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Type III interferons (IFNs) (or IFN-λ) are the latest addition to the IFN family. Even though 
they share little protein homology with type I IFN, both exhibit remarkable functional 
similarities: each can be induced in response to viral infections, and both lead to Janus 
kinases (JAK) and signal transducer and activator of transcription (STAT) activation. The 
JAK/STAT pathway induces antiviral responses and IFN-stimulated gene transcription. 
However, despite the similarities in their effector functions with type I IFNs, IFN-λ also 
has a non-redundant role in protecting barrier organs: epithelial cells preferentially 
produce IFN-λ rather than type I IFNs; and interferon lambda receptor 1 (IFNLR1), 
the specific receptor for IFN-λ, is highly expressed on cells of epithelial lineage. Thus 
far, IFN-λ has been considered mainly as an epithelial cytokine, which restricts viral 
replication in epithelial cells and constitutes an added layer of protection at mucosal 
sites. However, it is now increasingly recognized that IFNLR1 is expressed broadly, 
and that immune cells such as neutrophils and dendritic cells also respond to IFN-λ. 
Moreover, in many in vivo models, IFN-λ modulates immune cell functions and thereby 
configures itself less as a cytokine that is only specific to the epithelium, and more as 
a cytokine that directly controls the inflammatory response at mucosal sites. Here, 
we critically review the recent literature on immune modulatory roles for IFN-λ, and 
distinguish between the direct and indirect effects of this IFN on immune cell functions 
in different inflammatory settings.

Keywords: interferon lambda, dendritic cells, neutrophils, natural killer cells, type iii interferon, viral infection, 
bacterial infections, fungal infection

iNTRODUCTiON

First described more than 60 years ago (1) interferons (IFNs) were the first family of cytokines to 
be discovered. Since then, IFNs have been extensively studied, and their presence is correlated with 
a number of immunological and biological processes, such as cell proliferation, regulation of cell 
survival, and modulation of immune functions. IFNs can be divided into three major subfamilies: 
type I IFNs (comprising mainly IFN-β and over 20 subtypes of IFN-α, -ε, and -ω), type II IFNs 
(IFN-γ), and the recently identified type III IFNs (IFN-λ) (2, 3) that comprise four members in 
human (IFN-λ1/IL-29, IFN-λ2, IFN-λ3/IL-28A-B, and IFN-λ4) and two in mice (IFN-λ2/IL-28A 
and IFN-λ3/IL-28B, while IFN-λ1 is a pseudogene interrupted by a stop codon). IFN-λ2 and IFN-
λ3 are highly related and have 96% sequence identity, while IFN-λ1 shares 81% sequence identity 
with IFN-λ2 and IFN-λ3 (4).
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The gene and protein structure of IFN-λ2 and -λ3 share lit-
tle homology to those of type I IFNs (15%) (4); but they exert 
remarkably overlapping functions. The heterodimeric receptor 
for IFN-λ is named IFNLR (or IL-28R), and comprises the spe-
cific subunit interferon lambda receptor 1 (IFNLR1, also known 
as IL-28R1) plus the IL-10R2 subunit that is common to many 
type II cytokines (such as IL-10, IL-22, IL-24, and IL-26). Once 
IFNLR is engaged, IFN-λ activate an antiviral response that is 
very similar to the one triggered by type I IFNs (5). In fact, both 
engage a similar JAK–STAT pathway, with the only difference that 
IFN-λ can also use the adaptor JAK2 (6). Both cytokine families 
also induce IFN-stimulated gene (ISG) transcription, and both 
confer protection against viral infections (5). This overlap in 
functions raises the question of why two distinct but similar IFN 
systems have been maintained throughout evolution, considering 
that these two systems separated as far back in evolution as did 
amphibians, reptiles, and birds (7).

The main distinction between the two IFN systems has to 
do with the tropism between expression of the cytokine and its 
specific receptors. Myeloid cells at mucosal sites express both 
type I IFNs and IFN-λ in response to viral as well as bacterial 
ligands (8–11). However, type I IFN and IFN-λ production are 
regulated differently. Stimulation of plasma membrane toll-like 
receptor (TLR) (such as TLR2 and TLR5), both in myeloid and 
epithelial cells, selectively induces IFN-λ, and not type I IFN, 
mRNA expression. Moreover, activation of TLR5 has recently 
been proved to be essential for the induction of IFN-λ upon 
Salmonella encounter (9). Also, cells of epithelial lineage, both 
in the gut (12) and in the liver (13), preferentially produce IFN-λ 
over type I IFNs in response to viral ligands. In particular, while 
both IFNs are induced downstream of pattern recognition recep-
tor and mitochondrial antiviral signaling protein (MAVS), the 
production of IFN-λ is favored subsequent to activation of the 
MAVS that reside in peroxisomes (6, 14). The abundance of per-
oxisomes in cells of epithelial lineage could explain the tropism 
of IFN-λ production (13).

Other than the tropism of IFN-λ production, the selective 
expression of the receptor governs the tropism of IFN-λ response. 
The receptor for type I IFNs (which comprises receptor subunits 
IFNAR1 and IFNAR2) is expressed in virtually every cell type, 
while expression of the IFNLR1 receptor is much more specific, 
and is believed to be most abundant in cells of epithelial origin 
that are present at barrier surfaces (15). This pattern of expres-
sion, along with the recently documented non-redundant role 
of IFN-λ in protecting against virus infection at mucosal sites 
[e.g., at the intestinal barrier (12, 16–18) and in the lung (19)], 
suggest a model in which IFN-λ represents an epithelial cytokine 
that protect mucosal surfaces without activating widespread and 
possibly nocuous immune responses, while type I IFNs represent 
a more general and potent system that is activated once the 
mucosal barrier is broken. However, recent findings challenge 
the view that IFN-λ is primarily an epithelial cytokine, describe 
IFN-λ’s ability to directly and indirectly modulate immune cell 
functions and document the expression of IFNLR1 on immune 
cells; they also document that among immune cells, neutrophils 
express IFNLR1 and directly respond to IFN-λ, in the setting of 
viral infections (19) as well as other forms of acute inflammation 

(20–22). IFN-λ reportedly also interferes with the function of 
NK  cells (23, 24), and favors the skewing of T  cell activation 
toward type I (rather than type II) responses, by modulating DC 
functions (25). While the study of immunomodulatory effects 
of IFN-λ is still in its infancy—in part due to a lack of specific 
tools such as good antibodies against IFNLR1—a new role for 
IFN-λ in shaping the mucosal immune response is emerging. In 
this review, we critically examine recent literature on the role of 
IFN-λ in immune cells, differentiating between a direct IFN-λ 
effect on specific cell types and possible indirect phenomena; we 
also evaluate what is known about how IFN-λ participates in the 
control of mucosal immune responses.

MODULATiON OF iMMUNe CeLL 
FUNCTiONS BY iFN-λ

Neutrophils
Neutrophils are the first line of defense of the immune system:  
following pathogen invasion or tissue injury, these cells are 
quickly and massively recruited to barrier sites, where they protect 
the host by killing invading pathogens via a very rapid release of 
toxic mediators, independent of de novo protein synthesis (26). 
At later stages, neutrophils regulate the inflammatory response, 
either passively by undergoing apoptosis and turning off their 
toxic potential, or actively by secreting anti-inflammatory 
cytokines and lipidic mediators (27). The ability of these cells to 
potently kill bacteria is also accompanied by the necessary evil 
of tissue damage, since many of the toxic mediator released, such 
as reactive oxygen species (ROS) and proteases, are unable to 
discriminate between host and pathogen cells. Given the tropism 
of IFN-λ production to mucosal sites and the complex crosstalk 
between epithelial cells and neutrophils at mucosal surfaces  
(28, 29), it is remarkable that among murine immune cells, 
neutrophils express IFNLR1 at the highest level (19–21). Murine 
neutrophils express IFNLR1 at very high levels (19–21, 30) that 
are comparable to those in colonic epithelial cells (20) and in 
epithelial cells from the lung (19). Human neutrophils have also 
been found to express IFNLR1 at higher levels as compared to 
lymphocytes (30) and upregulate its expression following treat-
ment with pro-inflammatory agents such as LPS (20), or after 
encounter with Aspergillus fumigatus (30). In addition to the 
high levels of receptor expression, mouse and human neutro-
phils also respond to IFN-λ stimulation (19–21, 30), and activate 
the canonical JAK–STAT pathway, that leads to phosphorylation 
of STAT1, STAT2, and STAT3 (21, 30) and induces upregula-
tion of ISGs at levels similar to those induced by type I IFNs  
(19, 20). Surprisingly, in addition to the canonical ISG response 
induced downstream of the JAK–STAT pathway, IFN-λ also 
down-modulates tissue-damaging, transcription-independent 
responses such as production of ROS, granule mobilization 
(20), release of neutrophil extracellular traps (NETs) (22), and 
cellular migration (21); while cytokine production in response 
to inflammatory stimuli, phagocytosis, and apoptosis is not 
affected by IFN-λ (20).

Irina Udalova and colleagues were the first to report that 
neutrophils respond to IFN-λ (21), and that treatment of neutrophils 
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FigURe 1 | IFN-λ modulates neutrophil functions at the transcriptional and 
non-transcriptional levels. Reactive oxygen species production and 
degranulation are regulated at a non-translational level, involving AKT 
inhibition (upper left), neutrophil extracellular trap release is inhibited via 
inhibition of autophagy (middle left), and neutrophil migration is inhibited via 
an unknown mechanism (lower left). Transcriptional antiviral responses lead 
to the induction of IFN-stimulated genes, but do not mediate cytokine 
production, and act through a JAK1- and JAK2-dependent, STAT1, -2, 
-3-dependent mechanism (upper right). Phagocytosis and apoptosis are not 
affected (lower right).
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with IFN-λ in vitro leads to activation of the JAK–STAT pathway 
and STAT1 phosphorylation; they also first described the ability 
of IFN-λ to regulate pro-inflammatory neutrophil functions. In 
arthritic mice treated with recombinant IFN-λ, they observed a 
defect in neutrophil migration to the inflamed joint; this defect 
was attributed to the capacity of IFN-λ to directly inhibit neu-
trophil migration. Also in an air pouch model of acute inflam-
mation, and when neutrophil migration toward leukotrien B4 
was assessed in  vitro, the cells exhibited a defect in migration: 
fewer neutrophils were recovered in the air pouch in the pres-
ence of IFN-λ, and a shorter Euclidean distance was traveled by 
neutrophils treated with IFN-λ in vitro (21).

More recently, we showed that IFN-λs (but not type I IFNs) 
are able to regulate a non-translational signaling pathway that 
diminishes ROS production by neutrophils as well as degranu-
lation following activation of the cells with pro-inflammatory 
stimuli, but that it does not alter cytokine production induced 
by inflammatory stimuli or phagocytosis (20). We additionally 
demonstrated that IFN-λ inhibits degranulation and decreases 
ROS production even when de novo protein synthesis is inhibited 
with cycloheximide, or when STAT1 or STAT3 are genetically 
ablated or pharmacologically inhibited. Inhibition of all JAK 
kinases, or specific inhibition of JAK2, which is involved only in 
IFN-λ signaling (and not in type I IFN responses) (6, 14) impairs 
the ability of IFN-λ to inhibit ROS production and degranula-
tion (20). Neutrophils treated with IFN-λ are nevertheless able 
to phagocytose both opsonized and non-opsonized E. coli, and 
to produce cytokines in response to LPS. Human neutrophils 
appear to have similar regulating mechanisms: treatment with 
IFN-λ reduces the ability of these cells to produce ROS (20), and 
also impairs their ability to generate NETs in an in vitro model of 
thromboinflammation, wherein neutrophils are incubated with 
activated platelets in the presence of IFN-λ (22). IFN-λ treatment 
also inhibits NET generation in response to platelet-derived 
inorganic polyphosphate (polyP) and interferes with the ability 
of polyP to inhibit mTOR activation and induce the autophagy 
marker LC3, which is a requisite for NET release (31). IFN-λ, 
thus, profoundly influences neutrophil non-transcriptional 
functions and engages a pathway that is independent of the 
canonical JAK–STAT pathway and does not rely on de novo pro-
tein synthesis. In contrast to the transcriptional responses, these 
characteristics are not shared with type I IFNs and seem to spe-
cifically target the potent cytotoxic responses that can threaten  
mucosal integrity.

As previously described for epithelial cells (2, 3, 5, 32), 
IFN-λ induces a transcriptional response remarkably similar to 
that of type I IFNs. So far, no genes have been identified that 
are selectively upregulated by IFN-λ (and not by type I IFNs), 
and the upregulation of antiviral ISGs is largely overlapping; 
however, IFN-λ (as opposed to IFN-α) is unable to directly 
induce upregulation of pro-inflammatory cytokines, such 
as TNF, IL-1β, and IL-6, or chemokines, such as CCL2 and 
CXCL1. The influence of IFN-λ on neutrophils appears, thus, to 
be anti-inflammatory. Indeed, IFN-λ is able to down-modulate 
nocuous neutrophil functions—such as the production of toxic 
mediators or the production of NETs—without interfering with 
the capacity of these cells to engulf pathogens, or to orchestrate 

the inflammatory response via cytokine secretion (Figure  1). 
The importance of such regulation of neutrophil functions has 
been documented in vivo following viral infections and also in 
inflammatory pathologies. In fact, when IFNLR1 is depleted 
specifically in neutrophils, mice are more susceptible to a suble-
thal dose of influenza virus infection and present a higher viral 
load, higher number of leukocytes in the BAL, and higher levels 
of expression of inflammatory cytokines (19). Notably, when 
low doses of virus are used for infection, IFNLR expression is 
required both in epithelial cells and in neutrophils to confer 
maximum protection. In fact, mice with a conditional ablation 
of IFNLR1 in pulmonary epithelial cells or in neutrophils only 
partially recapitulate the total knock-out phenotype (19).

Interferon-λ also influences neutrophil functions during acute 
inflammation in the gut mucosa. We and others have described 
a protective role for IFN-λ in a mouse model of DSS-induced 
colitis (20, 33, 34). In fact, IFNLR1−/− mice are more susceptible 
to the induction of colitis than are wild-type mice and present a 
more severe disease phenotype, which is characterized by shorter 
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colons, greater weight loss, more severe histological damage, and 
augmented oxidative stress (20). This effect is entirely depend-
ent on the action of IFN-λ on immune cells, because chimeras 
in which only radio-resistant cells are IFNLR1−/−, and mice that 
harbor a deletion of IFNLR1 specific to epithelial cells are equally 
sensitive to DSS administration as are their wild-type counter-
parts (20).

By contrast, bone marrow chimeras in which IFNLR1 is depleted  
only in cells of hematopoietic origin, and mice with conditional 
depletion of IFNLR1 expression restricted to neutrophils, reca-
pitulate the aggravated phenotype of IFNLR1−/− mice. Notably, 
both chimeras deleted in the hematopoietic compartment, 
neutrophils specific IFNLR1−/− mice and total IFNLR1−/− mice 
have a more severe oxidative stress transcriptional signature in 
the colon epithelium, when compared to their wild-type coun-
terparts. These data strongly suggest that the control exerted by 
IFN-λ on neutrophil ROS production is pivotal to protect the 
intestinal mucosa during acute inflammation (20). In the absence 
of an active viral or bacterial infection, the source of tonic IFN-λ 
signaling is represented by the commensal virome. In fact, while 
depletion of intestinal viruses aggravates colitis in wild-type mice 
(20, 35) as well as in mice that are deficient in type I IFN signaling 
(20), IFNLR1−/− mice phenocopy WT mice that are depleted of 
intestinal viruses in that they are insensitive to treatment with 
antiviral drugs. In particular, alteration of the intestinal virome 
in humans that are similar to the alteration obtained in mice 
treated with antiviral drugs is associated with ulcerative colitis 
and Crohn’s disease (36, 37).

It was recently shown that IFN-λ action on neutrophils can 
also protect the host during fungal infections (30). In a model 
of invasive aspergillosis, both IFNLR1−/− and mice bearing 
neutrophil-specific depletion of IFNLR1 succumb faster after 
pulmonary infection with A. fumigatus and present an aggravated 
disease, with higher CFUs recovered from the lungs and more 
severe invasion as measured by histology. Curiously, neutrophils 
deficient for IFNLR1 had reduced intracellular ROS levels when 
stained ex vivo. This phenotype was recapitulated in neutrophils 
deficient for STAT1 suggesting that, during fungal infections, 
IFN-λ-dependent STAT1 activation mediates a transcriptional 
program that protects the host. While early, translation inde-
pendent, regulation of neutrophil function by IFN-λ suppresses 
ROS production and degranulation in response to inflamma-
tory stimuli, during fungal infections, STAT1-dependent action 
is critical for the activation of neutrophil functions in  vivo. 
The apparent contrast between the two mechanisms can be 
explained by the differential regulation of neutrophil biology 
in response to different stimuli. Moreover, while immediate 
responses, such as ROS production and degranulation, are not 
typically transcriptionally regulated, the optimal expression of 
NADPH enzymes during neutrophil development could con-
tribute to the protective effect of IFN-λ against fungi. Indeed, 
in our hands, when neutrophils were stimulated in  vitro with 
C. albicans hyphae, ROS were produced both in the absence 
and in the presence of recombinant IFN-λ (our unpublished 
data). Altogether, these data suggest that IFNLR1-stimulation 
is not necessary to induce ROS production by neutrophils upon 
fungal encounter in vitro but that, in vivo, IFN-λ can contribute 

to prime neutrophils during a stage of differentiation that could 
not be recapitulated in vitro.

Finally, the inhibitory activity of IFN-λ on neutrophils can 
also be exploited therapeutically: in fact, IFN-λ administration 
is protective in pulmonary infections with influenza virus (19), 
during DSS colitis (20) and in an inflammatory setting such as 
rheumatoid arthritis (21) or a mouse model of vascular injury 
(22), where IFN-λ is not produced naturally.

Dendritic Cells (DCs)
Conventional mouse DCs and human plasmacytoid DCs 
(pDCs) express low levels of IFNLR1 yet respond to IFN-λ 
stimulation. In mice, DCs that are derived from the lung express 
low levels of IFNLR1 (25). Despite these low levels of expression, 
the central role of DCs at the crossroads between adaptive and 
innate immunity makes their responses to IFN-λ highly signifi-
cant. Koltsida and colleagues report that DCs stimulated with 
IFN-λ, despite responding poorly in terms of ISG induction, are 
nonetheless able to upregulate T-bet and produce higher levels 
of IL-12 following LPS stimulation. In the same conditions, 
they also fail to upregulate OX40L and assume a Th1-polarizing 
phenotype (25). Indeed, when DCs sorted from the lungs of 
mice infected with a replication-defective adenovirus expressing  
IFN-λ under the CMV promoter—or from mice that are treated 
with recombinant IFN-λ—are used to stimulate T cell polariza-
tion in  vitro, they favor Th1 skewing. This ability of IFN-λ to 
induce the skewing of T cell responses is particularly relevant 
in a model of allergic airway disease (25). In fact, IFNLR1−/− 
mice present a more severe disease phenotype, with elevated 
production of type II cytokines, a higher histopathological score, 
and increased eosinophilic infiltration in the BAL. Moreover, 
when IFN-λ is administered—either directly or via an IFN-λ-
producing adenovirus—mice are protected from allergic airway 
disease (25). Also, adoptive transfer of DCs purified from mice 
treated with IFN-λ-producing adenovirus confers protection. 
Early reports also suggest that when DCs are stimulated with 
IFN-λ, they acquire a regulatory phenotype and promote 
FOXP3+ Treg proliferation (38), and that T cell responses can, 
thus, be skewed toward a Th1 phenotype in  vitro (39). These 
data strongly support a role of IFN-λ-stimulated DCs in skew-
ing T cell responses in vivo, and underscore the need to further 
investigate how IFN-λ affects DCs (25).

As mentioned above and recently reviewed (40), human pDCs 
serve an important role in IFN-λ biology. Human pDCs express 
IFNLR1 and are able to produce as well as respond to IFN-λ 
(40–42). When stimulated with IFN-λ, they induce the canonical 
JAK–STAT pathway (43, 44) and upregulate low levels of ISG 
transcription (43–45). IFN-λ also influences pDC-specific func-
tions: in particular, it can stimulate pDCs to produce type I IFNs 
and induce the expression of low levels of TNF (44). Moreover, 
IFN-λ acts synergistically with IL-3 to hyperactivate pDCs and 
induce higher levels of inflammatory cytokines (45). Treatment 
of pDCs with IFN-λ also influences the activation status of pDCs, 
inducing an upregulation of CD80 and CD86. The functional 
significance of these regulations remains to be determined: while 
some researchers claim that IFN-λ inhibits the ability of pDCs to 
activate T cells (42), the enhancement of pDC activation suggests 
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FigURe 2 | IFN-λ regulates the mucosal inflammatory process. Schematic depiction of IFN-λ’s ability to regulate immunity at mucosal sites by amplifying the antiviral 
response via directly stimulating dendritic cells and plasmacytoid DCs (right), and dampening damage-inducing neutrophil functions to maintain mucosal integrity 
(left).
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that IFN-λ stimulates pDCs and enhances their capacity to com-
bat viral infections.

While the ability of IFN-λ to influence the activity of DCs is 
intriguing and could have a substantial effect on how DCs govern 
innate and adaptive responses, more work is needed to clarify 
the specific response of DCs to IFN-λ. The discovery of new 
non-transcriptional pathways induced by IFN-λ should elucidate 
whether non-transcriptional responses are active in DCs and 
help reveal additional specific effects of IFN-λ on DCs. But while 
scattered reports in the literature link IFN-λ to the skewing of 
T cells toward a Th1 phenotype (46), the expression of IFNLR 
in T cells and the responsivity of T cells to IFN-λ has not been 
formally established; this suggests that the influence of this IFN 
on T cell functions in vivo represents indirect effects that require 
activation of DCs.

NK Cells
Emerging evidence documents that IFN-λ affects NK cell activity 
in vivo (23, 24). NK cells are believed to be essential for IFN-λ-
mediated protection against influenza virus (24), against tumor 
growth (23), and in a model of LPS-induced or cecal-ligation 
puncture (CLP)-induced septic shock (23). However, whether 
IFN-λ can act directly on NK cells is debated (47–49). Smyth and 
colleagues (50) report low levels of IFNLR1 expression on mouse 
NK cells, and to date, there is no evidence of a direct response 
of NK cells to IFN-λ; in fact, treatment of NK cells with IFN-λ 
does not activate STAT1 phosphorylation, nor does activate ISG 
expression (23). However, despite the lack of receptor expres-
sion on NK cells and the lack of responsiveness of these cells to 
IFN-λ in vitro, a model of acute endotoxemia shows that NK cells 
derived from IFNLR1−/− spleens have defective IFN-γ produc-
tion, and IFNLR1−/− mice are partially protected from lethal 
doses of LPS or in a CLP model of sepsis, in a IFN-γ-dependent 
manner. Together, these observations point to an indirect effect of 

IFN-λ on NK cells. While NK cells transferred from INFLR1−/− mice  
into Rag−/− γc−/− mice are also defective in the production of 
IFN-γ after LPS treatment (23), this does not exclude the pos-
sibility that IFNLR1−/− NK cells have defects in differentiation/
development. Observations on a recent model of influenza 
virus infection support this notion: administration of IFN-λ (by 
continuous overexpression via hydrodynamic gene delivery) 
protected mice from the viral infection, and influenced NK cell 
differentiation; indeed, NK cells in these mice exhibited a more 
mature phenotype and proliferated at a higher rate. However, 
these authors also claimed that NK cells express extremely low 
levels of IFNLR1, and they attributed the observed phenotype to 
the expression of IFNLR1 on myeloid cells. Notably, depletion of 
phagocytes by administering clodronate liposomes abolishes the 
protective effect of IFN-λ (24).

While the above findings unequivocally establish that NK cell 
functions are modified by IFN-λ in  vivo, they also strongly 
suggest that NK cells can be instructed by other cell types that 
directly respond to IFN-λ stimulation. DCs and neutrophils—the 
two cell types that do express IFNLR1 and respond to IFN-λ—can 
influence NK  cell functionality in  vivo. In fact, DCs activate 
NK cells by secreting cytokines, such as IL-2, IL-18, and IL-12; 
and DCs also present IL-15 to NK cells in an IFN-β-dependent 
manner (51–56). It will be important to test in the future the 
hypothesis that, similarly to type I IFNs (19), IFN-λ could also 
directly induce low levels of IL-15 that are presented to NK cells. 
In the same model of airway allergic inflammation that revealed 
IFN-λs ability to influence DC-mediated skewing of the immune 
response, it was shown that NK  cells preferentially produced 
IFN-γ and that they were protective against airway inflammation 
(57). While a direct activity of IFN-λ on NK cells for the observed 
protection cannot be excluded, the striking similarity of the two 
models implicates DCs in both skewing NK cell activation and 
inducing IFN-γ production.
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Neutrophils also profoundly influence the functions of 
NK cells. Consistent with the model in which IFN-λ regulates 
NK cell maturation, defects in NK cell terminal differentiation 
and survival were observed in congenitally neutropenic mice 
and in mice depleted of neutrophils, as well as in patients with 
neutropenia (57). Also, ROS produced by human neutrophils 
inhibit NK cell functions in vitro (58). The ability of IFN-λ to 
suppress ROS production and to counteract this inhibition 
feedback can potentially explain the increased activation of 
NK cells in the presence of IFN-λs. Some early in vivo studies 
support the hypothesis of a crosstalk between neutrophils and 
NK cells that governs the antitumoral activity of IFN-λ. In fact, 
when IFN-λ is administered via retroviral transduction into a 
mouse fibrosarcoma cell line, it is effective in controlling tumor 
growth, but this protective effect is lost when either NK cells 
or neutrophils are depleted (59). While IFN-λ undeniably 
influences NK cell functions in vivo, the phenotypes observed 
might be ascribed to unexplored modulation of NK  cell 
functions by neutrophils or DCs. However, the emergence of 
non-transcriptional roles for IFN-λ on neutrophils opens up 
the possibility that similar overlooked non-transcriptional 
pathways are active in NK cells.

Other Cell Types
Reports of other cell types expressing IFNLR1 and responding 
to IFN-λ stimulation exist in the literature. In particular, human 
B  cells have been shown to express IFNLR1 (43, 60, 61) and 
respond to IFN-λ by upregulating ISGs (61). While the functional 
role of IFN-λ in B cells is still open for investigations, early pieces 
of evidence suggest that, similar to type I IFNs, IFN-λ augments 
TLR-mediated activation of B cells.

Scattered reports describing a role of IFN-λ in human mac-
rophage activation also exist. In particular, IFN-λ can protect 
human monocyte-derived macrophages from HIV infection  
(62, 63) and treatment of human monocyte-derived macrophages 
with IFN-λ augments the production of pro-inflammatory 
cytokines following stimulation with LPS or R848 (64).

CONCLUSiON

Historically, IFN-λ has been recognized as an epithelium-specific 
cytokine that affects antiviral responses in epithelial cells; how-
ever, a growing body of literature supports a critical role for these 
IFNs in influencing the modulation of immune responses. The 
action of IFN-λ on immune cells is now configured in a model 
wherein this cytokine represents the first line of defense of 
mucosal surfaces. In fact, IFN-λ has non-redundant functions in 
conditions such as low viral loads (19), or when the epithelial layer 
is preferentially affected (12): under these conditions, IFN-λ acts 
directly on epithelial cells to exert local antiviral activity and on 
DCs to skew the T cell response toward an antiviral Th1 response; 
IFN-λ also acts directly or indirectly on NK cells to potentiate 
their activation and protect against viruses. At the same time, 
IFN-λ also serves important functions in neutrophils, inhibiting 
tissue-damaging events, such as ROS production, degranulation, 
and NET formation, without impairing cytokine production or 

pathogen engulfment. Indeed, IFN-λ activity on neutrophils does 
not impair, but enhances, responses to pathogenic fungi (30). This 
modulation of neutrophil activities is pivotal for protecting the 
mucosae from excessive damage and for maintaining the integrity 
and barrier functions of epithelia at mucosal sites. IFN-λ is, thus, 
deemed to be a mucosal cytokine whose evolutionary role is to 
precede activation of type I IFN, eliminate invading pathogens at 
mucosal sites without compromising their barrier functions, and 
limit dissemination of the pathogen (Figure 2). If the pathogen 
spreads and reaches the underlying tissues, a more potent inflam-
matory response orchestrated by type I IFNs is needed, but comes 
at the cost of extensive tissue damage. Such protective activity 
is also relevant in the absence of a viral infection: tonic IFN-λ 
production induced by commensal viruses protects the colon 
mucosa during experimental colitis by dampening neutrophil 
responses, and administration of IFN-λ is protective in a number 
of inflammatory settings such as allergic airway diseases, or 
arthritis. Such evidence of immunomodulatory roles for IFN-λ 
in  vivo highlights that these cytokines have additional, as yet 
unexplored roles in the stimulation of immune cells.

However, support for a direct role for IFN-λ in the modulation 
of immune functions is fragmented. This is in part due to the 
lack of biological tools such as specific antibodies against IFNLR1 
and the existence of a splicing variant of IFNLR1 in humans 
that gives rise to a secreted protein with decoy functions (65), 
which further complicate the correlation of IFNLR1 expression 
and IFN-λ responsiveness. The translation of findings based on 
mouse models to human biology is further complicated by the 
apparent different pattern of expression of the IFNLR1. Indeed, 
while pDCs and B cells express IFNLR1 and respond to IFN-λ 
stimulation in humans, the same cell types are not responsive to 
IFN-λ in mice. Also, while both murine and human neutrophil 
express the IFNLR1, it is still a matter of discussion if and how 
inflammatory stimuli and differentiation status of these cells can 
influence IFNLR1 expression. Despite these confounds, recent 
reports have uncovered the immune-modulating properties of 
IFN-λ, as well as new specific non-translational pathways that 
further differentiate its action from that of type I IFNs. These new 
insights will pave the way toward an in-depth understanding of 
the physiological role of these cytokines and will help in exploring 
the unappreciated functions of IFN-λ in the context of immune 
cells.
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