21, 22), supporting a role for PM lipid composition in 
defining functional T-cell phenotypes (23). Interestingly, changes 
in PM lipid order, measured using the fluorescent membrane 
probe di-4-ANEPPDHQ, can dictate the response of T-cells to 
TCR stimulation. T-cells with high PM order form more stable 
immune synapses, proliferate robustly and favor a Th-2 pheno-
type whereas T-cells with lower levels of PM order form more 
unstable immune synapses, have reduced proliferative capacity 
and produce more proinflammatory cytokines. For instance, 
reducing PM order with the oxysterol 7-ketocholesterol is alone 
sufficient to alter the functional phenotype of T-cells (9).

These advances in understanding the link between PM lipids 
and T-cell function are supported by state-of-the-art microscopy 
techniques including super-resolution fluorescence microscopy 
that have revolutionized the visualization of PM lipids and 
membrane order (24–28). The increasing evidence describing 
defects in T-cell PM lipid rafts associated with abnormal T-cell 
function in autoimmunity makes this an attractive therapeutic 
area (29, 30).

TRAnSCRiPTiOnAL ReGULATORS OF 
LiPiD MeTABOLiSM AnD LiPiD RAFTS

Liver X Receptors (LXRs)
Cholesterol has a fundamental role in almost every aspect of 
mammalian physiology and consequently its levels are tightly 

regulated by multiple mechanisms modulating its endogenous 
synthesis, uptake, storage, efflux to the circulation and traf-
ficking through intracellular compartments (31). When these 
fail, cholesterol metabolism becomes dysregulated resulting 
in toxicity both at a cellular and systemic level. As described 
below, sterol metabolism is not only important to determine 
metabolic homeostasis but is also a crucial regulator of immune 
cell function (32). The transcription factors LXRα and LXRβ lie 
at the interface between cholesterol metabolism and immune 
function (33). LXRs are primarily expressed in metabolically 
active cells and tissues such as the liver and intestine as well 
as in macrophages. Both LXRα and LXRβ are endogenously 
activated by certain oxysterols or oxidized forms of cholesterol 
and are key to maintaining cellular cholesterol levels. LXRs do 
this through regulating the expression of metabolic mediators 
such as sterol transporters ATP-binding cassette transporters 
(ABCA1/ABCG1) (34) promoting reverse cholesterol transport 
and upregulation of the inducible degrader of the low density 
lipoprotein (LDL) receptor (IDOL), thereby suppressing LDL-
mediated uptake (35, 36). LXRα/β both heterodimerize with 
retinoid X receptors (RXRs) to enable DNA binding and tran-
scriptional regulation (Figure  1). The LXR/RXR heterodimer 
complex is permissive whereby either RXR or LXR ligands can 
enhance its transcriptional activity; LXRα deficiency in mice 
leads to systemic and cellular cholesterol overload and the devel-
opment of metabolic conditions including atherosclerosis and 
steatosis (33). LXRs also regulate fatty acid synthesis through 
the induction of sterol regulatory element-binding protein 1c 
(SREBP1c) and fatty acid synthase (FASYN) (33).

Liver X receptors also modulate a broad spectrum of immune 
responses (37). In murine macrophages, LXR stimulation alters 
membrane phospholipid composition by inducing the expression 
of lysophosphatidylcholine acyltransferase 3 (LPCAT3) which 
incorporates free polyunsaturated fatty acids into phospholipids 
(38) and reduces membrane cholesterol content by promoting 
cholesterol efflux via ABCA1, leading to changes in membrane 
order/fluidity and the attenuation of inflammatory pathways (39). 
These LXR-mediated changes in macrophage PM lipid composi-
tion and fluidity disrupt toll-like receptor (TLR) signaling path-
ways and inhibit downstream nuclear factor kappa B (NF-κB) 
and mitogen-activated protein kinase (MAPK) proinflammatory 
signaling thus dampening inflammation.

To date, most studies investigating the role of LXRs in modu-
lating immunity via altering PM lipid composition have been 
conducted in murine cells and macrophages and, it remains to 
be examined whether these mechanisms are similarly regulated 
in human T-cells (40).

estrogen Receptors (eRs)
Males and females differ in their immune response to foreign 
and self-antigens and consequently they differ in their risk of 
infection and prevalence of autoimmune diseases; males are 
generally more susceptible to infections than females and females 
represent ~80% of all patients with autoimmunity (41). The 
mechanisms underlying this sexual dimorphism remain largely 
unresolved (42). It is known that fundamental differences exist 
in the frequency and activity of T-cell subsets by gender across 
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FiGURe 1 | Mechanisms for the transcriptional regulation of lipid metabolism proposed to influence plasma membrane lipid rafts and T-cell function: This model 
includes key nuclear and membrane receptors and transcription factors that are affected by and influence (membrane) lipid metabolism and T-cell activation. Ligand 
entry/exit: membrane receptors; arrows indicate direction of lipid molecule transport in and out of the cell. ATP-binding cassette transporters (ABCA1/G1) efflux 
cholesterol from the cell to high-density lipoprotein (HDL) or lipid poor apolipoprotein A1 (apoA1) molecules. Cholesterol is imported into the cell through low-density 
lipoprotein receptors (LDLRs) and CD36 transporters from low-density lipoprotein (LDL) molecules. Fatty acids enter the cell with binding proteins or via CD36 
transport. Nucleus: sterol regulatory element-binding proteins (SREBPs) regulate the transcription of fatty acid synthase (FASYN), LDL-receptor (LDLR) and 
3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-CoAR) through sterol regulatory elements (SREs) in response to low cholesterol levels. Peroxisome 
proliferator-activated receptor (PPAR) stimulation by fatty acids induces the transcription of fatty acid oxidase (FAO) enzymes and apoA1 at PPAR response elements 
(PPREs) following dimerization with the retinoid X receptor (RXR). Liver X receptors (LXRs) respond to oxysterols derived from cholesterol and heterodimerize with 
RXRs to induce the transcription of ABCA1/G1 and inducible degrader of the LDLR (IDOL) through LXR response elements (LXREs). Estrogen binds to estrogen 
receptors (ERs) with unsubstantiated regulatory effects on lipid metabolism in T-cells. Crosstalk between ER and LXR has been reported in other cell types and 
transcription factor target site overlap has been reported for ERs with PPARs [PPRE/(ERE)] as well as with LXRs [LXRE/(ERE)]. TCR signaling: when T-cell receptors 
(TCRs) become antigen stimulated they associate with lipid rafts, plasma membrane microdomains enriched in glycosphingolipids (GSLs) and cholesterol. These 
lipid platforms enhance TCR activity by allowing signaling molecules such as lymphocyte-specific protein tyrosine kinase (Lck) to associate with the TCR and 
phosphorylate activation motifs for downstream signaling. Altering membrane raft lipid composition modifies TCR signaling and therefore T-cell functions. 
Manipulating nuclear receptors may control T-cell function in autoimmunity and cancer. This image was produced using images from Servier Medical Art, licensed 
under a Creative Common Attribution 3.0 Generic License http://smart.servier.com.
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multiple ethnicities (43–45). Notably, some gender differences 
in adaptive immune responses are present throughout life, while 
others are manifested following the onset of puberty and prior to 
reproductive senescence implicating both genetic and hormonal 
influences (42). However, little is known about the regulation of 
lipid metabolism by estrogen (E2), particularly in immune cells. 
A recent study in mice showed the reproductive cycle deter-
mines the size and efficiency of hepatic high-density lipoprotein 
(HDL) particles with regards to their cholesterol efflux capacity. 
More efficient atheroprotective HDL is produced during high E2 
phases of the menstrual cycle, resulting in increased cholesterol 
efflux capacity (46). This may alter the levels of cholesterol in 
the PM and consequently the composition of PM lipid rafts, 
as has been shown in antigen-presenting cells (APCs) (47), 

thereby influencing proinflammatory signaling. This effect on 
lipid metabolism is mediated by estrogen receptor-α (ERα) 
control of LXRα transcriptional activity through the binding of 
the receptors to promoters or enhancer regions of LXRα target 
genes involved in cholesterol homeostasis. These genes included 
Abca1 and Abcg5. E2-bound ERα was suggested to promote LXR 
binding to these genes thereby inducing their transcriptional 
activation (46) (Figure 1). In addition, it was shown that LXRα 
stimulation in transgenic mice resulted in increased urinary 
secretion of biliary acids in females only, again suggesting 
crosstalk between LXR and ER activation (48). Interestingly, 
regulatory crosstalk between LXRβ and ERα within lipid rafts 
affecting intracellular signaling to promote nitric oxide pro-
duction was previously reported in endothelial cells (49). It is 
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currently unknown whether E2 also regulates lipid metabolism 
in immune cells. Interestingly, it has been shown that in cancer 
cells hydroxylated derivatives of cholesterol such as 25-hydroxy-
cholesterol can selectively modulate ER activity (50) and rescue 
the antiproliferative effects of fulvestrant, an ER antagonist (51). 
This again demonstrates a cross-talk between lipid metabolism 
and hormone receptors exists in other cellular systems (51).

The differential effects of E2 on immune function (42) reflect 
not only variation in hormone concentrations but also the 
expression, localization and ER subtype composition in immune 
cells. These nuclear receptors can also be found palmitoylated 
at the PM and modulate E2-induced non-genomic signaling 
(MAPK/extracellular signal-regulated kinase pathway) (52) 
(Figure  1). The two classical ERs (ERα and ERβ) dimerize in 
response to estrogen, and bind to estrogen response elements 
(EREs) in transcriptional regulatory regions in their target 
genes. A study utilizing specific ERα functional knockouts 
identified tissue-specific roles for the nuclear and membrane 
ERα forms. It appears the membrane bound form was important 
for ovarian function and the nuclear form for uterine responses 
to estrogen (53). Therefore, ER location may be important in 
controlling T-cell metabolism and function. Another form of 
ER has been described, the G-protein-coupled estrogen receptor 
(GPER30), which is exclusively PM bound and associated with 
lipid rafts (54). GPER30 induces non-genomic intracellular 
signaling independent of ERα and ERβ and can influence cell 
proliferation, survival, differentiation and metabolism (55, 
56). ERα36 is a splice variant of ERα lacking transcriptional 
activation domains that resides at the PM but is also found in 
the cytoplasm and nucleus (57), where it can inhibit NF-κB, 
thereby reducing interleukin (IL)-6 expression (58). The role 
of the different ERs in human immunity remains unresolved. 
Genetic deficiency of ERα in murine models of systemic lupus 
erythematosus (SLE) significantly decreases disease severity and 
prolongs survival, while ERβ deficiency has minimal to no effect 
in animal models of autoimmunity (59).

Sterol Regulatory Element-Binding Proteins
Sterol regulatory element-binding proteins are another fam-
ily of transcription factors that sense cholesterol levels and 
consequently reprogram lipid metabolism. SREBPs reside in 
the endoplasmic reticulum, until they are activated by low 
cholesterol levels, which trigger their transport to the Golgi 
complex where they are proteolytically modified to their active 
nuclear form (60). In the nucleus, they promote the transcrip-
tion of genes associated with production of cellular cholesterol 
or fatty acid levels. There are two mammalian genes for SREBP, 
SREBF1 and SREBF2. SREBF1 is transcribed as two isoforms, 
SREBP1a and SREBP1c, both of which are involved in synthesis 
(through FASYN) and metabolism of fatty acids (Figure 1) (61). 
SREBP2 regulates cellular cholesterol levels by enhancing the 
transcription of its target genes including hydroxymethylglu-
taryl (HMG)-CoA reductase (HMGCoR) and the LDL receptor 
(LDLR); involved in cellular cholesterol synthesis and uptake, 
respectively. There is however a vast overlap between the func-
tion of the SREBPs (60–62). Cholesterol and its hydroxylated 
derivatives inhibit the transport of SREBPs to the Golgi complex 

(63). Interestingly, endogenous oxysterol ligands for LXR have 
the dual effect of inhibiting the processing of SREBP to its active 
form in addition to inducing SREBP transcription, demonstrat-
ing a potent feedback loop for the regulation of intracellular 
cholesterol levels (64). In cancer cells it has been shown that 
FASYN drives the synthesis of phospholipids that become inte-
grated into membrane lipid rafts resulting in altered regulation 
of membrane composition and loss of cell function (65).

Peroxisome Proliferator-Activated Receptors 
(PPARs)
Peroxisome proliferator-activated receptors are also key players 
in the transcriptional regulation of lipid metabolism. The three 
subtypes PPARα, PPARγ, and PPARδ have a variety of roles 
in response to activation by their ligands, which include fatty 
acids (66). PPARα is primarily expressed in tissues that carry 
out large amounts of fatty acid oxidation such as the kidney and 
liver. PPARα upregulates apolipoprotein A-I and apolipoprotein 
A-II (APOAI/II) resulting in an increase in circulating HDL 
cholesterol and enhances the expression of genes associated with 
triglyceride metabolism. Similarly, PPARγ modulates fatty acid 
transport and uptake via fatty acid transport proteins (FATP) 
and CD36, respectively, but is more commonly expressed in 
adipose tissue where it plays a crucial role in adipogenesis (67). 
PPARδ is less well studied, but is found in multiple metabolic 
tissues including adipose, liver and skeletal muscle (68) where 
it plays a role in β-oxidation of fatty acids, cholesterol efflux 
and glucose homeostasis (68). As with LXRs, PPARs require 
heterodimerization with RXRs to function as transcription 
factors; these complexes recognize PPAR response elements 
(PPREs) (66) in regulatory sequences present in their target 
genes (Figure 1). Oral administration of these agonists reduced 
clinical symptoms in an experimental model of autoimmunity 
(69). Despite the documented roles of PPARs in cholesterol and 
fatty acid metabolism in metabolic tissues, very little is known 
about PPAR-regulation of these pathways in immune cells. In 
the macrophage THP-1 cell line, PPARγ induces cellular choles-
terol via the direct upregulation of HMG-CoA reductase cho-
lesterol synthesis enzyme (70). Additionally, PPARδ stimulation 
increases PM cholesterol levels in malignant B-cells, although 
an equivalent role in T-cells remains to be established (71). 
In contrast, PPARδ agonists in macrophages increase reverse 
cholesterol transport via the upregulation of ABCA1, thus 
lowering cellular cholesterol levels (72). To date, the effect of 
PPAR activation on lipid raft composition has not been studied, 
but it is intriguing to speculate that changes in fatty acid levels 
and their availability could influence de novo GSL synthesis. 
Likewise, changes in cholesterol biosynthesis and/or efflux could 
affect intracellular and membrane cholesterol levels and thus the 
fluidity of the cell membrane.

Interestingly, a potential cross-talk between PPARα and 
ERs has been suggested. Elevated expression of ERα and ERβ 
reduced PPRE-mediated gene transcription, suggesting that 
ERs may bind to the PPREs in those regulated genes (73). 
Notably, there is also evidence suggesting that PPAR/RXR 
heterodimers can bind directly to EREs (73–75). The response 
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TABLe 1 | Current studies linking T-cell function with nuclear receptor modulation of lipid metabolism.

nuclear 
receptor

Lipids influence on T-cell function Disease implication Reference

LXRβ, GSL, cholesterol Altered TCR signaling, reduced proliferation, inhibition of 
Th1 and Th17 and induction of Treg differentiation

Atherosclerosis, multiple sclerosis, arthritis, type 
1 diabetes, SLE

(15, 80–82)

SREBPs Fatty acids, cholesterol CD8+ T-cell clonal expansion, CD8+ cytotoxicity Hyperlipidemia, diabetes, atherosclerosis (80, 84, 110)

PPARα Fatty acids, cholesterol IL-4 secretion, IFNγ, proliferation Atherosclerosis, hypertriglyceridemia, 
hypoalphalipoproteinemia, diabetes, autoimmune 
encephalomyelitis

(85)

PPARγ Fatty acids, cholesterol Proliferation, IL-2 secretion, apoptosis Atherosclerosis, hypertriglyceridemia, 
hypoalphalipoproteinemia, diabetes, autoimmune 
myocarditis

(87, 88)

PPARδ Fatty acids, cholesterol Proliferation, reduced proapoptotic effect of type 1 
interferons, IFN-γ, and IL-17 secretion

Atherosclerosis, hypertriglyceridemia, 
hypoalphalipoproteinemia, diabetes, SLE

(86)

ERα Cholesterol, fatty acids All PPAR and LXR effects through cross-talk (46, 73, 74)
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elements of these nuclear receptors contain a similar half-site 
which could allow binding of either receptor (74). The inhibi-
tory effects of increased ERs on PPAR-mediated gene regulation 
could also be due to increased competition for transcriptional 
coactivators (76–78). Additionally, a study has reported sexually 
dimorphic genome-wide binding of RXRα in mice and identi-
fied 44 male- and 43 female-dominant RXR target genes in liver. 
Importantly, many of those genes predominantly regulated in 
females were involved in fatty acid metabolism including Faysn 
and stearoyl-CoA desaturase 1 (Scd1), suggesting a role for 
RXR function in modulating gender-specific lipid metabolism 
(79). This may influence many aspects of metabolism through 
RXR heterodimerization with LXRs and/or PPARs. Together, 
these studies suggest that the modulation of membrane lipids 
by these transcription factors may be sexually dimorphic which 
will need to be considered by future studies.

LiPiD MeTABOLiSM ReGULATORS AnD 
T-CeLL PM LiPiD RAFT COMPOSiTiOn

The tightly controlled network of transcriptionally regulated 
lipids described above could be critical for T-cell function via 
maintaining lipid raft homeostasis and influencing T-cell signal-
ing pathways as summarized in Table 1 (2).

LXRβ is the predominantly active form of LXR in T-cells 
(80). LXRβ influences T-cell proliferation through ABCG1-
dependent regulation of intracellular cholesterol thereby affect-
ing antigen-specific immune responses (80). It is likely that this 
effect is driven by reducing PM cholesterol that disrupts lipid 
raft-associated TCR signaling. In addition, our work identified 
that lipid raft-associated GSLs correlate with enhanced levels 
of LXRβ and LXR-modulated cholesterol trafficking proteins 
Niemann-Pick type C 1 and 2 (NPC1/2) in human CD4+ T-cells 
from autoimmune disease patients (15), although it remains to be 
elucidated whether LXR directly regulates GSLs in T-cell subsets 
from healthy individuals. LXR stimulation in vitro inhibits Th1 
and Th17 cytokine production and induces regulatory T-cell 
polarization suggesting a role for LXR-driven lipid modulation in 

anti-inflammatory T-cell differentiation potentially by reducing 
PM cholesterol via increased cholesterol efflux (81, 82).

The mechanism of action of SREBPs is also particularly 
important in T-cell function as cholesterol homeostasis is critical 
to PM lipid raft composition and fatty acids provide an abundant 
T-cell energy source (83). For instance, CD8+ T-cells are unable 
to undergo clonal expansion in response to viral infection when 
SREBPs are not present, which can be rescued by supplementa-
tion with cholesterol (84).

All three PPAR subsets are expressed in T-cells where they 
are involved in both metabolic regulation and inflammation 
(66, 85, 86). PPAR modulation of cholesterol may play a role 
in regulating lipid rafts and therefore TCR signaling and their 
role in fatty acid oxidation likely alters T-cell energy sources. 
PPAR-mediated upregulation of ApoAI/II in the periphery may 
indirectly influence T-cell cholesterol levels via elevated HDL 
levels and increased cholesterol efflux. In addition, these factors 
have been shown to affect cell death and proliferation. Activation 
of PPARγ in helper T-cells suppresses proliferation, IL-2 expres-
sion and induce apoptosis (87, 88). PPARα antagonizes NF-κB in 
T-cells, and conversely T-cell activation results in reduced PPARα 
expression (85). PPARα agonists increase IL-4 secretion, inhibit 
interferon (IFN)-γ expression, and reduce the proliferation of 
human T-cell lines. Stimulation of PPARδ increases T-cell prolif-
eration and reduces the proapoptotic effect of type 1 IFNs (86). In 
an experimental autoimmune disease model, PPARδ stimulation 
reduced IFN-γ and IL-17 secretion from T-cells (89). This sug-
gests possible PPAR regulatory actions on T-cell differentiation 
through modification of lipid metabolism.

Due to the striking gender bias in autoimmunity (90) 
and reported differences in T-cell function, it is important to 
consider gender in this area of research. The two classical ERs 
(ERα and ERβ) exhibit differential expression; ERα is more 
highly expressed in T-cells than ERβ (91). Altered ER profiles 
could contribute to differences in PM-associated E2 signaling 
in T-cell subsets and between genders. Cross-talk between ERs 
and LXRs may also play a role in the lipid modification of T-cells 
and therefore function. Interestingly, there is evidence to suggest 
that gender and/or estrogen are able to modulate PPAR function. 
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Dunn et al. demonstrated that male mice express more PPARα 
than females and that this differential expression is hormone 
sensitive. Furthermore genetic ablation of the PPARα gene 
resulted in the loss of antagonism of NF-κB, increased produc-
tion of Th1 and decreased production of Th2 cytokines by T-cells. 
This genetic ablation in an experimental model of autoimmune 
encephalomyelitis increased clinical symptoms in male but not 
female mice (92). This suggests a sex-specific sensitivity to the 
protective actions of PPARα relevant to the gender bias seen in 
autoimmunity.

THeRAPeUTiC TARGeTinG

The tight network of transcriptional metabolic regulators 
described above provides a great opportunity for therapeutic 
targeting (Table  1). Because of the cross-talk between these 
different nuclear receptors and pathways, manipulating multi-
ple receptors could represent an effective strategy. The SREBP 
pathway responds to low cholesterol, and therefore the use of 
statins, which inhibit the cholesterol synthesis enzyme HMG-
CoA reductase, secondarily increases the activity of SREBPs 
in an attempt to increase cellular cholesterol and fatty acid 
levels. From an autoimmune perspective, statins could be used 
therapeutically to counter the pathogenic increase in T-cell lipid 
rafts through lowering membrane cholesterol. In vitro culture 
of T-cells with atorvastatin reduces T-cell signaling from lipid 
rafts, ultimately reducing IL-6 production implicated in SLE 
pathogenesis (29). It has been shown that statins alter the ratio 
of pro- and anti-inflammatory responder T-cells, inhibit Th1 
differentiation and reduce the activation and migration of CD4+ 
autoreactive T-cells across the blood–brain barrier in multiple 
sclerosis (93–95). This finding supports an important role for 
cholesterol metabolism in T-cell function. Notably, simvastatin 
has shown promise in a phase 2 trial in people with multiple scle-
rosis; the drug reduced the annual rate of whole-brain atrophy 
without adverse side effects (96). Independent of their modula-
tion of cholesterol, statins may also influence T-cell function 
through the inhibition of prenylation (geranylgeranylation or 
farnesylation) (97). Prenylation of GTPases of the Ras and Rac 
subfamilies allows their targeting to the cell membrane which 
is integral to TCR signaling (98, 99). Alternatively, inhibiting 
SREBPs may counteract overactive TCR signaling. A small 
molecule SREBP processing inhibitor named betulin has been 
shown to improve hyperlipidemia and insulin resistance and 
reduces atherosclerotic plaques (100). SREBP inhibition also 
prevents CD8+ T-cell expansion in response to viral infection 
(84). Another potential therapeutic target is the LXRs. Synthetic 
ligands that stimulate the activity of these receptors exist which 
reduce cellular and membrane cholesterol content. An example 
of this is the non-steroidal ligand GW3965, an LXR agonist that 
has been shown to modulate macrophage, dendritic cell and 
T-cell function (51, 80, 101). However, the value of these thera-
peutics has not been explored extensively in T-cells. In light of 
the evidence that activated ERs aid the transcriptional function 
of LXRs, interact with LXRs in lipid rafts in endothelial cells, 
and respond to oxysterols, it is plausible to hypothesize that LXR 
therapeutics could be more effective in premenopausal women 

although this is something that has not been explored to date. 
Synthetic LXR ligands have been investigated as anti-atheroscle-
rotic agents in experimental models of atherosclerosis and in a 
human phase 1 trial (102, 103). The main obstacle encountered 
in the development of LXR ligands as clinical therapeutic agents 
in human metabolic diseases is the concomitant increase in 
liver triglycerides by these agents, an effect primarily mediated 
by LXRα (104, 105). Furthermore, LXR activation is gaining 
interest in the fight against cancer because of their actions on 
cholesterol metabolism in cancer cells coupled with their effects 
on cell proliferation, growth arrest and apoptosis (106). Some 
of these aspects have been described for CD8+ T-cells (80). 
Whether this is recapitulated in other immune cell subsets and 
the impact of this in female-predominant autoimmune diseases 
needs to be established. Altogether this emphasizes the need 
for a greater understanding of isoform- (LXRα vs. LXRβ) and 
tissue/cell type-specific effects of LXRs in health and disease.

Peroxisome proliferator-activated receptor pharmaceutical 
agonists including fibrates for PPARα, glitazones for PPARγ, and 
phenoxyacetic acid derivatives for PPARδ have therapeutic value 
in hypertriglyceridemia, hypoalphalipoproteinemia, and diabetes 
(67, 68, 107). PPARα activators reduce Th1 and increase Th2 
polarization making these therapeutics attractive for the treatment 
of autoimmune diseases (69). PPARγ agonists have also shown 
promise following a study of autoimmune myocarditis in Lewis 
rats. A PPARγ agonist ameliorated disease severity, which was also 
attributed to a Th1/2 phenotypic switch (108). It will be interesting 
to assess the effect of PPARs on membrane lipids, especially as Th1/
Th2 status has been linked to differences in PM order (9). Again, 
gender may play a role in the effectiveness of these treatments. 
Activated ERs may compete for PPAR DNA binding and there is 
evidence to suggest that PPAR ligands perform better under estro-
gen free/ER-inhibited conditions (77). Therefore, inverse to the 
LXR hypothesis, PPAR therapies may be of greater benefit in males 
and post-menopausal women. Finally, in recent years, modulation 
of PM lipid composition and structure, either by reducing or by 
increasing PM cholesterol levels, has been investigated in the treat-
ment of cancer. Reduced PM cholesterol has been associated with 
increased cancer cell metastasis whereas high PM cholesterol has 
been linked to drug resistance. In these contexts, lipid modulating 
therapies combined with conventional drugs can improve the 
efficacy of anti-cancer treatments (109). Recently, Avasimibe, a 
drug that blocks free cholesterol esterification and its subsequent 
storage as cellular lipid droplets by inhibiting the enzyme acetyl-
CoA acetyltransferase 1, increased the efficacy of checkpoint 
inhibitor blockade in preclinical models of melanoma and lung 
carcinoma. This was achieved by increased PM cholesterol leading 
to stronger TCR signaling and cytotoxic activity in CD8+ T-cells 
(110, 111). This supports the possibility of combining established 
therapeutics with lipid-modulating treatments in order to enhance 
efficacy and improve outcomes in a range of clinical settings.

COnCLUSiOn AnD PeRSPeCTiveS

Here, we have summarized evidence showing that manipula-
tion of lipid metabolism in T-cells by targeting nuclear receptor 
transcription factors could be a promising therapeutic avenue in 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Robinson et al. T-Cell Lipid Metabolism and Lipid Rafts

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1636

the treatment of autoimmune diseases. However, the cross-talk 
between this tight network of receptors and transcription factors 
will need to be considered when determining which receptors 
to target. We have also highlighted that gender is an important 
factor for consideration, thus emphasizing the relevance of these 
receptors in a group of immune diseases dominated by gender 
bias. With the advent of advanced lipidomic technologies, we 
anticipate that in the coming years more in depth studies on PM 
lipid composition and its metabolic, inflammatory and phar-
macological regulation in different immune cell types including 
T-cells will become available. This will likely allow new opportu-
nities to use ligands targeting these receptors/factors as adjuvant 
therapies in various proliferative and immunological disorders.
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