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Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed 
tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally 
from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone 
and are not encapsulated, suggesting that they may provide unique immune function. 
A notable feature of TLOs is the frequent presence of structures typical of germinal 
centers (GCs). However, little is known about the role of such GCs, and in particular, it 
is not clear if the B cell response within is autonomous, or whether it synergizes with 
concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and 
the role of the B cell in TLO formation and subsequent effector output in the context of 
autoimmunity and transplantation, with particular focus on the contribution of ectopic 
GCs to affinity maturation in humoral immune responses and to the potential breakdown 
of self-tolerance and development of humoral autoimmunity.
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iNTRODUCTiON

Adaptive immune responses are generally initiated within canonical secondary lymphoid organs 
(SLOs), such as lymph nodes (LN) and the spleen. SLOs are specially organized to facilitate pres-
entation of antigen to the very small number of responder clones within the total lymphocyte 
population (1). Over the last few years, it has become increasingly evident that tertiary lymphoid 
organs (TLOs), also known as ectopic lymphoid tissue, can develop within peripheral organs in 
response to alloimmunity, chronic inflammation, cancer, chronic infection, and autoimmunity 
(2–6). Although TLOs have been described that contain predominantly a T cell infiltrate, a B cell 
component is generally also present, and often appears to dominate. This raises two fundamental 
questions: what role do B cells play in the genesis of TLOs; and what is their effector function once 
that TLO is established? The latter is particularly interesting, because although immunohistological 
evidence of complex germinal center (GC) activity is often detectable, a number of recent, seminal 
papers have reinforced the complexities of the GC reaction. The GC reaction is geared to produc-
ing high-affinity long-lived plasma cells (LLPCs) and memory B  cells, but this requires precise 
spatiotemporal control of the key cellular interactions within the follicle. Here, we consider the role 
of the B cell, not only as a potential initiator in the formation of TLOs (in the context of solid-organ 
transplantation and autoimmunity) but also as a critical determinant of its output.
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iNDUCTiON AND FORMATiON OF  
TLOs—THe PLAYeRS

The initiators—B Cells or Not B Cells?
The initiation of lymphoid organogenesis requires the presence 
of hematopoietic CD4+CD3−RANK+IL-7Rαhi lymphoid tissue 
inducer (LTi) cells [known also as type 3 innate lymphoid cells 
(7–9)]. These express retinoic acid-related orphan receptor-γt 
(ROR-γt) and lymphotoxin LTα1β2; a heterotrimeric complex 
that comprises membrane-bound LTβ and soluble LTα; its bind-
ing to lymphotoxin-β receptor (LTβR) on VCAM-1+ ICAM-1+ 
LTβR+ stromal tissue organizer (LTo) cells establishes a lymphoid 
chemokine feedback loop, involving CC-chemokine ligand 19 
(CCL19), CCL21, and CXC-chemokine ligand 13 (CXCL13), 
which in turn drives early B/T  cell clustering and segregation 
as well as the differentiation of high endothelial venules (HEVs) 
(10–14). Although the organogenesis of the spleen, LNs, and 
Peyer’s patches clearly requires LTi cells (11, 15, 16), there remains 
uncertainty about the identity of the equivalent cells that prompt 
TLO induction.

CD4+CD3− LTi cells are present in adults, albeit at much 
lower frequency (17, 18), express lymphotoxin (LT) and tumor 
necrosis factor (TNF) (19) and provide support to T follicu-
lar helper (TFH) cells in GCs (20), as well as contributing to 
memory humoral immune responses (21). Unlike embryonic 
LTi cells, adult CD4+CD3− cells express high levels of OX40L 
and CD30L (22). LTi cells may be similarly involved in TLO 
formation (23) but there is conflicting evidence to support this 
hypothesis. First, interleukin-7 (a key survival factor for LTi 
cells in developing SLOs) transgenic mice develop organized 
TLOs after immunization with antigen, in a process that is 
dependent upon LTα1β2 and the LTi-associated transcription 
factor retinoic acid-related orphan receptor-γt (ROR-γt) 
(24). Second, intra-dermal injection of newborn mesenteric 
LN-derived cells (containing stromal organizer cells and LTi 
cells but not mature lymphocytes) into adult mice can induce 
formation of lymphoid tissue in the skin, with the aggregates 
composed of donor-origin stromal cells and recipient-derived 
lymphocytes organized into distinctive areas (25). And third, 
overexpression of CXCL13 in non-lymphoid tissue, such as the 
pancreas results in TLOs containing B and T cell zones, HEVs, 
and stromal cells (26); pancreatic tissue in these transgenic 
animals contain a significant population of CD4+CD3−IL-7Rαhi 
cells, suggesting that chemokine driven LTi-type cells express-
ing LTα1β2 (27) may play a role in the formation of ectopic 
lymphoid tissue as well as native SLOs (26–28). Nevertheless 
in transgenic models of TLO formation, ectopic lymphoid 
neogenesis has started before birth and it is possible that de 
novo TLOs established as a result of chronic inflammation 
are different to developmentally programmed TLOs in their 
requirement for LTi cells.

There is, however, also evidence that TLOs can form in the 
complete absence of LTi cells. For instance, mice deficient in the 
nuclear hormone ROR-γt and the transcriptional repressor Id2 
still can still form intestinal TLOs in response to microbiota, 
despite lacking LTi cells (29). Similarly, Marinkovic et al. showed 
that formation of TLOs in thyroid tissue occurs by mature CD3+ 

CD4+ T cells, and not by LTi cells, and that these cells promote 
ectopic HEV development by LTβR signaling (30).

One of the main questions, therefore, is what cell type(s), 
equivalent to LTi and LTo cells for SLO development, drive(s) 
TLO formation (Figure  1). Since TLOs arise postnatally in 
response to inflammatory triggers, immune cells may substitute 
for LTi cells and act as the primary initiators of tertiary lymphoid 
neogenesis. Analysis of explanted allografts due to chronic rejec-
tion has shown that the development of TLOs depends upon the 
recapitulation of the genetic programme fundamental to the 
development of SLOs (31). When the reprogramming is incom-
plete, only naïve B cell clusters form, whereas if the recapitula-
tion is complete, functional ectopic GCs generating anti-HLA 
secreting plasma cells develop. This implies that the mechanistic 
pathways involved in SLO and TLO formation are very similar; 
as confirmation, we have also shown that LT signaling is essential 
to the formation of TLOs in chronically rejecting allografts (32). 
The suggestion that persistent antigen exposure is critical for 
maintaining TLO organization is supported by the finding of 
secondary B cell follicles with GCs and only rare primary B cell 
follicles in chronically inflamed tissues (in autoimmune disease), 
and by the finding that ectopic (autoimmune) GCs generate 
plasma cells that produce antibodies specific for antigens that 
are expressed in the target tissue (33, 34).

Lymphotoxin expressing cells other than LTi cells can drive 
TLO formation, such as M1-polarized pro-inflammatory mac-
rophages (35), and T (36) and B  cells (29) which upregulate 
LTα1β2 expression in response to ectopic expression of CCL21 
and CXCL13, respectively (37). The central role of B  cells in 
initiating allograft-TLO formation would seem to be supported 
by experimental and biopsy-based studies within the last decade 
showing that TLOs within kidney, heart, or lung grafts are pre-
dominantly composed of B cell clusters organized into follicles, 
segregated from T cell and plasma cell areas (32, 38–44). Further 
analysis has revealed that TLOs can closely resemble a classical 
secondary follicle, consisting of proliferating (Ki67+) B  cells 
in close proximity to CXCL13 and supported by a network of 
follicular dendritic cells (FDCs), surrounded by naïve follicular 
mantle (IgD+) B cells (45–49). Such ectopic GCs have been con-
sistently found within chronically rejecting allografts (32, 40, 45) 
and have been identified in autoimmune-associated TLOs within 
peripheral tissues (50–52). A LTαβ-dependent LTi-like role for 
B cells in the development of TLOs has also been described in 
dextran sulfate sodium-induced colitis (29).

What, however, governs the infiltration and survival of B cells 
in allografts and drives them to form TLOs? Recipient-derived 
B cells and B cell clusters (along with B cell transcripts) have been 
found in acute and chronically rejecting solid organ allografts 
where they can contribute to both humoral and cellular allograft 
rejection (53–56). Chemokines and chemokine receptors are 
critical in leukocyte recruitment, activation, and differentiation, 
with CXCL10 ligand and its receptor CXCR3 (57) as well as 
CXCL13 and CXCR5 (58) and chemokine receptor CCR1 (59) 
governing the recruitment of B cells. Gene expression profiling 
of renal allograft biopsies has shown that expression of these 
chemokines plus their corresponding receptors is strongly cor-
related with rejection than with stable allograft function (60).  
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FigURe 1 | Tertiary lymphoid organ (TLO) initiation and formation. (A) TLO-initiating immune cells [among which are lymphoid tissue inducer (LTi)-like cells] 
accumulate at sites of inflammation and interact with stromal mesenchymal lymphoid tissue organizing (LTo) cells. The binding of LTα1β2 on LTi cells with LTβR  
on LTo cell leads to the release of chemokines CCL19, CCL21, and CXC-chemokine ligand 13 (CXCL13) that mediate further immune cell recruitment and  
spatial organization within the forming TLO. (B) Similarly, local release of homeostatic chemokines drives the formation of high endothelial venules (HEVs) and 
lymphangiogenesis, leading to homing of (auto-or alloreactive) naïve and memory B and T cells. A well-organized TLO is composed of compartmentalized T and 
B cell areas, follicular dendritic cells (FDC), dendritic cells, HEVs, and lymphatic vessels. (C) Under the influence of LTα1β2, stromal cells acquire the phenotypic and 
functional properties of FDCs, which facilitate persistent antigen presentation within TLOs, and CD4+ T cells acquire follicular helper (TFH)-like effector characteristics 
(CXCR5hiPD-1hiICOShi) to drive activation of B cells. Cytokines, such as B-cell-activating factor (BAFF), IL-21, and IL-6, contribute to the survival and maintenance of 
TFH cells and germinal center (GC) B cells, which subsequently differentiate into antibody-secreting plasma cells.
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A recent meta-analysis has shown that the presence of CD20+ 
B  cell infiltrates within allografts was correlated with more 
aggressive and steroid-resistant graft rejection and with an 
increased risk of graft loss (61). Zarkhin and Sarwal performed 
immunostaining on transplant nephrectomy microarray samples 
for B cell phenotypes and found two lineages of B cells: interstitial 
CD20+ B cell clusters, most of which had an activated phenotype 
as they were positively stained with CD79a, and scattered CD38+ 
plasmablasts and plasma cells (53, 62). The B cell clusters also 
stained for MHC class II (HLA-DR) and were surrounded by 
CD4+ T cells, suggesting a role for local antigen presentation by 
B  cells. The antigen-presenting function of infiltrating B  cells 
(63) might contribute to an augmented alloreactive response 
and thus drive aggressive T cell-mediated cellular rejection by 
activating alloreactive T  cells into effector and memory cells  
(40, 64). This hypothesis is supported by studies showing a strong 
correlation between scattered CD3+ T  cells and CD20+ B  cell 
infiltrates in renal allografts during acute rejection (65). These 
B cell infiltrates within the transplant can then initiate forma-
tion of intra-graft TLOs. It should be noted, however, that other 
studies that have failed to show a correlation between CD20+ 

B  cell infiltration or immunoglobulin transcript expression in 
acute rejection and poor late graft function (56, 65) implying 
that B  cells and plasma cells can be recruited and retained in 
inflammatory compartments in allografts as a nonspecific fea-
ture of chronic inflammation. The lifespan of antibody-secreting 
plasma cells depends upon residence in a survival niche, such as 
the bone marrow and to a lesser extent, the red pulp of the spleen 
(66, 67). In conventional immune responses, the migration of 
post-GC plasma cells from SLOs to the bone marrow depends 
on the interaction between CXCR3 and CXCR4 on plasma cells 
and CXCL9, CXCL10, and CXCL12 produced by bone marrow 
stroma (68, 69). Inflammation within an allograft can similarly 
create a chemokine and cytokine rich niche (60) to support 
long-term plasma cell survival, so it is, therefore, possible that 
intra-graft plasma cells originate within conventional lymphoid 
tissue rather than within TLOs and migrate to the inflammatory 
milieu within the allograft, as has been described for plasma 
cells within inflamed kidneys in a mouse model of Systemic 
Lupus Erythematosus (70). However, given the intimately close 
proximity of plasma cells to ectopic GCs (31, 32, 43, 71, 72), this 
possibility would seem to be less likely.
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Evidence to support the potential role of B  cells in TLO 
formation has come from studies examining their role in the 
maintenance of SLO architecture in adults. LTβ expression can 
be upregulated in B cells following antigen engagement and by 
chemokine CXCL13 signaling (73), and it has been shown that 
the absence of LT-expressing B  cells results in the inability of 
isolated lymphoid follicles (B  cell follicle-containing lymphoid 
structures along the length of the mesenteric wall of the small 
intestine) to develop fully, suggesting that B cells participate in the 
development of mucosal lymphoid tissue (74). B cells have been 
shown to deliver the signals necessary for both the maintenance 
of lymphoid follicles within SLOs in adult animals as well as the 
maturation of FDCs (75). It was initially unclear if naïve B cells 
can express LTα1β2 (76, 77). Although naïve B cells express LTβ 
constitutively (78), expression of the LTα subunit requires stimuli 
such as CD40L (79), IL-4 (79) or endotoxin (80). Similarly, LTα 
expression on T cells is upregulated after activation of the T cell 
receptor by anti-CD3 and by CCL21 (37, 81). The role of B cells 
in this process has been further dissected by preventing B cells 
from expressing LTα1β2, by selectively deleting the LTβ gene in 
B cells (B-LTβ knockout mice) (82). Splenic B cell follicles and 
FDC networks are disrupted in these animals, and even though 
GCs can develop in response to antigenic stimuli, albeit some-
what reduced in size and number, IgG responses are impaired. 
These findings imply that B cells, via membrane-bound LTα1β2, 
transmit signals required for the development and function of 
stromal cells that produce chemokines essential for normal SLO 
organization, and so could also extend to B cell involvement in 
initiating TLO formation.

A further question to consider is the profile of adult lym-
phocytes that initiate and maintain TLOs—are they naïve or 
activated cells? One of the hallmark characteristics of SLOs is 
their exquisite ability to recruit circulating naive lymphocytes 
and elicit priming and subsequent clonal expansion of antigen-
specific T and B cells (1, 83). In general, naive lymphocytes cir-
culate among SLOs; in LNs this occurs via binding of L-selectin/
CD62L with a family of mucin-like sulfated glycoproteins, also 
known as peripheral node addressins (PNAd), on HEVs (84), 
resulting in lymphocyte rolling on the endothelium, which 
represents the first step in homing to LNs. Antigen-experienced 
(primed) lymphocytes, however, as a result of interaction with 
antigen-presenting cells, modify their expression of adhesion 
molecules and chemokine receptors (e.g., CD62L and CCR7) 
and have different migratory patterns (85). The expression 
of specific combinations of these receptors allows primed 
lymphocytes, including memory T cells, to interact with blood 
vessel endothelium and to migrate into peripheral tissues 
for responses to inflammatory stimuli (86). Whether TLOs 
maintain an immune response that originates from circulating 
activated B and/or T  cells and/or from naive cells remains to 
be fully defined. As HEVs are a fundamental constituent of 
conventional LNs that permit naive lymphocyte egress from 
the circulation for adaptive immune responses (87), HEVs in 
allograft-TLOs (32, 39, 88) could have important pathological 
consequences, as they could facilitate entry of naïve T and B cells 
(previously excluded by the absence of cognate ligands for 
CCR7 and L-selectin) and also central memory T cells, by way 

of their expression of CD62L (89), and allow an alternative site 
for lymphocyte priming, activation, and effector function (64). 
However, it is more plausible that the initial ingress of lympho-
cytes that establish TLOs along with HEVs comprise an effector 
population; in support the majority of the infiltrating B cells in 
renal allografts display activated (CD79+) and memory (CD27+) 
phenotypes (62). From our experimental work, we have shown 
that fully mature allograft-TLOs fail to form in B cell deficient 
animals; ectopic lymphoid aggregates do form (presumably a 
consequence of the cellular alloimmune response) but were not 
well circumscribed and importantly lacked HEVs, implying that 
B cells are critical for TLO formation but as an activated, rather 
than naive, population (32). Therefore, it is likely that naïve 
recipient B cells, initially primed by alloantigen in SLOs, migrate 
to allografts after altering their expression of adhesion molecules 
and interact with resident (recipient) stromal cells to establish of 
a chemokine-directed positive feedback loop that orchestrates 
further lymphocyte recruitment and organization and forma-
tion of HEVs (73). B cells, upon sustained antigenic challenge 
in chronically inflamed tissues, can upregulate LT expression 
through IL-4Rα signaling and promote the proliferation and 
activation of supporting fibroblastic reticular cells (FRCs) via 
LTβR signaling (90). FRCs can in turn secrete T cell chemokines, 
generate support structures for migrating T cells and dendritic 
cells (91) and form a conduit to distribute small soluble antigens 
throughout lymphoid organ parenchyma (92, 93). Moreover, 
FRCs enhance the survival of naive T cells by producing IL-7 
(94), present antigen to T cells (95), and support the differentia-
tion of regulatory dendritic cells (96). As a result, lymphocytic 
infiltrates in chronically inflamed tissues can eventually acquire 
the structural characteristics to develop into a lymphoid organ 
to support further lymphocyte recruitment and retention  
(see also Figure 1). In addition to the role of lymphoid chemokines, 
cytokines produced within the inflammatory milieu of an 
allograft or peripheral organ affected by autoimmunity support 
the development of TLOs and compartmentalization into T and 
B cell areas, and can also contribute to the transcriptional regu-
lation of CXCL13, CCL19, and CCL21. Of note, IL-17, IL-21, 
IL-22, IL-23, and TNF have all been shown to be important  
(36, 97–103), with the level of certain pro-inflammatory 
cytokines correlating with disease outcomes (104).

The Other Cast Members for TLO 
initiation—T Cells and innate  
immune Cells
Besides B  cells, a variety of T  cells and innate immune cells 
are also involved in ectopic lymphoid neogenesis independent 
of lymphoid-tissue inducer cells. In particular, Il-17 produc-
ing CD4+ Th17  cells have been shown to be essential for the 
formation of TLOs in the central nervous system of mice 
during chronic experimental autoimmune encephalomyelitis 
(EAE), where stromal LTβR signaling promoted extracellular 
matrix deposition, T  cell effector cytokine responses, and 
chemokine production that supported meningeal leukocyte 
accumulation (105), and for responses against collagen (V) 
protein to induce the development of bronchiolitis obliterans 
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after lung transplantation (106). Furthermore, there is a cor-
relation between activation-induced cytidine deaminase (AID)-
expressing ectopic GCs within chronically rejecting kidney 
allografts and the cytokine IL-21, suggesting that Th17 cells have 
a role to play in lymphoid neogenesis (107). IL-21 secretion from 
Th17 cells (108) can stimulate B cells through the generation of 
TFH cells (109, 110), the importance of which will be discussed 
in a later section.

A key player in innate immune responses are macrophages 
and not only can they act as antigen-presenting cells within 
TLOs (111), and produce CXCL12 to drive migration of 
CXCR4+ centroblasts to the dark zone in ectopic GCs (99), they 
can also initiate TLO formation; in particular, M1-polarized 
pro-inflammatory macrophages can substitute for LTi cells and 
trigger chemokine expression by vascular smooth muscle cells 
(similar to that produced by LTo cells) independently of LTβR 
signaling (35). Monocytes and macrophages also secrete CXCL13 
in TLOs associated with rheumatoid arthritis and ulcerative 
colitis (112), providing a rich source of lymphoid chemokines 
in chronic inflammation. CXCL13 can be expressed within and 
near smaller collections of B cells in diseased tissue where no 
FDCs or HEVs are detected, suggesting that CXCL13 production 
by monocytes could be an early event in lymphoid neogenesis. 
Similarly, accumulations of macrophages within the lumens 
of capillaries and small vessels of the myocardial interstitium 
are a prominent feature of cardiac allograft antibody-mediated 
rejection (AMR) (113) and tubulointerstitial cellular rejection 
(Banff category 4, type I) in renal allografts (114), with pres-
ence of macrophages in early biopsies predictive of interstitial 
fibrosis/tubular atrophy and subsequent graft failure (115–117). 
Besides acting as a source of CXCL13 to promote development 
of CXCR5+ B cell aggregates in chronically rejecting cardiac allo-
grafts (46), infiltrating macrophages can also transdifferentiate 
into lymphatic endothelial cells or secrete vascular endothelial 
growth factor to drive the growth of lymphatic vessels (LVs) 
through the sprouting of preexistent lymphatics (118, 119). 
The significance of lymphangiogenesis in transplantation was 
shown in a study by Kerjaschki and colleagues who identified 
vast amplification of LVs near or within TLOs in renal allografts 
with acute rejection (41).

The Counterpart to the initiators— 
Stromal Organizer Cells
The counterparts to the initiators cells in the development of 
SLOs are stromal organizer cells (10). LTi cells, through expres-
sion of surface LTα1β2, activate mesenchymal stromal cells via 
LTβR signaling to express adhesion molecules, such as ICAM1, 
VCAM1, MAdCAM1, and PNAd, and a set of homeostatic 
chemokines (CCL19, CCL21, CXCL12, and CXCL13), which 
then allows them to be retained in the developing organs and 
will regulate further lymphocyte homing and compartmentali-
zation (13). After birth, LTo cells undergo further differentiation 
into various non-hematopoietic stromal subtypes present in 
the adult SLO, such as FRCs of the T  cell zone, FDCs within 
B  cell follicles and GCs, and marginal reticular cells adjacent 
to the subcapsular sinus (120). LN stromal endothelial cells 

can differentiate into either blood endothelial cells (HEVs) or 
lymphatic endothelial cells (121). Subsequently, these structures 
are colonized by lymphocytes resulting in a highly organized 
lymphoid organ.

Stromal organizer cells are mesenchymal in origin, with 
many cell types capable of playing this role (122); these include 
fibroblasts, pericytes (a type of smooth muscle cell commonly 
found surrounding capillaries and HEVs in LNs), blood and 
lymphatic endothelial cells, and epithelial cells. Stromal cells 
also play a critical role in TLO formation in that they provide 
an environment that is conducive to lymphoid neogenesis  
(25, 123–126); their characteristics and function have been the 
subject of two recent comprehensive reviews (127, 128). TLOs 
commonly arise close to vascular or epithelial ductal structures 
adjacent to smooth muscle cells or myofibroblast-like cells 
that share features with conventional LTo cells, e.g., synovial 
fibroblasts from patients with rheumatoid arthritis display 
LTo-like properties, including expression of LTβR and the 
production of homeostatic chemokines (e.g., CXCL13) (129) 
and B-cell-activating factor (BAFF) to support synovial B cell 
responses (130), and LTβR signaling has been shown to induce 
aortic smooth muscle cells to form TLOs in atherosclerosis 
(71). Nevertheless, LT signaling is not absolutely required for 
activation of stromal cells and leukocytes other than lympho-
cytes can activate resident tissue fibroblasts (126). Moreover, it 
is also possible that circulating fibrocytes may be recruited by 
homeostatic chemokines to sites of TLO development (131). 
It has subsequently been proposed that stromal cell activation 
in TLO formation is a two-step process: the inflammatory 
cytokine milieu initially primes local resident stromal cells 
independent of LT signaling and maturation to LTo-like cells 
occurs as a result of signaling by LT-expressing immune cells, 
resulting in the generation of homeostatic chemokines that 
promote lymphocyte compartmentalization (127, 128). The 
activated stromal cells can also influence the type of immune 
responses; for instance, activated fibroblasts can secrete IL-6 
which is required for the induction and maintenance of TFH 
cells (132) and can induce T cell tolerance by presenting high 
levels of peptide-MHC class II complexes (133), thus suggest-
ing an immunoregulatory role for stromal cells in the context 
of TLO development.

Hevs—A vascular Component  
of the Stromal Network
High endothelial venules are an integral part of the stromal  
network of LNs and as mentioned above they facilitate the traf-
ficking of naïve recirculating B and T  lymphocytes from the 
circula tion. HEVs are prominent features of TLOs and their 
presence can be considered the defining characteristic that distin-
guishes lymphocyte aggregates from other forms of inflammatory 
infiltrate (39). The characteristics of HEVs in TLOs have been 
extensively reviewed elsewhere (88, 134), and although HEVs in 
TLOs express the same chemokines [e.g., CCL19, CCL21 (135)], 
adhesion molecules [e.g., ICAM-1 (72)], and ligands [e.g., PNAd  
(32, 136) and MAdCAM-1 (32, 72)] as those in conventional 
LNs, it is important to point out that the actual migration of 
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intra-vascular naïve lymphocytes from the systemic circulation 
via HEVs in allograft-TLOs into the parenchyma of an organ 
has not yet been visualized. The development of mice with red 
fluorescent LVs and green fluorescent HEVs (137) and their 
in vivo imaging in SLOs (138) will enable similar analysis in TLOs 
and resolve whether HEVs function as sites of entry for naïve 
alloreactive lymphocytes into ectopic lymphoid tissue to undergo 
activation and differentiation into effector and memory cells.

The precise mechanisms and signaling molecules besides 
LTα1β2 that drive stromal cell activation and differentiation 
in TLOs are not yet fully defined and the identity of LTo cells 
remains somewhat elusive as they lack specific markers and so 
have not yet been isolated from TLOs. Several questions also 
remain unanswered. First, do tissue stromal cells convert to a 
“lymphoid-like” phenotype as a result of inflammation (126), or 
do they arise in TLOs from progenitors such as mesenchymal 
stem cells? Second, is the chemokine expression by stromal cells 
a result of ingress of LT-expressing (alloreactive) lymphocytes 
or does the lymphoid stroma undergo expansion prior to the 
infiltration of lymphocytes? Third in the context of transplanta-
tion, do stromal cells arise from resident cells in the allograft or 
are they derived from the recipient? And fourth, what signaling 
pathways can be targeted to manipulate TLO stromal cells? 
Transplantation provides a unique opportunity to answer some 
of these questions as based on the above it would seem likely that 
recipient-derived lymphocytes interact with donor derived stro-
mal cells to establish TLOs. This could be analyzed by selectively 
ablating donor-derived stromal cells without impacting lym-
phoid stroma in (recipient) SLOs, for example by using donors 
lacking expression of LTβR (139) or by conditionally depleting 
fibroblasts in allografts either based on their expression of the 
diphtheria toxin receptor (140) or by using inducible transgenic 
mice [Ccl19-Cre × iDTR] (141).

THe FUNCTiONAL SigNiFiCANCe OF THe 
B CeLL COMPONeNT wiTHiN SLOs

As discussed above, the prominence of follicular structures 
within the TLO may reflect an integral role for the B  cell in 
its formation, most likely as a source of membrane-bound LT 
(142, 143). Nevertheless, the presence of B  cell follicles raises 
important questions relating to the function they provide; most 
critically, whether the humoral response within the TLO is 
simply an extension of those occurring synchronously in SLOs 
or whether it provides unique and distinct capabilities. If the for-
mer, a simple consideration of the respective volume of lymphoid 
tissue within the TLO and SLO would suggest it unlikely that 
the TLO response will materially impact upon either the nature  
or strength of the global humoral response. “Distinctiveness” of 
the humoral TLO response is likely determined by the nature  
of the GC component, because of the more sophisticated out-
put—the production of affinity-matured memory B  cells and 
LLPCs—that the GC generates (144). In this respect, while it is 
clear that immunohistochemical features of the GC response, such 
as expression of AID and presence of FDCs and GC-phenotype 
B  cells, have been described within TLO (32, 71, 145–157), 

important differences from conventional (SLO-resident) GC 
appearances have also been noted (discussed below).

Over the last decade, a number of seminal publications have 
substantially improved our understanding of the conventional 
GC response [reviewed in Ref. (158–163)]. By detailing some 
of the molecular pathways responsible for coordinating the GC 
response, these publications have reinforced that the anatomi-
cal constraints, namely the physical segregation of the GC into 
light and dark zones, are integral for GC function. The greater 
insights provided by these studies, thus, enable a timely re-
appraisal of the likely function of the GC response within TLOs. 
To do so, it is first necessary to consider how our understanding 
of the GC response has evolved.

The initiation and Maintenance of 
Conventional gC Responses within SLOs
Following encounter with target epitope, antigen-specific  
T and B cells migrate to the T–B cell border (164) or interfol-
licular zone (165) as a consequence of alterations in sensitivity 
to the CCR7 ligands, CCL19, and CCL21 (166). Following  
robust proliferation, responding B cells either seed the extra-
follicular response in LN medullary cords and the red pulp in 
the spleen (167), or a relatively small proportion migrates back 
to the follicle to seed the GC response (168). Retention within 
the follicle is maintained by downregulating expression of the 
orphan G protein-coupled receptor Ebi2 (169, 170) and induc-
tion of the sphingosine 1-phosphate receptor, S1P2 (171, 172). 
The determinants for clonal selection to the follicle remain 
unclear, because although it has been reported that high- 
affinity clones may have a selection advantage (173), this has 
been similarly proposed for the extrafollicular focus (174). 
Analysis, moreover, of hyper-mutated broadly neutralizing 
antibodies to HIV has highlighted that the germline con-
figuration may have only minimal reactivity (175). Two recent 
publications have instead suggested that seeding of the GC is 
largely stochastic (176, 177).

The small number of clones that seed the nascent GC 
become a foci of proliferating blasts leading to the formation 
of the archetypal light and dark zones, first identified by light 
microscopy over 80  years ago (178). Within the dark zone, 
CXCR4hiCD83loCD86lo “centroblasts” are retained by CXCL12-
expressing reticular cells (179–181) and undergo between, 
typically, one and six rapid divisions (182, 183). Expression 
of AID and upregulation of Polη DNA polymerase introduces 
point mutations into the genes encoding the B  cell receptor 
(BCR) (180, 184): the dark zone is, therefore, the region where 
immunoglobulin somatic hypermutation (SHM) occurs. Upon 
egress to the light zone, facilitated by a chemokine gradient 
toward CXCL13-expressing FDCs, “centrocytes” acquire an 
activated CXCR4loCD83hiCD86hi phenotype and reset their 
antigen-processing machinery (185), prior to encounter with 
antigen on the surface of the FDC.

Within the light zone, several different outcomes are pos-
sible for the centrocyte: death from apoptosis; differentiation 
to a memory B  cell or to a LLPC; and re-entry into the dark 
zone for a further round of mutation and selection. Although 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Alsughayyir et al. B Lymphocytes and TLOs

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1639

many aspects of this process remain poorly understood, it is 
now clear that the specialized TFH subset (186, 187) is critical 
for selection of high-affinity variants within the GC light zone 
and is the driving force of affinity maturation (158–160, 162). 
TFH cell differentiation is initiated by EBi2-guided recognition 
of target epitope on dendritic cells in the outer T cell zone, with 
“quenching” of T cell IL-2 by CD25 on the DC possibly prompt-
ing expression of Bcl6 (188, 189), the master transcription 
factor for TFH differentiation (190–192). Subsequent cognate 
interaction of the pre-TFH cell with the antigen-specific B cell 
at the T–B cell border, along with co-stimulatory signals deliv-
ered through CD28, OX40, and ICOS (193–195), is generally 
required to complete TFH cell differentiation and is critically 
dependent upon prolonged association between SLAM and 
SAP family members (196–200): in the absence of SAP, TFH do 
not form. Interestingly, adult CD4+CD3− cells residing at the 
border of the T cell zone and B cell follicles have been shown 
to express OX40L, which helps direct OX40-expressing pre-TFH 
cells into the follicles and induces upregulation of CXCR5 and 
ICOS expression (20, 194, 201). CXCR5hiPD-1hiICOShi CD4 TFH 
cells are then guided to the B cell follicle under the influence of 
CXCL13 and EBi2 gradients (202). Migration occurs 1 or 2 days 
later than the B cell (165, 203, 204) and of note, this migration 
is also dependent upon ICOSL signaling from bystander B cells 
within the follicle; in the absence of this signaling, TFH cell 
migration to the follicle is substantially impaired (205).

A number of recent studies have confirmed the pivotal role 
that the TFH cell plays in affinity maturation of the antibody 
response (179, 180, 182, 183, 203, 204). B  cells internalize 
antigen via their BCR for presentation to the helper T cell in an 
affinity-dependent manner (206–208), and hence, somatically 
mutated B  cells that have acquired greater amounts of target 
antigen from the light zone FDC can outcompete other clones 
for the limiting help available from the GC TFH subset (180). 
These clones can then return to the dark zone for further rounds 
of mutation and selection. The nature of the signal that the 
TFH provides to the B cell remains unclear, and likely involves 
IL-21 (209) and BAFF (210), resulting in both an avoidance 
of apoptosis within the light zone, as well as a subsequent 
selection advantage within the dark zone (179, 182, 183). Thus, 
availability of T cell help, rather than access to antigen on the 
FDC, determines selection of high-affinity variants. From this, 
one would assume that the TFH cell subset would encompass 
those responding T  cell clones with highest affinity for the 
peptide complexes presented by the B cell (211, 212). However, 
Shulman et al. have recently suggested that selection into the 
TFH cell population is more permissive, without apparent clonal 
restriction (203).

Although our understanding of clonal selection within the 
GC has improved substantially in recent years, with the func-
tional relevance of the GC being primarily a producer of LLPCs 
and memory B  cells, it is perhaps surprising that the triggers 
governing the generation of these effector populations remain 
unclear. The progeny of a single B cell can differentiate to seed 
all the GC and post-GC compartments (213), but LLPCs, first 
evident as BLIMP-1 expressing “pre-plasma cells” within the GC 
(214, 215), appear to be selected actively from the highest-affinity 

variants (216–218). Plasma cell differentiation is informed by the 
signaling tail of the particular immunoglobulin isotype (219), 
and although it can occur in the absence of T  cell help (220), 
CD40 signaling from cognate interaction with the helper T cell 
also appears important (221, 222). Krautler et al. have recently 
proposed that plasma cell differentiation is initiated by high-
affinity contact with target antigen, but is thereafter dependent 
upon receipt of T cell help (223). By contrast, memory B cells 
are deposited early, and then continuously, from the GC reaction 
(218, 224–226). Consequently, compared to the contemporane-
ous GC B  cell, the memory B  cell pool exhibits less extensive 
SHM and its binding affinity for target antigen is much weaker 
than is observed within the plasma cell output. Memory B cell 
precursors may arise from low-affinity variants within the light 
zone, and Shinnakasu et  al. have recently reported an inverse 
correlation with the level of T  cell help delivered and Bach2 
expression within the B cell, and have suggested that relatively 
high Bach2 expression within lower-affinity centrocytes favors 
entry to the memory B cell pool (227).

gC Responses within TLOs
It is, therefore, clear that the GC reaction is remarkably 
complex, and that its effector functions are dependent upon 
tight anatomical and temporal control, as evident from the 
association between dysregulated GC responses and develop-
ment of humoral autoimmune disease (228–230). This raises 
the critical questions of whether such sophistication can be 
recapitulated within an ectopic GC in a peripheral organ, 
and whether it would match concurrent selection within 
conventional SLO. This has proven difficult to address experi-
mentally, and although a number of publications have reported 
anatomical features consistent with GC activity, such as the 
presence of FDC and AID-expressing B  cells with GL7hi GC 
immunophenotype (see Table 1), few studies have attempted 
to validate GC activity by analyzing effector output. The most 
robust indicator of GC effector function will be the demon-
stration of clonal selection with progressive accumulation of 
high-affinity mutants as a consequence of SHM. It should be 
stressed that simple clonal restriction within a TLO, whereby 
TLOs harbor a limited number of B cell clones and these clones 
differ between individual TLOs, may not itself indicate GC 
activity; rather it may simply reflect focused seeding of the 
TLO by locally activated B  cells, as reported by Scheel et  al. 
(153). Evidence for SHM within the TLO is, thus, provided by 
only a handful of studies (146, 154, 157), with possibly the most 
convincing a relatively early study by Stott et  al. (154), who 
performed Ig V-region sequencing of B cells recovered by laser 
microdissection of salivary gland TLOs in human patients with 
Sjogren’s syndrome. Although specific target antigen was not 
identified, sequencing analysis of the ratio of replacement to 
silent mutations in the complementarity determining region 
suggested antigen-mediated selection of high-affinity variants.

As discussed above, the TFH cell subset is now known to play 
a pivotal role in selection of high-affinity variant GC B cells. The 
TFH cell subset is likely to be similarly important for GC TLO 
function, and as with B cells in allograft-TLOs, associated TFH 
cells are probably derived from peripheral effector populations 
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TABLe 1 | Studies characterizing germinal center (GC)-like structures within tertiary lymphoid organs (TLOs).

System Structure and cells Diverification Notes

Species/organ High 
endothelial 

venules (Hev)

Follicular 
dendritic cells 

(FDC)

B cells/gC 
markers

T cells/TFH evidence of somatic 
hypermutation 

(SHM)

increased mRNA/protein 
expression

Motallebzadeh 
et al. (32)

Murine/heart Tx Y Y B220/PNA NR NR NR/activation-induced cytidine 
deaminase (AID)

Blocking lymphotoxin (LT) signaling by 
LTβR-Ig impairs TLO development and 
effector antibody response

Thaunat  
et al. (31)

Human/kidney Tx Y Y CD20/BcL-6 CD3 N AID, CXC-chemokine ligand  
13 (CXCL13), CXCR4, 
CC-chemokine ligand 19  
(CCL19), CCL21, CCR7,  
LTα, LTβ, and CXCR5

Extensive characterization of gene 
expression involved in lymphoid 
oranogenesis

Grabner  
et al. (71)

Murine/ApoE Aorta Y Y B220/Ki-67 CD3 NR CXCL13, CCL21, Ltb CD138+-Plasma cells, Tregs
No antibody characterization

Clement  
et al. (145)

Murine/ 
ApoE aorta

NR NR B220/CD95hi CD4/
CXCR5+PD-1+

NR NR CD8+ regulatory T cells regulate  
secondary lymphoid organ (SLO)  
and TLO responsesHuman/AAA Y Y CD20/PNA CD4/CXCR5, 

ICOS, PD-1
NR NR

Vu Van  
et al. (146)

Murine/iBALT NR Y (very low) CD19/GL7, 
PNA, Bcl6, 
Cd38lo

Th-like but no 
CXCR5+BCL-
6+TFH

Yes NR FDC not associated with GC B cells;  
SHM (NP as target), but no  
comparison to SLO
High CD138 plasma cells

Germain  
et al. (147)

Human/lung  
tumor

Y CD20/Ki-67, 
Bcl-6

CD3 NR AID Described CD23+ mantle zone, CD138 
plasma cells at the periphery of TLO B cell 
density in TLOs as prognostic biomaker

Martinet  
et al. (231)

Human/solid tumors Y NR CD20/NR CD3 NR CCL19, CCL21, CXCL13,  
and CCR7 

Large-scale FACS analysis on immune 
populations retrieved from TLOs revealed 
that tumor HEVs are associated with 
increased numbers of effector (cytotoxic, 
and memory) and naïve T cells

Cipponi  
et al. (232)

Human/ 
melanoma

Y Y CD20, CD138, 
AID, Ki-67

NR Yes AID While cutaneous metastic lesions 
contained TLOs, primary melanomas 
lacked B cell clusters but contained 
HEVs. TLO-derived Ig gene repertoire 
demonstrated clonal amplification, SHM, 
and isotype switching

Coppola  
et al. (233)

Human/colorectal 
cancers (CRC)

NR Y CD20/Ki-67 CD3 NR CCL2, CCL3, CCL4, CCL5,  
CCL8, CCL18, CCL19,  
CCL21, CXCL9, CXCL10,  
CXCL11, and CXCL13

Extensive metagene analysis using gene 
chip technology, and 12-chemokine gene 
screening was performed on 326 CRCs 
suggested that TLO structures  
are associated with better prognosis

de Chaisemartin 
et al. (234)

Human/lung  
tumor

Y Y CD138 CD4, CD62L NR CCL19, CCL21, CXCL13,  
CCL17, CCL22, IL-16,  
ICAM-2, ICAM-3, ICAM-1,  
and MadCAM-1 

Characterization of adhesion molecules  
and chemoattractants of lymphoid cells  
into lung cancer tissue

(Continued )
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System Structure and cells Diverification Notes

Species/organ High 
endothelial 

venules (Hev)

Follicular 
dendritic cells 

(FDC)

B cells/gC 
markers

T cells/TFH evidence of somatic 
hypermutation 

(SHM)

increased mRNA/protein 
expression

Slight  
et al. (148)

Murine/lung TB Y B220/PCNA, 
PNA

CD4/TFH NR CXCL13 TLO contained Th1-like cells; CD4+  
CXCR5+ T cells is essential for TLO 
localization

Bombardieri  
et al. (149)

Murine/SS induction  
via ADV5 delivery

Y Y B220/GL7 CD3 NR AID, CXCL13/CXCR5, CCL19/
CCR7, and LT-β

No antibody characterization

Gu-Trantien  
et al. (150)

Human/breast cancer NR Y CD20/Ki67 CD4/TFH 
phenotype

NR CD200, CXCL13, ICOS, PD1 TLO contained Th1, Th2, Th17, Tregs,  
and memory T cells

Nacionales  
et al. (151)

Murine/TMPD 
lipo-granuloma

NR N B220/Ki-67 CD3 Y AID expression 
splenocytes > TLO > peritoneal 
exudate cells

Antigen-driven SHM

CSR (excision circles)

Cheng  
et al. (152)

Human/kidney Tx NR NR CD20 NR Y Rag-1, Rag-2, Antigen-driven SHM; clonal restriction in 
peripheral, and TLO-derived Ig genes

Scheel  
et al. (153)

Human/RA B cells 
synovial fluid

N N N NR Y NR Synovial fluid lacked GC formation, but 
contained B/T cells aggregates. Plasma 
cells aggregates are the consequence of 
migration of plasmablasts from peripheral 
lymphoid organs

Stott  
et al. (154)

Human/SS salivary 
glands

NR Y CD20 CD3 Y NR Important reported LZ/DZ, large numbers  
of plasma cells in surrounding tissue

Grewal  
et al. (155)

Murine/salivary gland 
inoculation with CMV

NR Y B220/GCT, 
GL7, PNA, 
Ki-67

CD4 Y AID, CXCL13 (lymphoid  
neogenesis), syndecan-1,  
Blimp-1, PAX5

Possible LZ/DZ development but not 
formally addressed

Corsiero  
et al. (156)

Human/RA NR NR CD20, CD138 CD3 Y CXCRL13, CXCR5, LT-β CD19+ FACS sorting of VH/VL  
sequencing reviled affinity maturation  
and clonal diversity

Weinstein  
et al. (157)

TMPD lipo-granuloma NR Y NR CD3, CD4 Y NR Affinity maturation possibly less within  
TLO, antigen-specific T cells, proliferation, 
and cytokine production

Tx, transplantation; iBALT, inducible bronchus-associated lymphoid tissue; ApoE°, atherosclerosis-prone apolipoprotein E-knockout; AAA, atherosclerotic aneurysmal arteries; SS, Sjogrens syndrome; TMPD, tetramethyl-pentadecane; 
RA, rheumatoid arthritis; TB, tuberculosis.
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(36), but they have not been identified routinely within ectopic 
lymphoid tissue (145, 148, 150, 157). Indeed, in a murine airway 
inflammation model, Vu Van et al. have recently highlighted the 
presence of an unusual T cell subset within foci of bronchus-
associated lymphoid tissue (146). This subset did not express 
classical TFH cell phenotype, but appeared in close cognate con-
tact with the B cell fraction, and therefore may resemble a non-
classical TFH cell subset, such as the NKT cell subset described 
recently in relation to anti-lipid antibody responses (235, 236). 
Of note, the help provided by this “NKTFH” subset resulted in 
minimal deposition of LLPCs and suboptimal affinity matura-
tion of the humoral response (235, 236). Thus, non-classical TFH 
present with ectopic GCs may be inherently incapable of driving 
affinity maturation.

Nevertheless, the survival of alloreactive B  cells within 
allograft-TLOs could be supported in particular by IL-21 derived 
from TFH cells, akin to their function within canonical lymphoid 
tissue. In support of the role of TFH cells in allograft-TLOs, Liarski 
et al. (237) conducted a cell distance mapping study to identify 
tissue resident PD1+ ICOS+ TFH cell: CD20+ B  cell pairs and 
showed that 80% of T cells with a TFH phenotype were engaged in 
tight cognate interactions with B cells in renal allograft biopsies 
that displayed features of mixed T cell-mediated rejection and 
AMR; by contrast, only 15% of the T cells were similarly engaged 
in biopsies with pure T cell-mediated rejection. Of note, most 
B  cells in the mixed rejection biopsies were spatially removed 
from the TFH populations, suggesting that only a discrete popula-
tion of alloreactive B cells is maintained by TFH cells. In addition, 
the ICOS+-stained cells isolated by laser capture microdissection 
from mixed rejection samples showed high expression of BATF, a 
transcription factor necessary for GC formation and maturation 
of antibody-secreting B cells (238), but Bcl-6 and IL-21, which 
are critical for TFH differentiation and function (190, 239, 240), 
were only highly expressed in the samples which had frequent 
TFH:B cell conjugates. It is, therefore, possible that the B cells that 
are juxtaposed to TFH cells form TLOs and develop ectopic GCs, 
inducing Ig SHM and class switching to propagate local humoral 
alloimmune responses (146, 241, 242). The importance of TFH 
cells is further evidenced by TLOs in autoimmune disease, where 
organized GCs containing peanut agglutinin binding GL-7+ 
B cells and ICOS+/CXCR5+ TFH cells, along with CD138+ plasma 
cells, have been detected using laser capture microdissection 
and immunohistochemistry, with their presence correlating 
with tissue-specific autoantibody formation and progression of 
disease (33, 34). Blockade of TFH cell infiltration by interrupting 
ICOS signaling results in reduced TLO formation associated with 
atherosclerosis as well as less severe disease progression (145). 
However, help provided by a classical TFH cell subset within a 
TLO GC may not promote efficient affinity maturation. As dem-
onstrated by the impaired affinity maturation that ensues when 
T cell help is artificially augmented (180), TFH numbers must be 
closely controlled in order to maintain a competitive selection 
advantage for high-affinity variants. Whether this control is 
achieved within a TLO is not known, and it is perhaps more likely 
that help will be provided in a disorganized or dysregulated fash-
ion. In support, in a model of tetramethylpecadentane-induced 
“lipogranulomas,” the presence of TLO was associated with, if 

anything, a reduction in affinity maturation (157). Similarly, loss 
of control of the TFH cell subset within aortic TLOs exacerbates 
atherosclerosis (145).

Apart from T cell help, canonical GC responses are reliant 
upon FDCs, which can capture antigen–antibody complexes 
for presentation to B  cells and express chemokines such as 
CXCL13, which draws B  cells and TFH cells to follicles via 
CXCR5 (243–246). FDCs also provide B  cell survival and 
proliferation factors, such as BAFF (247). The BlyS family of 
TNF ligands (BAFF and APRIL) and their receptors [BR3 
(also termed BAFF-R), TACI, and BCMA] govern survival 
and differentiation within B cell subsets, which is of particular 
relevance to humoral alloimmune responses (248). The recep-
tors for BAFF are differentially expressed on B cells at various 
stages of maturation and activation, and will, thus, likely play a 
critical role in survival of B cells within TLOs. Thaunat’s group 
has shown that plasma cells which persisted within kidney 
allografts after administration of rituximab were intimately 
associated with BAFF secreting cells (249). As BAFF is mainly 
produced by macrophages, monocytes, and dendritic cells (250), 
the inflammatory microenvironment could, therefore, provide 
BAFF-dependent paracrine survival signals to intra-graft  
B  cells in TLOs, as seen in B  cell-rich lymphoid follicle-like 
structures in the meninges of EAE-affected mice where BAFF 
expression in inflamed tissues is upregulated in chronic relaps-
ing forms of disease (52). Local BAFF could, therefore, provide 
additional survival signals for B  cells within allograft-TLOs 
and promote tissue-resident humoral alloimmune responses 
as evidenced by an association between intra-graft BAFF and 
AMR in kidney transplantation (251), but also could protect 
autoreactive B cells generated during the (ectopic) GC response 
from apoptosis (see below) and sustain their differentiation into 
autoantibody-secreting plasma cells (252).

If not to promote affinity maturation, what role do GCs within 
TLOs perform? If one assumes that high-affinity mutants are not 
selected as effectively within a TLO as within a SLO, this implies 
that irrespective of similarities in clonal constituents at the onset 
of a response, the output from the SLO and TLO GC responses 
will increasingly diverge. The TFH cell subset is, moreover, critical 
for ensuring negative selection within the GC—the destruction 
of potentially autoreactive variants that have arisen from SHM 
(253, 254). For example, in sanroque mutant mice, increased 
ICOS expression specifically on T  cells results in an aberrant 
expansion of TFH cells and spontaneous GC autoimmunity  
(255, 256). Conventional FoxP3 regulatory CD4 T cells (Tregs), 
as well as CD8 regulatory T cells (257, 258), are also necessary 
for prevention of humoral autoimmunity, likely through their 
inhibitory impact on the TFH cell population. Thus, disorders 
in TFH cell function (either intrinsic or through loss of external 
control) may allow autoreactive B cell variants within the TLO to 
escape apoptosis and undergo plasma cell differentiation. In this 
regard, the T follicular regulatory (TFR) cell subset (259) has yet 
to be described within TLO. The TFR cell subset phenotypically 
resembles the TFH cell subset in surface expression of CXCR5, 
PD-1, ICOS, and in positioning within the B  cell follicle, but 
expresses the master transcription factors (FoxP3 and Bcl-6) for 
both the Treg and TFH cell subsets (260–262). The precise role 
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FigURe 2 | Potential mechanisms for dysregulated selection within tertiary lymphoid organs (TLOs). A number of mechanisms are responsible for regulating the 
germinal center (GC) response within conventional secondary lymphoid organs. Affinity maturation is critically dependent upon coordinated recycling through the 
dark zone, with competition for limiting number of T follicular helper (TFH) cells critical for selection of high-affinity clones. Effective selection is also dependent upon 
robust processes for destruction of low-affinity clones or those that have mutated to autoreactivity. These are less well understood, but include: optimization of TFH 
cell numbers; negative input from T follicular regulatory (TFR) cells; and effective engulfment and disposal by tingible body macrophages. In TLOs, dark/light zone 
segregation is conspicuously absent, and the role of the TFH cell remains poorly understood. Similarly, the TFR cell population has yet to be characterized. Thus, 
although GC-type features are frequently described within TLO, it is likely that functional output of these GC-like structures differs from canonical secondary 
lymphoid function. We propose that the dysregulated nature of the GC response within TLOs favors the escape of autoreactive variants and developing of 
long-lasting humoral autoimmunity.
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of the TFR cell subset is still debated, with recent papers variably 
suggesting that TFR cells are either specific (263) or not specific 
(264) for target antigen, but their relatively late ingress to the 
follicle suggests that they do not inhibit development of the GC, 
and that they either prevent escape of autoimmune variants that 
arise following SHM (260) or hasten termination of the response 
(265). This last role may be particularly pertinent to GC activity 
within TLO, which is characterized by its longevity, and which, 
consequently, may be more prone to subversion to autoreactiv-
ity; either because of failure of negative selection or because of 
external seeding with newly activated naïve or memory B cells 
(184, 203, 266, 267).

Aside for disorders in TFH cell function, there are several 
other mechanisms by which the development of autoreactiv-
ity is possibly favored within a TLO (see Figure 2). A number 
of B  cell intrinsic pathways have been identified that inhibit 
development of GC autoimmunity. These include expression 
of ELL-associated factor 2 (268), and signaling via TLR9  
(269, 270) or inhibitory FcyRIIB ligand (271–273). Whether 
these signaling pathways are somehow modulated within a GC 

TLO to favor development of autoreactivity is, however, not 
known. B cell inhibition via FcyRIIB binding is dependent upon 
immune complexes simultaneously engaging the BCR, and  
thus local perturbations in effector antibody concentration, or 
differences in sialylation at the antibody Fc region (274), could 
conceivably alter the degree of FcyRIIB-mediated inhibition 
within the TLO. Alternatively, as well as a reservoir for target 
antigen, the FDC network expresses a variety of cytokines (such 
as Il-6 and BAFF) and chemokines (CXCL13) thought critical 
for effective GC function (275). Das et al. have recently reported 
that, in response to TLR7 signaling, the FDC can also promote 
autoimmunity, by secreting pro-inflammatory IFN-α (276). 
Thus, the inflammatory state thought responsible for triggering 
formation of a peripheral TLO may program an activated FDC 
phenotype that promotes subsequent diversification of the GC 
response to encompass autoreactive targets. Heightened cell 
turnover within the inflammatory milieu of the TLO may addi-
tionally increase the likelihood of autoimmunity developing, by 
overloading the capacity of tangible body macrophages to clear 
apoptotic bodies within the GC (277, 278).
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CONCLUSiON

In summary, although components of the B cell GC response 
are frequently identified within TLOs, the precise function 
of these putative GCs, and how they compare to GCs within 
canonical SLOs, has yet to be determined. It seems likely from 
the expression of AID (32, 146, 147, 149, 151) and from clonal 
analysis of the constituent B cells (154), that SHM can occur. 
However, as discussed, we now know that physical segregation 
of the GC into dark and light zones is crucial for effective SHM, 
as this enables limiting numbers of TFH cells within the light 
zone to inform the subsequent proliferative response of circling 
GC B cells in the dark zone. Such readily identifiable dark/light 
zone configuration is conspicuously absent from reported GCs 
within TLOs, and when allied to concerns relating to TFH cell 
dysfunction, we propose that it is likely that affinity matura-
tion within a TLO is at best sub-optimal, and certainly not as 
effective as within canonical lymphoid tissue. This is supported 
by the limited evidence available (157). Instead, it seems prob-
able that dysregulated or uncoordinated responses within the 
TLO favor a breakdown of negative selection, with subsequent 
epitope diversification to encompass autoimmune variants. In 
this respect, we have previously reported, in a murine model 
of chronic heart graft rejection, that transplantation of MHC 
class II mismatched heart grafts triggers long-lasting anti-
nuclear IgG autoantibody responses in the recipient (279) and 
is associated with development of intra-allograft TLO with 
prominent B cell features (32). Our recent work has highlighted 

that help for the development of humoral autoimmunity is 
provided by an unusual form of “peptide-degenerate” (but 
cognate) interaction between recipient autoreactive B  cells 
and donor CD4 T cells that are passengers with the heart graft 
(280). Surprisingly, although triggered by donor CD4 T  cell 
graft-versus-host recognition of MHC class II determinants 
on recipient B cells, maintenance of splenic and intra-allograft 
GC activity is dependent upon provision of help from TFH dif-
ferentiation of a recipient CD4 T cell subset. The chronic GC 
response that ensues is associated with spreading to encompass 
autoantibody responses against vimentin protein (281). This 
model, therefore, provides the opportunity, which our ongoing 
work will address, to clarify the relationship between aber-
rant CD4 T cell help and diversification of the TLO humoral 
autoimmune response to target new, previously quiescent 
epitopes which have been previously shown to be associated 
with detrimental graft function (282).
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