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inFECTiOUS DiSEASES, A CHALLEnGE TO MODERn MEDiCinE

Among all infectious diseases, malaria and tuberculosis constitute leading causes of morbidity 
and mortality of human populations in developed and undeveloped countries (1, 2). In 2015, the  
WHO reported that 10.4 million people had tuberculosis and 1.8 million of them died from the 
disease (1). Despite a reduction of malaria cases between 2000 and 2015 (3), the WHO reported 212 
million cases and 429,000 deaths due to this disease in 2015 alone (2). Drug resistance to first-line 
antimalarial drugs (e.g., chloroquine, sulfadoxine–pyrimethamine, and artemisinin) is a major 
constrain of malaria control Sub-Saharan Africa (4). Likewise, multidrug-resistant tuberculosis is 
a growing problem worldwide (5). Thus, the control of these diseases is among the most challeng-
ing tasks of public health worldwide. Drug overuse and misuse are recognized as the main drivers 
of drug resistance in parasites and pathogenic bacteria (4, 6). The identification of genetic factors 
affecting the susceptibility to these infectious diseases is essential toward reducing drug overuse 
and inappropriate treatment regimes. In this opinion, we propose that blood groups, a major driver 
of anti-α-Gal immunity and malaria and tuberculosis incidence (7), can be used to tailor anti-
malaria and anti-tuberculosis vaccination. Blood group A and O individuals, that can potentially 
develop strong anti-α-Gal immunity (8), could be immunized with probiotic-based vaccines to 
enhance the natural levels of anti-α-Gal antibodies. This immunity could lead to protection against 
these diseases which in turn would reduce the use of anti-malaria and anti-tuberculosis drugs.

BLOOD GROUpS, inFECTiOUS DiSEASES, AnD AnTi-α-GAL 
iMMUniTY

The ABO histo-blood groups consist of two antigens (A and B), and four blood types (A, B, AB, 
and O) of which blood types A, B, and O are the most frequent among human populations, being 
the O type the most common (9). The blood type O results from the homozygous inheritance of 
two null ABO alleles and individuals in this group express the antigen H, the precursor of blood 
types A and B (Figure 1). The ABH antigens are carbohydrates attached to glycosphingolipids and 
glycoproteins. In general, humans have antibodies against missing A or B antigens (9). Therefore, 
individuals with blood type A have antibodies against antigen B, but not against self-antigen A (9). 
Individuals with blood type O have antibodies against both A and B antigens (9). The ABO blood 
type correlates with the susceptibility and severity of malaria and tuberculosis (9–11). However, 
so far, most of the mechanisms relating ABO blood types to infectious diseases are based on host 
cell–pathogen interactions (12, 13). For example, blood type O protects against severe malaria 
caused by Plasmodium falciparum through the mechanism of reduced rosetting (i.e., spontane-
ous binding of infected erythrocytes to uninfected erythrocytes) (12). By contrast, blood type A 
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FiGURE 1 | Glycan structure of blood group antigens and α-Gal. Blood type B, A, and O individuals express the B, A, and H antigens, respectively. Adapted  
from Ref. (8, 9).
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individuals are more susceptible to severe malaria because the  
P. falciparum–encoded repetitive interspersed families of poly-
peptides, expressed on the surface of infected red blood cells, 
binds more efficiently blood group A and increases the rosetting 
(13). Recent findings, however, showed that gut microbiota 
induces a protective immune response against malaria trans-
mission by mosquitoes (14). This mechanism was associated 
to the antigen Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) expressed 
by microbiota bacteria and all mammals, but no by Old World 
monkeys, apes, and Homo sapiens (14, 15). In particular, humans 
have three frame-shift mutations in the gene (GGTA1) encoding 
for the enzyme α1,3-galactosyltransferase (α1,3GT) that result in 
premature stop codons truncating the α1,3GT enzyme which pre-
vents the synthesizes of the carbohydrate α-Gal (15). Therefore, 
human cells lost the ability to produce this carbohydrate, which 
resulted in an almost unique capacity to produce high antibody 
titers against α-Gal (14, 15). Anti-α-Gal antibodies (IgM and IgG) 
induced by gut microbiota inhibited Plasmodium (i.e., P. berghei 
and P. yoelii) transmission by Anopheles mosquitoes, with a nega-
tive correlation between the levels of anti-α-Gal antibodies and 
the incidence of P. falciparum infection in human populations 
of endemic regions (7, 14). Individuals from Mali and Senegal 
exposed to mosquito bites were not infected by P. falciparum 
when having high anti-α-Gal antibody levels (7, 14). Strikingly, 
anti-α-Gal humoral response in GGTA1 gene knockout (KO) 
mice provides “sterilizing immunity” against Plasmodium sporo-
zoites transmission by mosquitoes (14). Sterilizing immunity 
“is a unique immune status, which prevents effective pathogen 
infection into the host and is different from the immunity that 
allows infection but with subsequent successful eradication of the 
pathogen” (16). Particularly, gut colonization by Escherichia coli 
O86:B7, which expresses α-Gal, blocked Plasmodium infection 
in 60% of the mice (14). This was not the case when GGTA1 
KO mice were or were not colonized by E. coli K12 that do not 
express α-Gal (14). Likewise, α-Gal immunization, with a TLR9 
agonist adjuvant, enhanced the levels of anti-α-Gal antibodies 
and reduced the risk of Plasmodium infection by 88% compared 
to 61% risk reduction without adjuvant (14). Furthermore, α-Gal 
immunization arrested the transit of sporozoites from the skin 
into the liver, without interfering with sporozoite inoculation by 

mosquitoes. The cytotoxic effect of anti-α-Gal antibodies was 
restricted to the mice dermis and was dependent on the classical 
pathway of complement activation (14). It is important to note 
that the parasitemia, disease severity, and mortality were similar 
among those GGTA1 KO mice that were infected regardless of 
gut colonization by E. coli O86:B7 or α-Gal immunization. This 
suggested that α-Gal immunity protects against Plasmodium 
transmission, but not against the erythrocytic stage of this para-
site (14). Thus, anti-α-Gal immunity, if effective at the popula-
tion level, has the potential to influence malaria incidence, but 
not disease severity or protection once the disease is established.

Likewise, tuberculosis patients in the Iberian Peninsula 
(Portugal and Spain) had low anti-α-Gal antibody levels when 
compared to healthy individuals (7). These groundbreaking  
findings suggested that anti-α-Gal antibodies might protect not 
only against Plasmodium parasites but also against other pathogens 
expressing α-Gal on their surface (17, 18). Remarkably, several 
pathogens such as Plasmodium spp. (14), Mycobacterium marinum 
(closely related to Mycobacterium ulcerans and Mycobacterium 
tuberculosis) (7), Leishmania spp. (19), and Trypanosoma spp.  
(20, 21) were reported to produce and express α-Gal on their 
surface, and thus anti-α-Gal antibodies could control their infec-
tion by complement-mediated lysis (14). The current paradigm 
is that immunity against M. tuberculosis relies exclusively on 
cellular defense mechanisms (22). However, mounting evidence 
supports that humoral immunity contributes to protection 
against tuberculosis (22, 23). In agreement with a protective role 
of antibodies against M. tuberculosis, Costello et al. (24) reported 
that antibody response to the glycolipid lipoarabinomannan 
limited bacteria dissemination in childhood tuberculosis. And 
passive immunotherapy using antibodies against different anti-
gens has been shown to be protective in experimental models of 
tuberculosis (25).

Notably, the structure of blood type B [Galα1-3(Fucαl,2)Gal] 
is very similar to antigen α-Gal (Figure  1) because they share 
the disaccharide Galα1-3Gal (gal2) (8). In addition, gal2 is a 
crucial and sufficient epitope for anti-α-Gal antibody recogni-
tion (26). Accordingly, individuals with blood type B have a 
reduced antibody response against the related antigens α-Gal, 
gal2, and the blood antigen B (8). This lead us to the hypothesis 
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FiGURE 2 | Level of anti-α-Gal IgM and IgG antibodies in healthy individuals 
from Africa and Europe. The figure displays the level of anti-α-Gal IgM and 
IgG in individuals from Senegal (Africa) and Portugal and Spain (Iberian 
Peninsula, Europe). Anti-α-Gal IgM and IgG antibody levels (O.D. 450 nm) 
were determined by ELISA in sera from healthy adults (7). The level of both 
immunoglobulins was significantly higher in African individuals.
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that self-tolerance to blood type B affects the immune response to  
α-Gal, which in turn affects the susceptibility to infectious dis-
eases caused by pathogens carrying α-Gal on their surface (7). The 
direct association between blood type B, low anti-α-Gal antibody 
titers, and the susceptibility to pathogens carrying α-Gal on their 
surface remains to be fully verified. However, this hypothesis was 
partially tested by correlation analysis between the incidence of 
malaria, tuberculosis, and dengue and the frequency of ABO 
blood types in endemic regions (7). The frequency of blood type 
B was positively correlated with the incidence of malaria and 
tuberculosis, but not with the incidence of dengue (7). By con-
trast, a negative correlation was observed between the frequency 
of blood type A and the incidence of malaria and tuberculosis (7). 
Both Plasmodium spp. and Mycobacterium spp. contain α-Gal on 
their surface, while Dengue virus does not produce this antigen 
(7, 14). In agreement with these results, a 4-year prospective 
cohort study in childhood malaria in Mali showed that children 
having blood types B and AB had higher incidence rate (blood 
type B: 1.63 and blood type AB: 1.65) compared to those children 
with blood types A and O (blood type A: 1.57 and blood type 
O: 1.45) (11). Other studies in endemic regions supported the 
association between blood type B and high incidence, prevalence, 
or severity of malaria (27, 28). Similar results were published for 
tuberculosis (10).

Bhatt et  al. (3) reported that malaria control strategies have 
had a dramatic effect on malaria incidence in sub-Saharan Africa 
by reducing the incidence of clinical disease by 40% between 2000 
and 2015. Interestingly, we found that the reduction in malaria 
incidence per country from 2000 to 2015 was negatively corre-
lated with the frequency of blood type B (7). This finding suggests 
that the control of malaria has been less effective in countries 
with the highest frequency of blood type B, and therefore more 
susceptible individuals. Collectively, these results have important 
implications for the control of infectious microorganisms con-
taining α-Gal on their surface.

MiCROBiOTA, inFECTiOUS DiSEASES, 
AnD AnTi-α-GAL iMMUniTY

In addition to blood group, gut microbiota composition has also 
been associated with malaria and tuberculosis. A recent study 
showed that cecal content transplants from malaria “resist-
ant” or “susceptible” mice to germfree mice resulted in low 
and high Plasmodium spp. burdens, respectively (29). Further 
microbiota composition analysis revealed increased abundance 
of Lactobacillus and Bifidobacterium in resistant mice dem-
onstrating that gut microbiota shaped the severity of malaria 
(29). In agreement with the protective role of Bifidobacterium 
against malaria severity, the gut microbiota of Malian children 
at lower risk of P. falciparum infection contained a significantly 
higher proportion of Bifidobacterium, Streptococcus, and 
Enterobacteriaceae (i.e., Escherichia and Shigella) compared to 
subjects at higher risk of P. falciparum infection (30). Gut micro-
biota composition is very different between malaria endemic 
and non-endemic countries (31). Contrasting microbiota 
composition can be due to differences in diet (31), but also to 

host–pathogen adaptations, in which individual from endemic 
countries acquired, maintain and develop a gut microbiota that 
may influence protection to malaria transmission and/or toler-
ance to severe malaria. Interestingly, production of anti-α-Gal 
antibodies in humans is thought to be driven by exposure to 
microbiota bacteria of the Klebsiella spp., Serratia spp., and  
E. coli spp. expressing α-Gal (32). As mentioned above, this has 
been experimentally tested and gut colonization by the human 
pathobiont E. coli O86:B7 elicited anti-α-Gal antibodies in 
GGTA1 KO mice and in primates (33, 34). We hypothesized 
that contrasting microbiota composition between malaria 
endemic and non-endemic countries may have an effect in anti-
α-Gal antibody levels. In fact, anti-α-Gal IgG and IgM antibody 
levels in healthy individuals from malaria endemic regions are 
significantly higher than those of individuals from non-endemic 
regions (Figure 2).

The experiments by Villarino et al. (29) were carried out in 
wild-type mice that express α-Gal and cannot develop anti-α-
Gal antibodies. Therefore, the protective role of Lactobacillus 
and Bifidobacterium in these experiments was not related in 
any way to anti-α-Gal immunity. It is remarkable that Malian 
children microbiota is composed by both Escherichia spp. and 
Bifidobacterium (30). These two bacteria, when present in the 
same individual, may decreased simultaneously the risk of 
malaria infection and disease severity, respectively. Anti-α-Gal 
immunity triggered by E. coli gut colonization targets Plasmodium 
sporozoites in the skin immediately after mosquito transmission 
but once the parasites reach the blood, the anti-α-Gal antibodies 
are not effective (14). Thus, by reaching the blood, the parasites 
escape the anti-α-Gal immunity. In this scenario, the presence 
of Bifidobacterium in the gut microbiota can play an important 
role by decreasing malaria severity. Despite results by Villarino 
et al. (29) were not related to α-Gal immunity, the possibility 
that Lactobacillus and Bifidobacterium influence the response to 
α-Gal in humans cannot be rule out.

The role of gut microbiota in tuberculosis remains largely 
unexplored (35). However, a recent study found that antibiotic-
induced dysbiosis increased significantly the bacterial burden in 
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lungs and dissemination of M. tuberculosis to spleen and liver 
(36). Furthermore, microbiota diversity reconstitution by fecal 
transplantation significantly reduced the bacterial load in the 
lungs (36). Further studies should test whether Bifidobacterium 
and Lactobacillus play a protective role in tuberculosis as in 
malaria.

CHALLEnGES OF DEVELOpinG  
A pROBiOTiC-BASED VACCinE

The carbohydrate α-Gal is a protective antigen (14, 19, 37, 38). 
α-Gal immunization induces an protective immune response 
against Plasmodium spp. (14)., Trypanosoma cruzi (37), and 
Leishmania spp. (19, 38). This provides the basis to develop a  
single-antigen pan-vaccine to control major infectious diseases 
(18). This prospective vaccine can be developed using classical 
approaches of antigen formulation and immunization by injec-
tion. For example, conjugation of α-Gal to carrier proteins such  
as bovine serum albumin (BSA) (14), α-Gal-containing neo-
glycoproteins covalently attached to BSA (38), and virus-like 
particles displaying the α-Gal carbohydrate (19) among others. 
However, the most innovative implication of the study by Yilmaz 
et al. (14) is the potential use of probiotic bacteria to elicit pro-
tective anti-α-Gal antibodies (39). Such approach would have 
obvious advantages considering that probiotic-based products 
are safe, easy to distribute, well received by the public, and with a 
well-established regulatory body (40). Currently, research on the 
use of probiotics to induce anti-α-Gal immunity is very limited. 
Initial reports showed that consumption of fermented milk 
containing Lactobacillus casei, which express α-Gal, in healthy 
adults did not change anti-α-Gal antibody levels (41). However, 
this preliminary report does not allow concluding that develop-
ing an α-Gal probiotic-based vaccine is an impossible task. The 
diversity of best known probiotics Lactobacillus (42), Lactococcus 
(43), and Bifidobacterium is astonishing (44). For example, the 
genus Lactobacillus has 154 validly described species and 19 
subspecies (42). Exploring such diversity may render promising 
bacterial species candidates that express α-Gal and may also 
enhance the immunity to this antigen. The GGTA1 KO mice 
would be a relevant model in these studies. A difficulty may arise 
when developing a probiotic-based vaccine using Gram-positive 
bacteria. The α-Gal in members of the family Enterobacteriaceae 
(Gram-negative bacteria, e.g., E. coli spp.) is mainly associated 
with the bacterial capsule and cell wall glycoproteins, as well as 
with carbohydrate units of bacterial lipopolysaccharide (LPS) 
(32). The association of α-Gal to highly immunogenic compo-
nents such as LPS, not present in Gram-positive bacteria, may 
influence the immune response elicited against this carbohydrate 
in the intestinal mucosa. Toll-like receptor (TLR) 4 for which 

LPS is a specific, and powerful, activator may play a role in the 
immunity against α-Gal associated with LPS. Thus, as previously 
proposed (39), probiotic-based vaccines using Gram-positive 
bacteria may be combined with TLR4 agonist. A way to imple-
ment this is to transform the candidate Gram-positive bacteria 
with a plasmid containing LPS specific peptide mimotopes 
(45). This LPS mimotopes are short peptide sequences of seven 
amino acids that activate TRL4 signaling pathway and trigger the 
secretion of inflammatory cytokines by macrophages (45). Gram-
positive bacteria co-expressing LPS mimotopes and α-Gal have 
the potential to overcome the low antigenicity of α-Gal expressed 
by L. casei (41). Alternatively, probiotic Gram-negative bacteria 
such as E. coli Nissle 1917 strain (46) can be used. Whether E. coli 
Nissle 1917 expresses α-Gal or not is currently unknown. If these 
bacteria do not express α-Gal naturally, they can be transformed 
with a plasmid containing bacterial α-1,3-galactosyltransferase 
reported in E. coli (47) and other bacteria (48).

COnCLUDinG REMARKS

The identification of anti-α-Gal immunity as an important fac-
tor in malaria transmission (14), together with the finding that 
blood type B decreases anti-α-Gal antibody levels increasing the 
susceptibility to malaria and tuberculosis (7, 8), can be used to 
implement specific measures for disease control. First, blood 
type B may be considered as a risk factor to develop malaria 
and tuberculosis. Second, probiotic-based vaccines can be used 
to induce a protective anti-α-Gal immunity in blood type A 
and O individuals. This vaccine has the potential to induce a 
long-lasting protective response against various highly prevalent 
infectious diseases such as malaria and tuberculosis caused by 
pathogens with α-Gal on their surface. Probiotic-based vaccines 
could rely on α-Gal-producing bacteria such as Lactobacillus 
spp. transformed with LPS mimotopes to activate TLR4.  
Alternatively, this vaccine can be based on the probiotic Gram-
negative bacteria E. coli Nissle 1917. This probiotic-based vaccine 
would have low production costs and would be easy to administer 
to high-risk populations in the poorest regions of the world.
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