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CD4+ T cells play a central role in orchestrating protective immunity and autoimmunity. 
The activation and differentiation of myelin-reactive CD4+ T cells into effector (Th1 and 
Th17) and regulatory (Tregs) subsets at the peripheral tissues, and their subsequent 
transmigration across the blood–brain barrier (BBB) into the central nervous system 
(CNS) parenchyma are decisive events in the pathogenesis of multiple sclerosis and 
experimental autoimmune encephalomyelitis. How the Th1, Th17, and regulatory 
Tregs transmigrate across the BBB into the CNS and cause CNS inflammation is not 
clearly understood. Studies with transgenic and gene knockout mice have unraveled 
that Th1, Th17, and Tregs play a critical role in the induction and resolution of neu-
roinflammation. However, the plasticity of these lineages and functional dichotomy of 
their cytokine products makes it difficult to understand what role CD4+ T cells in the 
peripheral lymphoid organs, endothelial BBB, and the CNS parenchyma play in the 
CNS autoimmune response. In this review, we describe some of the recent findings 
that shed light on the mechanisms behind the differentiation and transmigration of 
CD4+ T cells across the BBB into the CNS parenchyma and also highlight how these 
two processes are interconnected, which is crucial for the outcome of CNS inflamma-
tion and autoimmunity.

Keywords: blood–brain barrier, experimental autoimmune encephalomyelitis, CD4 T  cells, neuroinflammation, 
transendothelial migration

inTRODUCTiOn

Homeostasis of central nervous system (CNS) is maintained by various mechanisms operating in 
both the CNS and the peripheral immune system. Due to the presence of barriers, CNS antigens 
are not exposed to cells of the peripheral immune system, which ensures a lack of effector immune 
response to CNS antigens in the steady state (1). However, upon recognition of CNS-derived 
antigens or cross-reactive microbial antigens, the peripheral CD4+ T cells have escaped from the 
central tolerance, mount a robust immune response, and infiltrate into the CNS. Such infiltration 
of CD4+ T cells causes CNS autoimmune diseases such as multiple sclerosis (MS) and experimental 

Abbreviations: APCs, antigen-presenting cells; BBB, blood–brain barrier; CFA, complete Freund’s adjuvant; CSF, cerebrospi-
nal fluid; CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; ECs, endothelial cells; ICAM-1, 
intercellular adhesion molecule 1; ILCs, innate lymphoid cells; LFA-1, lymphocyte function-associated antigen 1; MOG35–55, 
myelin oligodendrocyte glycoprotein peptide amino acid 35–55; MS, multiple sclerosis; TEM, transendothelial migration; 
Tregs, Foxp3+ regulatory T cells; Tr1 cells, T regulatory 1 cells; VCAM-1, vascular cell adhesion molecule 1; VLA-4, very late 
antigen 4.
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autoimmune encephalomyelitis (EAE) (2). MS is a human 
autoimmune demyelinating disease of the CNS characterized by 
massive infiltration of inflammatory lymphocytes and myeloid 
cells into the brain and spinal cord, leading to demyelination, 
axonal damage, and loss of neuromuscular functions (3). Most 
of the clinical and pathological features of MS are recapitulated 
in the animal model, EAE, which is one of the important models 
used to study CNS inflammatory diseases. EAE is also used for 
evaluating the efficacy of several therapeutic strategies to control 
neuroinflammation and autoimmunity (3).

ACTivATiOn OF MYeLin-SPeCiFiC CD4+ 
T CeLLS DURinG CnS inFLAMMATiOn 
AnD AUTOiMMUniTY

There is a long-standing hypothesis in the field that the activa-
tion of myelin-specific CD4+ T cells requires a trigger from some 
environmental factors (4). EAE is induced by activating myelin-
reactive lymphocytes through peripheral immunization with 
myelin antigens. EAE can also be induced in susceptible animal 
hosts either by subcutaneous immunization (s.c.) with myelin 
antigens emulsified in complete Freund’s adjuvant (CFA) or by 
the adoptive transfer of in vitro-activated myelin-specific CD4+ 
T cell subsets such as Th1 and Th17 (5, 6). Among the various 
myelin proteins, proteolipid protein, myelin basic protein, and 
myelin oligodendrocyte glycoprotein (MOG), and their cor-
responding immunodominant peptides have been extensively 
used to induce EAE in different rodent hosts (2, 5). However, 
this also requires administration of pertussis toxin, highlighting 
the importance of environmental factors in the development 
of CNS pathology (7, 8). CD4+ and CD8+ T cells that have low 
affinity/avidity for myelin antigens, escape thymic selection, 
and are localized mainly to the secondary lymphoid organs, 
where they remain in the tolerant state under homeostatic 
conditions (9). The subcutaneous deposition of myelin peptide 
emulsion attracts and activates professional antigen-presenting 
cells (APCs), such as dendritic cells, macrophages, and B cells, 
at the site of injection. These APCs take up the antigens and 
migrate to the draining lymph nodes, where they process and 
present antigenic peptides to the T lymphocytes. Immunization 
(s.c.) of C57BL/6 mice with MOG35–55-CFA emulsion along 
with intravenous pertussis toxin were found to induce antigen-
specific Th1 and Th17 cells in the draining lymph nodes, and 
at the same time limit the regulatory T (Treg) number and 
function (7, 10). Interestingly, T-cell receptor (TCR)-transgenic 
mice, such as 2D2 mice in which CD4+ T cells are engineered 
to express MOG35–55-specific TCR, develop spontaneous CNS 
autoimmunity (11), suggesting the importance of CD4+ T cells 
in EAE. By using several knockout and transgenic mice, mol-
ecules involved in the TCR and costimulatory and coinhibitory 
signaling in the activation, proliferation, and differentiation of 
myelin-specific CD4+ T cells have been evaluated. Furthermore, 
several members of the TNF-receptor superfamily critically 
regulate the CD4+ T cell response both in the secondary lym-
phoid organs and inflamed CNS and perturb the pathology of 
EAE (12).

DiFFeRenTiATiOn OF MYeLin-SPeCiFiC 
CD4+ T CeLLS

The naive CD4+ T cells, when stimulated by myelin APCs and 
specific cytokines, differentiate into various effector and regula-
tory lineages (Figure 1). Th1 cells secrete IFN-γ and TNF-α and 
are critical for controlling intracellular pathogens and induction 
of delayed-type hypersensitivity response. Excess activation of 
Th1 is involved in many organ-specific inflammations, including 
MS and EAE (13). In the presence of a strong TCR signal, IL-12/
STAT4 and IFN-γ/STAT1 signaling induces the Th1-specific 
transcription factor T-bet, which amplifies IFN-γ/STAT1/T-bet 
signaling and drives Th1 differentiation (14, 15). Furthermore, 
T-bet cooperatively interacts with other transcription factors 
such to RUNX1, RUNX3, GATA3, IRF4, and BCL6 to inhibit the 
differentiation of alternative CD4+ T cell subsets (16, 17). Mice 
deficient in Th1-associated factors such as T-bet and STAT4 are 
resistant to the development of EAE (18), whereas IFN-γ−/−, IFN-
γR−/−, and STAT1−/− mice develop more severe EAE (19). This 
suggests that Th1 cells play a critical role in the pathogenesis of 
EAE and MS through diverse mechanisms.

In humans and mice, various cytokines induces the differen-
tiation of Th17 cells with diverse phenotypes and functions. The 
conventional Th17  cells generated in the presence of TGF-β1 
and IL-6 are non-pathogenic during EAE, being involved in the 
maintenance of mucosal surface homeostasis and anti-bacterial 
defense (20, 21). However, several other factors such as IL-1β, 
IL-23, and TGF-β3 have been identified to favor the genera-
tion and maintenance of highly pathogenic Th17  cells during 
EAE (21–24). Mice deficient in IL-23 or IL-23R are completely 
resistant to the development of EAE (23, 25). Th17  cells that 
coexpress RORγt and T-bet and produce both IL-17A and 
IFN-γ, are highly pathogenic and preferentially recruited into 
the CNS, suggesting that T-bet enhances the pathogenicity 
of Th17  cells (13, 21, 26). The detailed development, pheno-
typic, and functional differences between pathogenic and 
non-pathogenic Th17  cells have been reviewed recently (21). 
Interestingly, a recent report shows that IL-23 induces a switch 
from CCR6 to CCR2 usage and controls the development and 
migration of highly encephalitogenic granulocyte macrophage-
colony stimulating factor (GM-CSF)-expressing Th17 cells into 
the CNS, suggesting that homing receptors and pathogenic 
functions are imprinted during differentiation (27). It has been 
shown that IL-12 induces STAT4 signaling and also triggers 
GM-CSF expression in Th1  cells and promote EAE develop-
ment (28). Interestingly, GM-CSF-producing Th1-like cells 
are also found in the cerebrospinal fluid (CSF) of MS patients 
(29), suggesting that GM-CSF may contribute to the pathogenic 
function of Th17, IFN-γ expressing ex-Th17 and Th1 cells. The 
chronic inflammatory signals can affect the transcriptional and/
or epigenetic signature and control the plasticity of Th1, Th17, 
and Tregs in the inflamed CNS and lymphoid organs during 
EAE (30). The IL-23-induced alternatively activated Th17 
(T-bet+RORγt+) or ex-Th17 cells that acquire T-bet and IFN-γ 
and express negligible RORγt and IL-17 are more pathogenic 
(31, 32). Similarly, transdifferentiation of Th17 into Tregs, and 
Tregs to effector Th1, Th2, and Th17 cells are also known (33, 34).  
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FiGURe 1 | Generation of myelin-reactive effector Th1, Th17, and regulatory iTreg cells and their plasticity in the central nervous system (CNS) parenchyma during 
experimental autoimmune encephalomyelitis. Upon appropriate myelin antigen presentation, and in the presence of adequate costimulatory molecules and cytokine 
signaling, naive CD4+ T cells are activated and give rise to effector (Th1 and Th17) and regulatory (iTreg) T cells. Th17 cells are trafficked into the CNS mainly through 
the choroid plexus using CCR6–CCL20 interactions, whereas Th1 cells cross the blood–brain barrier mostly using CXCR3–CXCL9/10/11 interactions. The 
reactivation of the infiltrating Th1 and Th17 cells by the local antigen-presenting cells (APCs) in the CNS boosts the cytokine secretion and pathogenic potential of 
Th1 and Th17 cells. Under the influence of IL-12 and IL-23 produced by the APCs, Th17 cells acquire the Th1 (ex Th17) and highly pathogenic Th17 (RORγt+T-bet+) 
phenotype.
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IL-23-induced phosphorylation and nuclear localization of 
STAT3/STAT4 heterodimer has been shown to control the gen-
eration of encephalitogenic Th1/Th17 cells (35). More studies are 
needed to understand the minimum essential cytokine stimuli 
is require to generate highly pathogenic Th17 cells and that may 
help in designing better therapeutic strategies to control the 
inflammation and autoimmunity.

Regulatory T  cells are suppressive in nature and known to 
control the myelin-reactive CD4+ effector T cell response and are 
therefore pivotal in regulating CNS inflammation during EAE 
(36, 37). Based on their developmental pathways, they are clas-
sified as natural Tregs (nTrgs; thymic-derived) or induced Tregs 
(iTregs; extrathymic-derived) (34, 38, 39). nTregs express Foxp3, 
a lineage-defining transcription factor, and CD25 (IL-2Rα) dur-
ing their development in the thymus. iTregs are generated from 
naive CD4+ T cells in the presence of TGF-β in the peripheral 
lymphoid tissue, which induces the expression of Foxp3 through 
STAT5 activation (40, 41). In both humans and mice Tregs, 
Foxp3 required for their suppressive capacity, and its deficiency is 
associated with the development of spontaneous autoimmunity  

(38, 39, 42). Tregs employ diverse contact-dependent (expression 
of CTLA4, FasL, and LAG3) and contact-independent (secretion 
of TGF-β and IL-10, deprivation of IL-2, and ectonucleotidases 
CD39/CD73-mediated conversion of extracellular inflammatory 
ATP/ADP into adenosine) mechanisms to inhibit the functions 
of myelin-reactive pathogenic T cells and other effector myeloid 
cells (43). The generation of myelin antigen-reactive CD4+ T cell 
subsets and the plasticity of Th1 and Th17 cells in inflamed CNS 
during EAE are depicted in Figure 1.

Other subsets of CD4+ T cells, such as Th9, T follicular helper 
(Tfh), T follicular regulatory, and T regulatory 1 (Tr1), are also 
reported to contribute to the development of neuroinflamma-
tion and autoimmunity. The adoptive transfer of MOG-specific 
Th9 cells is known to induce EAE in C57BL/6 recipients (44). 
Moreover, IL-9 is required for mast cell activation, which 
has previously been shown to degrade myelin during CNS 
inflammation (45). Tfh cells, which are mainly involved in the 
regulation of germinal center reaction, are also hypothesized to 
participate in the pathogenesis of MS and EAE by virtue of their 
ability to help in the formation of ectopic lymphoid follicles 
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TABLe 1 | Susceptibility and severity of experimental autoimmune encephalomyelitis (EAE) in various mouse strains.

Mouse strains eAe type Pathology of the disease Disease susceptibility Reference

IL-12p35−/− Classical Mononuclear cells in the spinal cord Susceptible (27, 49)
IL-12p40−/− Resistant (27, 49)
IL-12Rβ2−/− Classical Mononuclear cells in the spinal cord Severe EAE (50)
STAT1−/− Atypical Macrophage and neutrophils in the brain and spinal cord Hypersusceptible (18, 19)
STAT1−/−.T-bet−/− Atypical Macrophage and neutrophils in the brain and spinal cord Less severe EAE (15, 18)
T-bet−/− Resistant (13, 18)
STAT4−/− Classical Reduced infiltration in the spinal cord Resistant (35, 51)
STAT6−/− Classical Mononuclear cells in the spinal cord Severe EAE (51)
TNF-α−/− Classical Mononuclear cells in the spinal cord Delayed but comparable severity (52)
TNFR-1−/− Classical Mononuclear cells in the spinal cord Less severe EAE (53)
TNFR-2−/− Classical Mononuclear cells in the spinal cord Severe EAE (53)
TNFR1/2−/− Classical Mononuclear cells in the spinal cord Severe EAE (53)
IFN-γ−/− Atypical Predominantly neutrophils in the brain-stem and cerebellum Hypersusceptible (19)
IFN-γR−/− Atypical Predominantly neutrophils in the brain-stem and cerebellum Hypersusceptible (54)
IL-23p19−/− Completely resistant (23, 25)
IL-23R−/− Completely resistant (55)
IL-6−/− Completely resistant (56)
GM-CSF−/− Completely resistant (57)
IL-17A−/− Classical Mononuclear cells in the spinal cord Delayed but comparable severity (58)
IL-17F−/− Classical Mononuclear cells in the spinal cord Susceptible (58)
IL-21−/− Classical Mononuclear cells in the spinal cord Susceptible (59, 60)
IL-21R−/− Classical Mononuclear cells in the spinal cord Susceptible (59, 60)
IL-22−/− Classical Susceptible (61)
IL-27Rα−/− Classical Hypersusceptible (48)
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in the inflamed CNS (46). Tr1 cells which are differentiated 
in vitro by culturing in the presence of TGF-β plus IL-27 show 
the Foxp3−IL-10+IFN-γ+ phenotype. Tr1 cells are known to play 
a significant role in the development of transplantation toler-
ance (47), but their exact role in EAE is not known. However, 
IL-27Rα−/− mice are hypersusceptible to the development of 
EAE, possibly because of a lack of IL-27-mediated control of 
Th17, as well as the absence of Tr1-mediated suppression (48). 
There are several Th1- and Th17-associated molecules, which 
play an important role in the pathogenesis of EAE, and their 
deficiency affects the severity of the disease (Table 1).

MiGRATiOn OF MYeLin-SPeCiFiC CD4+  
T CeLLS inTO THe CnS DURinG 
inFLAMMATiOn AnD AUTOiMMUniTY

Various cellular and molecular interactions help in maintaining 
the blood–brain barrier (BBB) integrity and immune quiescence 
into the CNS. It has been reported that astrocytes secrete Sonic 
hedgehog and endothelial cells (ECs) express Hedgehog recep-
tors, and interaction of these receptor ligand promote the BBB 
formation and integrity (62). Migration of immune cells into 
the CNS parenchyma is a highly regulated process which occurs 
at various anatomical sites of the CNS, such as at the choroid 
plexus of the blood–CSF barrier, as well as across the BBB at post-
capillary venules. The transmigration across the BBB is a very 
dynamic process and depends on a series of sequential and inter-
dependent steps constituting tethering and rolling of immune 
cells, chemokine-induced activation, followed by polarization, 
crawling, the arrest of immune cells, and finally diapedesis of cells 
across the BBB ECs.

Intravital microscopic analysis of encephalitogenic T  cell 
interactions with inflamed brain and spinal cord microvessels 
have revealed that the P-selectin glycoprotein ligand (PSGL-1)– 
P/E-selectin interaction mediates the initial rolling and tether-
ing of CD4+ and CD8+ T  cells (63). However, deficiencies of 
E- and P-selectin or PSGL-1 do not protect mice from EAE  
(64, 65), suggesting the redundant roles of these molecules during 
neuroinflammation. Followed by tethering, the α4β1-integrin on 
T cells interacts with endothelial vascular cell adhesion molecule 
1 (VCAM-1) and is required for firm adhesion of T cells (66). 
Further studies are needed to clarify whether encephalitogenic 
T cells use alternative molecules for rolling and tethering onto 
the inflamed BBB.

The G protein-coupled receptors, such as chemokines and 
eicosanoids displayed on the luminal surface of the BBB ECs, 
trigger the integrin activation that leads to T  cell firm arrest 
on the vascular endothelium. During EAE, ECs are shown to 
express CCL2, CCL19, and CCL21, which mediate firm arrest 
of CCR2+ monocytes and DCs, and CCR7+CD4+ T  cells (67). 
However, the exact role of these interactions in the transendothe-
lial migration (TEM) of encephalitogenic CD4+ T cells remains 
to be determined. Mice that overexpress CCL19, CCL21, or 
CXCL10 molecules in the CNS do not show hypersusceptibility 
to the EAE development (68, 69), suggesting that the functions of 
these chemokine interactions are tightly regulated. Chemokine 
receptor-induced signaling leads to a conformational change 
in the integrin molecules on CD4+ T  cells, and which causes 
an increase in their affinity for their cognate ligands. Inflamed 
endothelial vessels in the CNS parenchyma upregulate the 
expression of the intercellular adhesion molecule 1 (ICAM-1) 
and VCAM-1, and their respective ligands, αLβ2 [lymphocyte 
function-associated antigen 1 (LFA-1)], and α4β1 [very late 
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antigen 4 (VLA-4)] integrins, are expressed on the encepha-
litogenic CD4+ T cells (70). Multiple investigators have shown 
that LFA-1–ICAM-1 and VLA-4–VCAM-1 interactions are 
critically involved in the firm arrest of CD4+ T  cells onto the 
inflamed cerebral vessels or primary brain EC monolayers (71). 
Moreover, LFA-1–ICAM-1 interactions dictate the polarization 
and crawling of CD4+ T cells onto the inflamed vessels ECs, but 
VLA-4–VCAM-1 interactions do not (66). The anti-α4-integrin 
antibody, natalizumab has been approved for the treatment 
of relapsing-remitting MS (72). Interestingly, α4β1-integrin–
VCAM-1 interaction arrest encephalitogenic Th1 cells onto the 
spinal cord microvessels, whereas LFA-1–ICAM-1/2 regulates 
Th17 adhesion to the endothelial barrier in the brain. This 
suggests that Th1  cells preferentially use α4-integrin, whereas 
Th17 transmigration across the BBB is α4-integrin independent  
(73, 74). Other cell adhesion molecules such as activated leukocyte 
cell adhesion molecule and melanoma cell adhesion molecule 
(MCAM) are also known to regulate transmigration of the CD4+ 
and CD8+ T cells and CNS autoimmunity (75–77). The MCAM 
expression in lymphocytes are associated with GM-CSF, IL-22, 
and IL-17A/IFN-γ coproducing Th17 cells (75), and antibody-
mediated blocking of MCAM controls the CNS autoimmunity 
(75, 77). Recently, αvβ3-integrin has been shown to control Th17 
migration into the CNS, and a lack of β3 subunits ameliorates 
EAE (78). A genetic deficiency or functional blocking of most 
of the integrins and their ligands have yielded varied results in 
controlling the disease. These discrepancies might be due to a 
difference in the induction of EAE models, wherein the contri-
bution of Th1 and Th17 varied to a significant extent. Live cell 
imaging studies of TEM across ICAM-1 and ICAM-2-deficient 
brain endothelial monolayers have revealed the presence of an 
alternative pathway for CD4+ T cell diapedesis (79).

Once arrested, CD4+ T cells start crawling on inflamed CNS 
microvessels to search the sites for diapedesis. TEM of CD4+ 
T  cells across the BBB can occur through both, intercellular 
junctions and the cell body, known as paracellular and transcel-
lular migration, respectively (80, 81). However, the physiological 
factors that dictate the choice of the transmigration route are not 
known, and thus forming an active area of investigation. Several 
studies have demonstrated that during TEM there is a fast and 
very dynamic remodeling of the endothelial junctional proteins 
that guide the migration of CD4+ T cells through paracellular 
route (82). The involvement of some of the adhesion molecules 
and junctional proteins such as PECAM-1, CD99, Claudin-5, 
VE-cadherin, and JAMs in the regulation of paracellular TEM 
has been very well studied (83). Upon attachment of the CD4+ 
T cells to the apical surface of inflamed brain ECs, a rapid clus-
tering of ICAM-1 and VCAM-1 occurs around the transmigrat-
ing CD4+ T cells, resulting in the formation of transmigratory 
cups enriched with actin filaments (84). These clustering events 
trigger the various signaling pathways, leading to generation of 
an intracellular calcium flux, phosphorylation of key molecules 
that regulate the actin cytoskeleton, and production of reactive 
oxygen and nitric oxide species, which ultimately result in 
junctional disassembly (85). Numerous factors such as shear 
force, cytokine-induced inflammatory changes in the brain 
ECs, type of lymphocytes, and levels of junctional tightness 

have been hypothesized as the potential factors that regulate 
transcellular TEM of cells at the BBB. A recent study showed 
that cytokine-induced increased levels of ICAM-1 on the apical 
surface of primary mouse brain microvascular cell monolay-
ers promote the transcellular TEM of CD4+ T  cells possibly 
because of high occupancy of its receptor LFA-1 on CD4+ T cells  
(80, 81). In addition, overexpression of the C-terminal deletion 
mutant form of ICAM-1 in primary brain endothelial monolay-
ers inhibits the TEM of leukocytes by reducing transcellular 
migration (86). Recently, the critical role of the lateral border 
recycling compartment, a recently identified endothelial specific 
subcellular compartment (enriched with PECAM-1 and CD99), 
have been shown to support both paracellular and transcellular 
TEM (87). The caveolin-rich transmigratory cups that surround 
the migrating CD4+ T cells have also been associated with tran-
scellular TEM (88). While transcellular migration is impaired in 
caveolin-1-deficient ECs, they show higher paracellular TEM, 
suggesting that in the absence of one pathway another route 
can compensate (88). Similarly, whether a lack of paracellular 
migration at the endothelial monolayers of high barrier tight-
ness, such as the BBB favors the transcellular route remains to 
be determined.

After crossing the endothelial vessels of the BBB, CD4+ 
T cells encounter the glial (glia limitans) basement membrane, 
and breaching this acellular structure represents the final step of 
trafficking into the CNS. The endothelial basement membrane at 
the BBB is characterized by the presence of laminin α4 and α5. It 
has been demonstrated that encephalitogenic CD4+ T cells cross 
the endothelial basement membrane through α6β1-integrin–
laminin α4 interactions (89). On the other hand, laminin α5 in the 
endothelial basement membrane inhibits migration (89). Under 
physiological conditions, CXCL12 is abundantly expressed on 
the abluminal surface of brain endothelial microvessels, which 
inhibits the migration of CXCR4+ leukocytes into the CNS paren-
chyma (90). The cytokine-induced CXCR7 expression on these 
endothelial microvessels changes the localization of CXCL12 to 
the luminal surface, resulting in TEM of CXCR4+ leukocytes at 
the peak of the EAE (91). In contrast to the endothelial basement 
membrane, the glia limitans is enriched with laminin α1 and 
α2. Since encephalitogenic CD4+ T  cells do not interact with 
laminin α1 and α2, they depend on matrix metalloproteinases 
(MMPs) to cross the basement membranes. Various types of 
MMPs, such as MMP-2, MMP-7, MMP-8, and MMP-9, have 
been identified in the CSF and lesions of MS and EAE. During 
EAE, MMP2 and MMP9 expression are specifically increased, 
and their combined action is positively correlated with the 
migration of CD4+ T cells across glia limitans (92). One of the 
targets of MMP2 and MMP9 is β-dystroglycan, a receptor which 
anchors astrocytic endfeet to the parenchymal basement mem-
brane, leading to secretion of chemokines by the astrocytes at 
the glia limitans (93). Meningeal inflammation actively controls 
local CD4+ T cell reactivation and transmigration into the CNS. 
It has been recently shown that Th17-derived IL-17 and IL-22 
activate meningeal stromal cells, which support the de novo 
IL-17 responses in the meninges (94). Interestingly, a finding 
has extended our current view about the role of T-bet beyond 
the generation of pathogenic Th1/Th17  cells and showed that 
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T-bet expressing NKp46+ innate lymphoid cells (ILCs) promote 
meningeal inflammation and regulate EAE development by 
supporting Th17 migration into the CNS (95). Thus, the relay of 
coordinated signaling induced by cytokines, chemokines, and 
cell adhesion molecules in the ECs of the BBB and migrating 
CD4+ T cells orchestrate the multistep migration of encephalito-
genic CD4+ T cells into the CNS parenchyma.

FUTURe PeRSPeCTive

Both genetics and environmental factors cooperate to program 
auto-reactive CD4+ T  cells to perform both pathogenic and 
regulatory functions during the course of autoimmune CNS 
pathologies. Recent evidence has suggested that the phenotype 
and functions of pathogenic Th1, Th17, and regulatory Tregs 
cells are regulated at various anatomic and physiological levels. 
The APCs in the periphery, tertiary lymphoid structures, stromal 
cells, and subsets of ILCs in the meninges, ECs at the BBB, and 
various CNS resident and infiltrating cells in the CNS parenchyma 
tightly control the activation, differentiation, and migration of 
CD4+ T cells that dictate the induction, maintenance, and resolu-
tion of autoimmune neuroinflammation. While considerable 
evidence already links Th1 and Th17 cells to the pathology of CNS 
autoimmunity, this list of cells continues to grow with recently 
identified subsets of CD4+ T cells, the IL-9-secreting Th9 cells, 
and IL-10-secreting Foxp3− Tr1 cells (44, 96). However, the exact 
role of these cells and their associated molecules on the BBB, CNS 
resident cells, and other effector and regulatory leukocytes in the 
inflamed CNS parenchyma, and their overall impact in shaping 
neuroinflammation warrants further investigation. The ECs of 
the BBB have been recently shown to promote antigen-specific 
Th1 and Th17 migration through myelin-antigen presentation 
(97). However, the qualitative and quantitative differences in the 

regulation of transmigration of Th1, Th17, Th9, Tregs, and Tr1 
cells across the BBB is not known and needs further attention. 
Experiments with knockout mice have revealed a great deal 
of information about the role of CD4+ T cell subsets and their 
lineage-associated transcription factors, cytokines, and homing 
receptors in the induction and propagation of CNS inflammation. 
The complete resistance of EAE in mice that lack T-bet, RORγt, 
IL-23R, and GM-CSF is attributed to the absence of pathogenic 
Th1 and Th17 functions (21, 26). However, these molecules are 
not exclusively expressed in CD4+ T cells, and the contribution of 
other myeloid and lymphoid cells, including subsets of γδ T cells, 
ILC1 and ILC3 that express/respond to these molecules, needs 
to be further investigated. Therefore, to better understand the 
pathophysiology of CD4+ T cells in autoimmune CNS diseases, 
we need to dissect out the contributions made by the other cell 
types that share the transcription factors, cytokines, and homing 
receptors of CD4+ T cell lineages. A reductionist approach may 
help in probing the exact role of CD4+ T cell subsets through the 
course of CNS inflammation and autoimmunity.
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